xref: /OK3568_Linux_fs/external/rknn-toolkit2/examples/pytorch/resnet18_qat/test.py (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1import numpy as np
2import cv2
3from rknn.api import RKNN
4import torchvision.models as models
5import torch
6import os
7
8
9def show_outputs(output):
10    output_sorted = sorted(output, reverse=True)
11    top5_str = '\n-----TOP 5-----\n'
12    for i in range(5):
13        value = output_sorted[i]
14        index = np.where(output == value)
15        for j in range(len(index)):
16            if (i + j) >= 5:
17                break
18            if value > 0:
19                topi = '{}: {}\n'.format(index[j], value)
20            else:
21                topi = '-1: 0.0\n'
22            top5_str += topi
23    print(top5_str)
24
25
26def show_perfs(perfs):
27    perfs = 'perfs: {}\n'.format(perfs)
28    print(perfs)
29
30
31def softmax(x):
32    return np.exp(x)/sum(np.exp(x))
33
34def torch_version():
35    import torch
36    torch_ver = torch.__version__.split('.')
37    torch_ver[2] = torch_ver[2].split('+')[0]
38    return [int(v) for v in torch_ver]
39
40if __name__ == '__main__':
41
42    if torch_version() < [1, 9, 0]:
43        import torch
44        print("Your torch version is '{}', in order to better support the Quantization Aware Training (QAT) model,\n"
45              "Please update the torch version to '1.9.0' or higher!".format(torch.__version__))
46        exit(0)
47
48    model = './resnet18_i8.pt'
49
50    input_size_list = [[1, 3, 224, 224]]
51
52    # Create RKNN object
53    rknn = RKNN(verbose=True)
54
55    # Pre-process config
56    print('--> Config model')
57    rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.395, 58.395, 58.395])
58    print('done')
59
60    # Load model
61    print('--> Loading model')
62    ret = rknn.load_pytorch(model=model, input_size_list=input_size_list)
63    if ret != 0:
64        print('Load model failed!')
65        exit(ret)
66    print('done')
67
68    # Build model
69    print('--> Building model')
70    ret = rknn.build(do_quantization=False)
71    if ret != 0:
72        print('Build model failed!')
73        exit(ret)
74    print('done')
75
76    # Export rknn model
77    print('--> Export rknn model')
78    ret = rknn.export_rknn('./resnet_18.rknn')
79    if ret != 0:
80        print('Export rknn model failed!')
81        exit(ret)
82    print('done')
83
84    # Set inputs
85    img = cv2.imread('./space_shuttle_224.jpg')
86    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
87
88    # Init runtime environment
89    print('--> Init runtime environment')
90    ret = rknn.init_runtime()
91    if ret != 0:
92        print('Init runtime environment failed!')
93        exit(ret)
94    print('done')
95
96    # Inference
97    print('--> Running model')
98    outputs = rknn.inference(inputs=[img])
99    np.save('./pytorch_resnet18_qat_0.npy', outputs[0])
100    show_outputs(softmax(np.array(outputs[0][0])))
101    print('done')
102
103    rknn.release()
104