xref: /OK3568_Linux_fs/external/rknn-toolkit2/examples/tflite/mobilenet_v1/test.py (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyunimport numpy as np
2*4882a593Smuzhiyunimport cv2
3*4882a593Smuzhiyunfrom rknn.api import RKNN
4*4882a593Smuzhiyun
5*4882a593Smuzhiyun
6*4882a593Smuzhiyundef show_outputs(outputs):
7*4882a593Smuzhiyun    output = outputs[0][0]
8*4882a593Smuzhiyun    output_sorted = sorted(output, reverse=True)
9*4882a593Smuzhiyun    top5_str = 'mobilenet_v1\n-----TOP 5-----\n'
10*4882a593Smuzhiyun    for i in range(5):
11*4882a593Smuzhiyun        value = output_sorted[i]
12*4882a593Smuzhiyun        index = np.where(output == value)
13*4882a593Smuzhiyun        for j in range(len(index)):
14*4882a593Smuzhiyun            if (i + j) >= 5:
15*4882a593Smuzhiyun                break
16*4882a593Smuzhiyun            if value > 0:
17*4882a593Smuzhiyun                topi = '{}: {}\n'.format(index[j], value)
18*4882a593Smuzhiyun            else:
19*4882a593Smuzhiyun                topi = '-1: 0.0\n'
20*4882a593Smuzhiyun            top5_str += topi
21*4882a593Smuzhiyun    print(top5_str)
22*4882a593Smuzhiyun
23*4882a593Smuzhiyun
24*4882a593Smuzhiyunif __name__ == '__main__':
25*4882a593Smuzhiyun
26*4882a593Smuzhiyun    # Create RKNN object
27*4882a593Smuzhiyun    rknn = RKNN(verbose=True)
28*4882a593Smuzhiyun
29*4882a593Smuzhiyun    # Pre-process config
30*4882a593Smuzhiyun    print('--> Config model')
31*4882a593Smuzhiyun    rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128])
32*4882a593Smuzhiyun    print('done')
33*4882a593Smuzhiyun
34*4882a593Smuzhiyun    # Load model
35*4882a593Smuzhiyun    print('--> Loading model')
36*4882a593Smuzhiyun    ret = rknn.load_tflite(model='mobilenet_v1_1.0_224.tflite')
37*4882a593Smuzhiyun    if ret != 0:
38*4882a593Smuzhiyun        print('Load model failed!')
39*4882a593Smuzhiyun        exit(ret)
40*4882a593Smuzhiyun    print('done')
41*4882a593Smuzhiyun
42*4882a593Smuzhiyun    # Build model
43*4882a593Smuzhiyun    print('--> Building model')
44*4882a593Smuzhiyun    ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
45*4882a593Smuzhiyun    if ret != 0:
46*4882a593Smuzhiyun        print('Build model failed!')
47*4882a593Smuzhiyun        exit(ret)
48*4882a593Smuzhiyun    print('done')
49*4882a593Smuzhiyun
50*4882a593Smuzhiyun    # Export rknn model
51*4882a593Smuzhiyun    print('--> Export rknn model')
52*4882a593Smuzhiyun    ret = rknn.export_rknn('./mobilenet_v1.rknn')
53*4882a593Smuzhiyun    if ret != 0:
54*4882a593Smuzhiyun        print('Export rknn model failed!')
55*4882a593Smuzhiyun        exit(ret)
56*4882a593Smuzhiyun    print('done')
57*4882a593Smuzhiyun
58*4882a593Smuzhiyun    # Set inputs
59*4882a593Smuzhiyun    img = cv2.imread('./dog_224x224.jpg')
60*4882a593Smuzhiyun    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
61*4882a593Smuzhiyun    img = np.expand_dims(img, 0)
62*4882a593Smuzhiyun
63*4882a593Smuzhiyun    # Init runtime environment
64*4882a593Smuzhiyun    print('--> Init runtime environment')
65*4882a593Smuzhiyun    ret = rknn.init_runtime()
66*4882a593Smuzhiyun    if ret != 0:
67*4882a593Smuzhiyun        print('Init runtime environment failed!')
68*4882a593Smuzhiyun        exit(ret)
69*4882a593Smuzhiyun    print('done')
70*4882a593Smuzhiyun
71*4882a593Smuzhiyun    # Inference
72*4882a593Smuzhiyun    print('--> Running model')
73*4882a593Smuzhiyun    outputs = rknn.inference(inputs=[img])
74*4882a593Smuzhiyun    np.save('./tflite_mobilenet_v1_0.npy', outputs[0])
75*4882a593Smuzhiyun    show_outputs(outputs)
76*4882a593Smuzhiyun    print('done')
77*4882a593Smuzhiyun
78*4882a593Smuzhiyun    rknn.release()
79