1*4882a593Smuzhiyunimport numpy as np 2*4882a593Smuzhiyunimport cv2 3*4882a593Smuzhiyunfrom rknn.api import RKNN 4*4882a593Smuzhiyun 5*4882a593Smuzhiyun 6*4882a593Smuzhiyundef show_outputs(outputs): 7*4882a593Smuzhiyun output = outputs[0][0] 8*4882a593Smuzhiyun output_sorted = sorted(output, reverse=True) 9*4882a593Smuzhiyun top5_str = 'mobilenet_v1\n-----TOP 5-----\n' 10*4882a593Smuzhiyun for i in range(5): 11*4882a593Smuzhiyun value = output_sorted[i] 12*4882a593Smuzhiyun index = np.where(output == value) 13*4882a593Smuzhiyun for j in range(len(index)): 14*4882a593Smuzhiyun if (i + j) >= 5: 15*4882a593Smuzhiyun break 16*4882a593Smuzhiyun if value > 0: 17*4882a593Smuzhiyun topi = '{}: {}\n'.format(index[j], value) 18*4882a593Smuzhiyun else: 19*4882a593Smuzhiyun topi = '-1: 0.0\n' 20*4882a593Smuzhiyun top5_str += topi 21*4882a593Smuzhiyun print(top5_str) 22*4882a593Smuzhiyun 23*4882a593Smuzhiyun 24*4882a593Smuzhiyunif __name__ == '__main__': 25*4882a593Smuzhiyun 26*4882a593Smuzhiyun # Create RKNN object 27*4882a593Smuzhiyun rknn = RKNN(verbose=True) 28*4882a593Smuzhiyun 29*4882a593Smuzhiyun # Pre-process config 30*4882a593Smuzhiyun print('--> Config model') 31*4882a593Smuzhiyun rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128]) 32*4882a593Smuzhiyun print('done') 33*4882a593Smuzhiyun 34*4882a593Smuzhiyun # Load model 35*4882a593Smuzhiyun print('--> Loading model') 36*4882a593Smuzhiyun ret = rknn.load_tflite(model='mobilenet_v1_1.0_224.tflite') 37*4882a593Smuzhiyun if ret != 0: 38*4882a593Smuzhiyun print('Load model failed!') 39*4882a593Smuzhiyun exit(ret) 40*4882a593Smuzhiyun print('done') 41*4882a593Smuzhiyun 42*4882a593Smuzhiyun # Build model 43*4882a593Smuzhiyun print('--> Building model') 44*4882a593Smuzhiyun ret = rknn.build(do_quantization=True, dataset='./dataset.txt') 45*4882a593Smuzhiyun if ret != 0: 46*4882a593Smuzhiyun print('Build model failed!') 47*4882a593Smuzhiyun exit(ret) 48*4882a593Smuzhiyun print('done') 49*4882a593Smuzhiyun 50*4882a593Smuzhiyun # Export rknn model 51*4882a593Smuzhiyun print('--> Export rknn model') 52*4882a593Smuzhiyun ret = rknn.export_rknn('./mobilenet_v1.rknn') 53*4882a593Smuzhiyun if ret != 0: 54*4882a593Smuzhiyun print('Export rknn model failed!') 55*4882a593Smuzhiyun exit(ret) 56*4882a593Smuzhiyun print('done') 57*4882a593Smuzhiyun 58*4882a593Smuzhiyun # Set inputs 59*4882a593Smuzhiyun img = cv2.imread('./dog_224x224.jpg') 60*4882a593Smuzhiyun img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 61*4882a593Smuzhiyun img = np.expand_dims(img, 0) 62*4882a593Smuzhiyun 63*4882a593Smuzhiyun # Init runtime environment 64*4882a593Smuzhiyun print('--> Init runtime environment') 65*4882a593Smuzhiyun ret = rknn.init_runtime() 66*4882a593Smuzhiyun if ret != 0: 67*4882a593Smuzhiyun print('Init runtime environment failed!') 68*4882a593Smuzhiyun exit(ret) 69*4882a593Smuzhiyun print('done') 70*4882a593Smuzhiyun 71*4882a593Smuzhiyun # Inference 72*4882a593Smuzhiyun print('--> Running model') 73*4882a593Smuzhiyun outputs = rknn.inference(inputs=[img]) 74*4882a593Smuzhiyun np.save('./tflite_mobilenet_v1_0.npy', outputs[0]) 75*4882a593Smuzhiyun show_outputs(outputs) 76*4882a593Smuzhiyun print('done') 77*4882a593Smuzhiyun 78*4882a593Smuzhiyun rknn.release() 79