1*4882a593Smuzhiyunimport numpy as np 2*4882a593Smuzhiyunimport cv2 3*4882a593Smuzhiyunfrom rknn.api import RKNN 4*4882a593Smuzhiyunimport torchvision.models as models 5*4882a593Smuzhiyunimport torch 6*4882a593Smuzhiyunimport os 7*4882a593Smuzhiyun 8*4882a593Smuzhiyun 9*4882a593Smuzhiyundef show_outputs(output): 10*4882a593Smuzhiyun output_sorted = sorted(output, reverse=True) 11*4882a593Smuzhiyun top5_str = '\n-----TOP 5-----\n' 12*4882a593Smuzhiyun for i in range(5): 13*4882a593Smuzhiyun value = output_sorted[i] 14*4882a593Smuzhiyun index = np.where(output == value) 15*4882a593Smuzhiyun for j in range(len(index)): 16*4882a593Smuzhiyun if (i + j) >= 5: 17*4882a593Smuzhiyun break 18*4882a593Smuzhiyun if value > 0: 19*4882a593Smuzhiyun topi = '{}: {}\n'.format(index[j], value) 20*4882a593Smuzhiyun else: 21*4882a593Smuzhiyun topi = '-1: 0.0\n' 22*4882a593Smuzhiyun top5_str += topi 23*4882a593Smuzhiyun print(top5_str) 24*4882a593Smuzhiyun 25*4882a593Smuzhiyun 26*4882a593Smuzhiyundef show_perfs(perfs): 27*4882a593Smuzhiyun perfs = 'perfs: {}\n'.format(perfs) 28*4882a593Smuzhiyun print(perfs) 29*4882a593Smuzhiyun 30*4882a593Smuzhiyun 31*4882a593Smuzhiyundef softmax(x): 32*4882a593Smuzhiyun return np.exp(x)/sum(np.exp(x)) 33*4882a593Smuzhiyun 34*4882a593Smuzhiyundef torch_version(): 35*4882a593Smuzhiyun import torch 36*4882a593Smuzhiyun torch_ver = torch.__version__.split('.') 37*4882a593Smuzhiyun torch_ver[2] = torch_ver[2].split('+')[0] 38*4882a593Smuzhiyun return [int(v) for v in torch_ver] 39*4882a593Smuzhiyun 40*4882a593Smuzhiyunif __name__ == '__main__': 41*4882a593Smuzhiyun 42*4882a593Smuzhiyun if torch_version() < [1, 9, 0]: 43*4882a593Smuzhiyun import torch 44*4882a593Smuzhiyun print("Your torch version is '{}', in order to better support the Quantization Aware Training (QAT) model,\n" 45*4882a593Smuzhiyun "Please update the torch version to '1.9.0' or higher!".format(torch.__version__)) 46*4882a593Smuzhiyun exit(0) 47*4882a593Smuzhiyun 48*4882a593Smuzhiyun model = './resnet18_i8.pt' 49*4882a593Smuzhiyun 50*4882a593Smuzhiyun input_size_list = [[1, 3, 224, 224]] 51*4882a593Smuzhiyun 52*4882a593Smuzhiyun # Create RKNN object 53*4882a593Smuzhiyun rknn = RKNN(verbose=True) 54*4882a593Smuzhiyun 55*4882a593Smuzhiyun # Pre-process config 56*4882a593Smuzhiyun print('--> Config model') 57*4882a593Smuzhiyun rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.395, 58.395, 58.395]) 58*4882a593Smuzhiyun print('done') 59*4882a593Smuzhiyun 60*4882a593Smuzhiyun # Load model 61*4882a593Smuzhiyun print('--> Loading model') 62*4882a593Smuzhiyun ret = rknn.load_pytorch(model=model, input_size_list=input_size_list) 63*4882a593Smuzhiyun if ret != 0: 64*4882a593Smuzhiyun print('Load model failed!') 65*4882a593Smuzhiyun exit(ret) 66*4882a593Smuzhiyun print('done') 67*4882a593Smuzhiyun 68*4882a593Smuzhiyun # Build model 69*4882a593Smuzhiyun print('--> Building model') 70*4882a593Smuzhiyun ret = rknn.build(do_quantization=False) 71*4882a593Smuzhiyun if ret != 0: 72*4882a593Smuzhiyun print('Build model failed!') 73*4882a593Smuzhiyun exit(ret) 74*4882a593Smuzhiyun print('done') 75*4882a593Smuzhiyun 76*4882a593Smuzhiyun # Export rknn model 77*4882a593Smuzhiyun print('--> Export rknn model') 78*4882a593Smuzhiyun ret = rknn.export_rknn('./resnet_18.rknn') 79*4882a593Smuzhiyun if ret != 0: 80*4882a593Smuzhiyun print('Export rknn model failed!') 81*4882a593Smuzhiyun exit(ret) 82*4882a593Smuzhiyun print('done') 83*4882a593Smuzhiyun 84*4882a593Smuzhiyun # Set inputs 85*4882a593Smuzhiyun img = cv2.imread('./space_shuttle_224.jpg') 86*4882a593Smuzhiyun img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 87*4882a593Smuzhiyun 88*4882a593Smuzhiyun # Init runtime environment 89*4882a593Smuzhiyun print('--> Init runtime environment') 90*4882a593Smuzhiyun ret = rknn.init_runtime() 91*4882a593Smuzhiyun if ret != 0: 92*4882a593Smuzhiyun print('Init runtime environment failed!') 93*4882a593Smuzhiyun exit(ret) 94*4882a593Smuzhiyun print('done') 95*4882a593Smuzhiyun 96*4882a593Smuzhiyun # Inference 97*4882a593Smuzhiyun print('--> Running model') 98*4882a593Smuzhiyun outputs = rknn.inference(inputs=[img]) 99*4882a593Smuzhiyun np.save('./pytorch_resnet18_qat_0.npy', outputs[0]) 100*4882a593Smuzhiyun show_outputs(softmax(np.array(outputs[0][0]))) 101*4882a593Smuzhiyun print('done') 102*4882a593Smuzhiyun 103*4882a593Smuzhiyun rknn.release() 104