xref: /OK3568_Linux_fs/external/rknn-toolkit2/examples/pytorch/resnet18_qat/test.py (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyunimport numpy as np
2*4882a593Smuzhiyunimport cv2
3*4882a593Smuzhiyunfrom rknn.api import RKNN
4*4882a593Smuzhiyunimport torchvision.models as models
5*4882a593Smuzhiyunimport torch
6*4882a593Smuzhiyunimport os
7*4882a593Smuzhiyun
8*4882a593Smuzhiyun
9*4882a593Smuzhiyundef show_outputs(output):
10*4882a593Smuzhiyun    output_sorted = sorted(output, reverse=True)
11*4882a593Smuzhiyun    top5_str = '\n-----TOP 5-----\n'
12*4882a593Smuzhiyun    for i in range(5):
13*4882a593Smuzhiyun        value = output_sorted[i]
14*4882a593Smuzhiyun        index = np.where(output == value)
15*4882a593Smuzhiyun        for j in range(len(index)):
16*4882a593Smuzhiyun            if (i + j) >= 5:
17*4882a593Smuzhiyun                break
18*4882a593Smuzhiyun            if value > 0:
19*4882a593Smuzhiyun                topi = '{}: {}\n'.format(index[j], value)
20*4882a593Smuzhiyun            else:
21*4882a593Smuzhiyun                topi = '-1: 0.0\n'
22*4882a593Smuzhiyun            top5_str += topi
23*4882a593Smuzhiyun    print(top5_str)
24*4882a593Smuzhiyun
25*4882a593Smuzhiyun
26*4882a593Smuzhiyundef show_perfs(perfs):
27*4882a593Smuzhiyun    perfs = 'perfs: {}\n'.format(perfs)
28*4882a593Smuzhiyun    print(perfs)
29*4882a593Smuzhiyun
30*4882a593Smuzhiyun
31*4882a593Smuzhiyundef softmax(x):
32*4882a593Smuzhiyun    return np.exp(x)/sum(np.exp(x))
33*4882a593Smuzhiyun
34*4882a593Smuzhiyundef torch_version():
35*4882a593Smuzhiyun    import torch
36*4882a593Smuzhiyun    torch_ver = torch.__version__.split('.')
37*4882a593Smuzhiyun    torch_ver[2] = torch_ver[2].split('+')[0]
38*4882a593Smuzhiyun    return [int(v) for v in torch_ver]
39*4882a593Smuzhiyun
40*4882a593Smuzhiyunif __name__ == '__main__':
41*4882a593Smuzhiyun
42*4882a593Smuzhiyun    if torch_version() < [1, 9, 0]:
43*4882a593Smuzhiyun        import torch
44*4882a593Smuzhiyun        print("Your torch version is '{}', in order to better support the Quantization Aware Training (QAT) model,\n"
45*4882a593Smuzhiyun              "Please update the torch version to '1.9.0' or higher!".format(torch.__version__))
46*4882a593Smuzhiyun        exit(0)
47*4882a593Smuzhiyun
48*4882a593Smuzhiyun    model = './resnet18_i8.pt'
49*4882a593Smuzhiyun
50*4882a593Smuzhiyun    input_size_list = [[1, 3, 224, 224]]
51*4882a593Smuzhiyun
52*4882a593Smuzhiyun    # Create RKNN object
53*4882a593Smuzhiyun    rknn = RKNN(verbose=True)
54*4882a593Smuzhiyun
55*4882a593Smuzhiyun    # Pre-process config
56*4882a593Smuzhiyun    print('--> Config model')
57*4882a593Smuzhiyun    rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.395, 58.395, 58.395])
58*4882a593Smuzhiyun    print('done')
59*4882a593Smuzhiyun
60*4882a593Smuzhiyun    # Load model
61*4882a593Smuzhiyun    print('--> Loading model')
62*4882a593Smuzhiyun    ret = rknn.load_pytorch(model=model, input_size_list=input_size_list)
63*4882a593Smuzhiyun    if ret != 0:
64*4882a593Smuzhiyun        print('Load model failed!')
65*4882a593Smuzhiyun        exit(ret)
66*4882a593Smuzhiyun    print('done')
67*4882a593Smuzhiyun
68*4882a593Smuzhiyun    # Build model
69*4882a593Smuzhiyun    print('--> Building model')
70*4882a593Smuzhiyun    ret = rknn.build(do_quantization=False)
71*4882a593Smuzhiyun    if ret != 0:
72*4882a593Smuzhiyun        print('Build model failed!')
73*4882a593Smuzhiyun        exit(ret)
74*4882a593Smuzhiyun    print('done')
75*4882a593Smuzhiyun
76*4882a593Smuzhiyun    # Export rknn model
77*4882a593Smuzhiyun    print('--> Export rknn model')
78*4882a593Smuzhiyun    ret = rknn.export_rknn('./resnet_18.rknn')
79*4882a593Smuzhiyun    if ret != 0:
80*4882a593Smuzhiyun        print('Export rknn model failed!')
81*4882a593Smuzhiyun        exit(ret)
82*4882a593Smuzhiyun    print('done')
83*4882a593Smuzhiyun
84*4882a593Smuzhiyun    # Set inputs
85*4882a593Smuzhiyun    img = cv2.imread('./space_shuttle_224.jpg')
86*4882a593Smuzhiyun    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
87*4882a593Smuzhiyun
88*4882a593Smuzhiyun    # Init runtime environment
89*4882a593Smuzhiyun    print('--> Init runtime environment')
90*4882a593Smuzhiyun    ret = rknn.init_runtime()
91*4882a593Smuzhiyun    if ret != 0:
92*4882a593Smuzhiyun        print('Init runtime environment failed!')
93*4882a593Smuzhiyun        exit(ret)
94*4882a593Smuzhiyun    print('done')
95*4882a593Smuzhiyun
96*4882a593Smuzhiyun    # Inference
97*4882a593Smuzhiyun    print('--> Running model')
98*4882a593Smuzhiyun    outputs = rknn.inference(inputs=[img])
99*4882a593Smuzhiyun    np.save('./pytorch_resnet18_qat_0.npy', outputs[0])
100*4882a593Smuzhiyun    show_outputs(softmax(np.array(outputs[0][0])))
101*4882a593Smuzhiyun    print('done')
102*4882a593Smuzhiyun
103*4882a593Smuzhiyun    rknn.release()
104