xref: /OK3568_Linux_fs/external/rknn-toolkit2/examples/functions/board_test/test.py (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyunimport numpy as np
2*4882a593Smuzhiyunimport cv2
3*4882a593Smuzhiyunfrom rknn.api import RKNN
4*4882a593Smuzhiyun
5*4882a593Smuzhiyun
6*4882a593Smuzhiyundef show_outputs(outputs):
7*4882a593Smuzhiyun    output = outputs[0].reshape(-1)
8*4882a593Smuzhiyun    output_sorted = sorted(output, reverse=True)
9*4882a593Smuzhiyun    top5_str = 'mobilenet_v2\n-----TOP 5-----\n'
10*4882a593Smuzhiyun    for i in range(5):
11*4882a593Smuzhiyun        value = output_sorted[i]
12*4882a593Smuzhiyun        index = np.where(output == value)
13*4882a593Smuzhiyun        for j in range(len(index)):
14*4882a593Smuzhiyun            if (i + j) >= 5:
15*4882a593Smuzhiyun                break
16*4882a593Smuzhiyun            if value > 0:
17*4882a593Smuzhiyun                topi = '{}: {}\n'.format(index[j], value)
18*4882a593Smuzhiyun            else:
19*4882a593Smuzhiyun                topi = '-1: 0.0\n'
20*4882a593Smuzhiyun            top5_str += topi
21*4882a593Smuzhiyun    print(top5_str)
22*4882a593Smuzhiyun
23*4882a593Smuzhiyun
24*4882a593Smuzhiyunif __name__ == '__main__':
25*4882a593Smuzhiyun
26*4882a593Smuzhiyun    # Create RKNN object
27*4882a593Smuzhiyun    rknn = RKNN(verbose=True)
28*4882a593Smuzhiyun
29*4882a593Smuzhiyun    # Pre-process config
30*4882a593Smuzhiyun    print('--> Config model')
31*4882a593Smuzhiyun    rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82],
32*4882a593Smuzhiyun                quant_img_RGB2BGR=True, target_platform='rk3588')
33*4882a593Smuzhiyun    print('done')
34*4882a593Smuzhiyun
35*4882a593Smuzhiyun    # Load model
36*4882a593Smuzhiyun    print('--> Loading model')
37*4882a593Smuzhiyun    ret = rknn.load_caffe(model='./../../caffe/mobilenet_v2/mobilenet_v2.prototxt',
38*4882a593Smuzhiyun                          blobs='./../../caffe/mobilenet_v2/mobilenet_v2.caffemodel')
39*4882a593Smuzhiyun    if ret != 0:
40*4882a593Smuzhiyun        print('Load model failed!')
41*4882a593Smuzhiyun        exit(ret)
42*4882a593Smuzhiyun    print('done')
43*4882a593Smuzhiyun
44*4882a593Smuzhiyun    # Build model
45*4882a593Smuzhiyun    print('--> Building model')
46*4882a593Smuzhiyun    ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
47*4882a593Smuzhiyun    if ret != 0:
48*4882a593Smuzhiyun        print('Build model failed!')
49*4882a593Smuzhiyun        exit(ret)
50*4882a593Smuzhiyun    print('done')
51*4882a593Smuzhiyun
52*4882a593Smuzhiyun    # Export rknn model
53*4882a593Smuzhiyun    print('--> Export rknn model')
54*4882a593Smuzhiyun    ret = rknn.export_rknn('./mobilenet_v2.rknn')
55*4882a593Smuzhiyun    if ret != 0:
56*4882a593Smuzhiyun        print('Export rknn model failed!')
57*4882a593Smuzhiyun        exit(ret)
58*4882a593Smuzhiyun    print('done')
59*4882a593Smuzhiyun
60*4882a593Smuzhiyun    # Export encrypted RKNN model
61*4882a593Smuzhiyun    print('--> Export encrypted rknn model')
62*4882a593Smuzhiyun    ret = rknn.export_encrypted_rknn_model('./mobilenet_v2.rknn', None, 3)
63*4882a593Smuzhiyun
64*4882a593Smuzhiyun    # load rknn model
65*4882a593Smuzhiyun    print('--> Load rknn model')
66*4882a593Smuzhiyun    ret = rknn.load_rknn('./mobilenet_v2.rknn')
67*4882a593Smuzhiyun    if ret != 0:
68*4882a593Smuzhiyun        print('Load rknn model failed!')
69*4882a593Smuzhiyun        exit(ret)
70*4882a593Smuzhiyun    print('done')
71*4882a593Smuzhiyun
72*4882a593Smuzhiyun    # Set inputs
73*4882a593Smuzhiyun    img = cv2.imread('./dog_224x224.jpg')
74*4882a593Smuzhiyun
75*4882a593Smuzhiyun    print('--> List devices')
76*4882a593Smuzhiyun    rknn.list_devices()
77*4882a593Smuzhiyun
78*4882a593Smuzhiyun    # Init runtime environment
79*4882a593Smuzhiyun    print('--> Init runtime environment')
80*4882a593Smuzhiyun    ret = rknn.init_runtime(target='rk3588', perf_debug=True, eval_mem=True)
81*4882a593Smuzhiyun    if ret != 0:
82*4882a593Smuzhiyun        print('Init runtime environment failed!')
83*4882a593Smuzhiyun        exit(ret)
84*4882a593Smuzhiyun    print('done')
85*4882a593Smuzhiyun
86*4882a593Smuzhiyun    print('--> Get sdk version')
87*4882a593Smuzhiyun    sdk_version = rknn.get_sdk_version()
88*4882a593Smuzhiyun    print(sdk_version)
89*4882a593Smuzhiyun
90*4882a593Smuzhiyun    # eval perf
91*4882a593Smuzhiyun    print('--> Eval perf')
92*4882a593Smuzhiyun    rknn.eval_perf()
93*4882a593Smuzhiyun
94*4882a593Smuzhiyun    # eval perf
95*4882a593Smuzhiyun    print('--> Eval memory')
96*4882a593Smuzhiyun    rknn.eval_memory()
97*4882a593Smuzhiyun
98*4882a593Smuzhiyun    # Inference
99*4882a593Smuzhiyun    print('--> Running model')
100*4882a593Smuzhiyun    outputs = rknn.inference(inputs=[img])
101*4882a593Smuzhiyun    np.save('./functions_board_test_0.npy', outputs[0])
102*4882a593Smuzhiyun    show_outputs(outputs)
103*4882a593Smuzhiyun    print('done')
104*4882a593Smuzhiyun
105*4882a593Smuzhiyun    # Accuracy analysis
106*4882a593Smuzhiyun    print('--> Accuracy analysis')
107*4882a593Smuzhiyun    ret = rknn.accuracy_analysis(inputs=['./dog_224x224.jpg'], output_dir='./snapshot', target='rk3588')
108*4882a593Smuzhiyun    if ret != 0:
109*4882a593Smuzhiyun        print('Accuracy analysis failed!')
110*4882a593Smuzhiyun        exit(ret)
111*4882a593Smuzhiyun    print('done')
112*4882a593Smuzhiyun
113*4882a593Smuzhiyun    rknn.release()
114