| /OK3568_Linux_fs/buildroot/package/rockchip/rknn_demo/ |
| H A D | rknn_demo.mk | 20 $(INSTALL) -D -m 0644 $(@D)/rknn/rknn_api/librknn_api.so $(TARGET_DIR)/usr/lib 21 $(INSTALL) -D -m 0644 $(@D)/rknn/rknn_api/librknn_api.so $(STAGING_DIR)/usr/lib 54 RKNN_MODEL_RESOURCE_FILES = rknn/joint/cpm.rknn 58 RKNN_MODEL_RESOURCE_FILES = rknn/frg/frgsdk_rk1808/model/align.rknn \ 59 rknn/frg/frgsdk_rk1808/model/detect.rknn \ 60 rknn/frg/frgsdk_rk1808/model/recognize.rknn 65 RKNN_MODEL_RESOURCE_FILES = rknn/ssd/ssd_1808/ssd_inception_v2.rknn \ 66 rknn/ssd/ssd_1808/coco_labels_list.txt \ 67 rknn/ssd/ssd_1808/box_priors.txt 69 RKNN_MODEL_RESOURCE_FILES = rknn/ssd/ssd_3399pro/mobilenet_ssd.rknn \ [all …]
|
| /OK3568_Linux_fs/external/rknn-toolkit2/examples/functions/board_test/ |
| H A D | test.py | 3 from rknn.api import RKNN 27 rknn = RKNN(verbose=True) variable 31 rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], 37 ret = rknn.load_caffe(model='./../../caffe/mobilenet_v2/mobilenet_v2.prototxt', 46 ret = rknn.build(do_quantization=True, dataset='./dataset.txt') 54 ret = rknn.export_rknn('./mobilenet_v2.rknn') 62 ret = rknn.export_encrypted_rknn_model('./mobilenet_v2.rknn', None, 3) 66 ret = rknn.load_rknn('./mobilenet_v2.rknn') 76 rknn.list_devices() 80 ret = rknn.init_runtime(target='rk3588', perf_debug=True, eval_mem=True) [all …]
|
| /OK3568_Linux_fs/docs/cn/Common/NPU/rknn-toolkit2/ |
| H A D | RKNNToolKit2_API_Difference_With_Toolkit1-1.4.0.md | 3 ## rknn.config 73 ## rknn.load_tensorflow 101 ## rknn.load_caffe 114 ## rknn.load_keras 122 ## rknn.load_pytorch 135 ## rknn.load_mxnet 143 ## rknn.build 157 ## rknn.direct_build 165 ## rknn.hybrid_quantization_step1 177 ## rknn.hybrid_quantization_step2 [all …]
|
| /OK3568_Linux_fs/external/rknn-toolkit2/doc/ |
| H A D | RKNNToolKit2_API_Difference_With_Toolkit1-1.5.0.md | 3 ## rknn.config 76 ## rknn.load_tensorflow 104 ## rknn.load_caffe 117 ## rknn.load_keras 125 ## rknn.load_pytorch 138 ## rknn.load_mxnet 146 ## rknn.build 160 ## rknn.direct_build 168 ## rknn.hybrid_quantization_step1 180 ## rknn.hybrid_quantization_step2 [all …]
|
| /OK3568_Linux_fs/docs/en/Common/NPU/rknn-toolkit2/ |
| H A D | RKNNToolKit2_API_Difference_With_Toolkit1-1.4.0.md | 3 ## rknn.config 73 ## rknn.load_tensorflow 101 ## rknn.load_caffe 114 ## rknn.load_keras 122 ## rknn.load_pytorch 135 ## rknn.load_mxnet 143 ## rknn.build 157 ## rknn.direct_build 165 ## rknn.hybrid_quantization_step1 177 ## rknn.hybrid_quantization_step2 [all …]
|
| /OK3568_Linux_fs/external/rknn-toolkit2/examples/functions/multi_input_test/ |
| H A D | test.py | 3 from rknn.api import RKNN 8 rknn = RKNN(verbose=True) variable 12 rknn.config(mean_values=[[127.5, 127.5, 127.5], [0, 0, 0], [0, 0, 0], [127.5]], 18 ret = rknn.load_tensorflow(tf_pb='./conv_128.pb', 29 ret = rknn.build(do_quantization=True, dataset='./dataset.txt') 37 ret = rknn.export_rknn('./conv_128.rknn') 45 ret = rknn.init_runtime() 64 …outputs = rknn.inference(inputs=[img, input2, input3, img_gray], data_format=['nhwc', 'nchw', 'nch… 70 rknn.release()
|
| /OK3568_Linux_fs/docs/cn/Common/NPU/ |
| H A D | README.md | 32 - rknn-toolkit适用RV1109/RV1126/RK1808/RK3399Pro,rknn-toolkit2适用RK356X/RK3588/RV1103/RV1106 33 - rknn-toolkit2与rknn-toolkit API接口基本保持一致,用户不需要太多修改(rknn.config()部分参数有删减) 34 - rknpu2需要与rknn-toolkit2同步升级到1.4.0的版本。之前客户使用rknn toolkit2 1.3.0版本生成的rknn模型建议重新生成 35 - rknn api里面部分demo依赖MPI MMZ/RGA,使用时,需要和系统中相应的库匹配
|
| /OK3568_Linux_fs/external/rknn-toolkit2/examples/tflite/mobilenet_v1_qat/ |
| H A D | test.py | 3 from rknn.api import RKNN 27 rknn = RKNN(verbose=True) variable 31 rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128]) 36 ret = rknn.load_tflite(model='mobilenet_v1_1.0_224_quant.tflite') 44 ret = rknn.build(do_quantization=False) 52 ret = rknn.export_rknn('./mobilenet_v1.rknn') 65 ret = rknn.init_runtime() 73 outputs = rknn.inference(inputs=[img]) 78 rknn.release()
|
| /OK3568_Linux_fs/external/rknn-toolkit2/examples/caffe/mobilenet_v2/ |
| H A D | test.py | 3 from rknn.api import RKNN 28 rknn = RKNN(verbose=True) variable 32 …rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], quant_img_RGB2… 37 ret = rknn.load_caffe(model='./mobilenet_v2.prototxt', 46 ret = rknn.build(do_quantization=True, dataset='./dataset.txt') 54 ret = rknn.export_rknn('./mobilenet_v2.rknn') 65 ret = rknn.init_runtime() 73 outputs = rknn.inference(inputs=[img]) 77 rknn.release()
|
| /OK3568_Linux_fs/external/rknn-toolkit2/examples/functions/model_pruning/ |
| H A D | test.py | 3 from rknn.api import RKNN 28 rknn = RKNN(verbose=True) variable 32 …rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], quant_img_RGB2… 37 ret = rknn.load_caffe(model='./mobilenet_deploy.prototxt', 46 ret = rknn.build(do_quantization=True, dataset='./dataset.txt') 71 ret = rknn.export_rknn('./mobilenet.rknn') 82 ret = rknn.init_runtime() 90 outputs = rknn.inference(inputs=[img]) 94 rknn.release()
|
| /OK3568_Linux_fs/external/rknn-toolkit2/examples/functions/dynamic_input/ |
| H A D | test.py | 3 from rknn.api import RKNN 33 rknn = RKNN(verbose=True) variable 45 …rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], quant_img_RGB2… 50 ret = rknn.load_caffe(model='../../caffe/mobilenet_v2/mobilenet_v2.prototxt', 59 ret = rknn.build(do_quantization=True, dataset='../../caffe/mobilenet_v2/dataset.txt') 67 ret = rknn.export_rknn('./mobilenet_v2.rknn') 75 ret = rknn.init_runtime() 89 outputs = rknn.inference(inputs=[img2], data_format=['nchw']) 96 outputs = rknn.inference(inputs=[img3], data_format=['nchw']) 101 rknn.release()
|
| /OK3568_Linux_fs/external/rknn-toolkit2/examples/tflite/mobilenet_v1/ |
| H A D | test.py | 3 from rknn.api import RKNN 27 rknn = RKNN(verbose=True) variable 31 rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128]) 36 ret = rknn.load_tflite(model='mobilenet_v1_1.0_224.tflite') 44 ret = rknn.build(do_quantization=True, dataset='./dataset.txt') 52 ret = rknn.export_rknn('./mobilenet_v1.rknn') 65 ret = rknn.init_runtime() 73 outputs = rknn.inference(inputs=[img]) 78 rknn.release()
|
| /OK3568_Linux_fs/external/rknn-toolkit2/examples/functions/batch_size/ |
| H A D | test.py | 3 from rknn.api import RKNN 33 rknn = RKNN(verbose=True) variable 37 …rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], quant_img_RGB2… 42 ret = rknn.load_caffe(model='../../caffe/mobilenet_v2/mobilenet_v2.prototxt', 51 ret = rknn.build(do_quantization=True, dataset='./dataset.txt', rknn_batch_size=4) 59 ret = rknn.export_rknn('./mobilenet_v2.rknn') 73 ret = rknn.init_runtime() 81 outputs = rknn.inference(inputs=[img]) 86 rknn.release()
|
| /OK3568_Linux_fs/external/rknn-toolkit2/examples/functions/hybrid_quant/ |
| H A D | step2.py | 3 from rknn.api import RKNN 9 rknn = RKNN(verbose=True) variable 13 ret = rknn.hybrid_quantization_step2(model_input='./ssd_mobilenet_v2.model', 23 ret = rknn.export_rknn('./ssd_mobilenet_v2.rknn') 31 ret = rknn.accuracy_analysis(inputs=['./dog_bike_car_300x300.jpg'], output_dir=None) 43 ret = rknn.init_runtime() 51 outputs = rknn.inference(inputs=[img]) 57 rknn.release()
|
| H A D | step1.py | 3 from rknn.api import RKNN 8 rknn = RKNN(verbose=True) variable 12 rknn.config(mean_values=[127.5, 127.5, 127.5], std_values=[127.5, 127.5, 127.5]) 17 ret = rknn.load_tensorflow(tf_pb='./ssd_mobilenet_v2.pb', 28 ret = rknn.hybrid_quantization_step1(dataset='./dataset.txt', proposal=False) 50 rknn.release()
|
| /OK3568_Linux_fs/external/rknpu2/examples/rknn_yolov5_demo/convert_rknn_demo/yolov5/ |
| H A D | onnx2rknn.py | 5 from rknn.api import RKNN 20 rknn = RKNN() variable 27 rknn.config(mean_values=[[0, 0, 0]], std_values=[ 31 ret = rknn.load_onnx(MODEL_PATH) 39 ret = rknn.build(do_quantization=True, dataset=DATASET) 49 ret = rknn.export_rknn(RKNN_MODEL_PATH) 55 ret = rknn.load_rknn(RKNN_MODEL_PATH) 57 rknn.release()
|
| /OK3568_Linux_fs/external/rknpu2/examples/RV1106_RV1103/rknn_yolov5_demo/convert_rknn_demo/yolov5/ |
| H A D | onnx2rknn.py | 5 from rknn.api import RKNN 19 rknn = RKNN() variable 25 rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform="rv1106") 28 ret = rknn.load_onnx(MODEL_PATH, outputs=['334', '353', '372']) 36 ret = rknn.build(do_quantization=True, dataset=DATASET) 46 ret = rknn.export_rknn(RKNN_MODEL_PATH) 52 ret = rknn.load_rknn(RKNN_MODEL_PATH) 54 rknn.release()
|
| /OK3568_Linux_fs/external/rknn-toolkit2/examples/functions/mmse/ |
| H A D | test.py | 3 from rknn.api import RKNN 27 rknn = RKNN(verbose=True) variable 31 rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128], 37 ret = rknn.load_tensorflow(tf_pb='mobilenet_v1.pb', 48 ret = rknn.build(do_quantization=True, dataset='./dataset.txt') 56 ret = rknn.accuracy_analysis(inputs=['dog_224x224.jpg'], output_dir=None) 78 ret = rknn.init_runtime() 86 outputs = rknn.inference(inputs=[img]) 91 rknn.release()
|
| /OK3568_Linux_fs/buildroot/package/rockchip/rknpu/ |
| H A D | rknpu.mk | 54 mkdir -p $(STAGING_DIR)/usr/include/rknn 55 …$(INSTALL) -D -m 0644 $(@D)/rknn/include/rknn_runtime.h $(STAGING_DIR)/usr/include/rknn/rknn_runti… 57 …$(INSTALL) -D -m 0644 $(@D)/rknn/rknn_api/librknn_api/include/rknn_api.h $(STAGING_DIR)/usr/includ… 82 cp -r $(@D)/rknn/python/rknn $(TARGET_DIR)/usr/lib/python3.6/site-packages/; \ 87 …$(INSTALL) -D -m 0644 $(@D)/rknn/rknn_api/librknn_api/lib64/librknn_api.so $(TARGET_DIR)/usr/lib/;… 88 …$(INSTALL) -D -m 0644 $(@D)/rknn/rknn_api/librknn_api/lib64/librknn_api.so $(STAGING_DIR)/usr/lib;… 90 … $(INSTALL) -D -m 0644 $(@D)/rknn/rknn_api/librknn_api/lib/librknn_api.so $(TARGET_DIR)/usr/lib/; \ 91 … $(INSTALL) -D -m 0644 $(@D)/rknn/rknn_api/librknn_api/lib/librknn_api.so $(STAGING_DIR)/usr/lib; \
|
| /OK3568_Linux_fs/external/rknn-toolkit2/examples/pytorch/resnet18/ |
| H A D | test.py | 3 from rknn.api import RKNN 51 rknn = RKNN(verbose=True) variable 55 rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.395, 58.395, 58.395]) 60 ret = rknn.load_pytorch(model=model, input_size_list=input_size_list) 68 ret = rknn.build(do_quantization=True, dataset='./dataset.txt') 76 ret = rknn.export_rknn('./resnet_18.rknn') 88 ret = rknn.init_runtime() 96 outputs = rknn.inference(inputs=[img]) 101 rknn.release()
|
| /OK3568_Linux_fs/external/rknn-toolkit2/examples/pytorch/resnet18_qat/ |
| H A D | test.py | 3 from rknn.api import RKNN 53 rknn = RKNN(verbose=True) variable 57 rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.395, 58.395, 58.395]) 62 ret = rknn.load_pytorch(model=model, input_size_list=input_size_list) 70 ret = rknn.build(do_quantization=False) 78 ret = rknn.export_rknn('./resnet_18.rknn') 90 ret = rknn.init_runtime() 98 outputs = rknn.inference(inputs=[img]) 103 rknn.release()
|
| /OK3568_Linux_fs/external/rknn-toolkit2/examples/darknet/yolov3_416x416/ |
| H A D | test.py | 3 from rknn.api import RKNN 25 rknn = RKNN(verbose=True) variable 29 rknn.config(mean_values=[0, 0, 0], std_values=[255, 255, 255]) 34 ret = rknn.load_darknet(model=MODEL_PATH, weight=WEIGHT_PATH) 42 ret = rknn.build(do_quantization=True, dataset=DATASET) 50 ret = rknn.export_rknn(RKNN_MODEL_PATH) 62 ret = rknn.init_runtime() 70 outputs = rknn.inference(inputs=[img]) 98 rknn.release()
|
| /OK3568_Linux_fs/external/rknpu2/examples/rknn_benchmark/ |
| H A D | README.md | 1 rknn_benchmark is used to test the performance of the rknn model. Please make sure that the cpu/ddr… 5 ./rknn_benchmark xxx.rknn [input_data] [loop_count] [core_mask] 18 ./rknn_benchmark mobilenet_v1.rknn 19 ./rknn_benchmark mobilenet_v1.rknn dog.jpg 10 3 20 ./rknn_benchmark mobilenet_v1.rknn dog.npy 10 7 21 ./rknn_benchmark xxx.rknn input1.npy#input2.npy 44 Connect device and push the program and rknn model to `/userdata` 50 - If your board has sshd service, you can use scp or other methods to copy the program and rknn mod… 61 ./rknn_benchmark xxx.rknn 90 ./rknn_benchmark xxx.rknn
|
| /OK3568_Linux_fs/external/rknn-toolkit2/examples/onnx/resnet50v2/ |
| H A D | test.py | 8 from rknn.api import RKNN 64 rknn = RKNN(verbose=True) variable 84 rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.82, 58.82, 58.82]) 89 ret = rknn.load_onnx(model=ONNX_MODEL) 97 ret = rknn.build(do_quantization=True, dataset='./dataset.txt') 105 ret = rknn.export_rknn(RKNN_MODEL) 117 ret = rknn.init_runtime() 125 outputs = rknn.inference(inputs=[img]) 133 rknn.release()
|
| /OK3568_Linux_fs/external/rknn-toolkit2/examples/tensorflow/inception_v3_qat/ |
| H A D | test.py | 10 from rknn.api import RKNN 70 rknn = RKNN(verbose=True) variable 107 rknn.config(mean_values=[104, 117, 123], std_values=[128, 128, 128]) 112 ret = rknn.load_tensorflow(tf_pb=PB_FILE, 123 ret = rknn.build(do_quantization=False) 131 ret = rknn.export_rknn(RKNN_MODEL_PATH) 143 ret = rknn.init_runtime() 151 outputs = rknn.inference(inputs=[img]) 159 rknn.release()
|