xref: /OK3568_Linux_fs/external/rknn-toolkit2/examples/functions/model_pruning/test.py (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyunimport numpy as np
2*4882a593Smuzhiyunimport cv2
3*4882a593Smuzhiyunfrom rknn.api import RKNN
4*4882a593Smuzhiyun
5*4882a593Smuzhiyun
6*4882a593Smuzhiyundef show_outputs(outputs):
7*4882a593Smuzhiyun    np.save('./functions_model_pruning_0.npy', outputs[0])
8*4882a593Smuzhiyun    output = outputs[0].reshape(-1)
9*4882a593Smuzhiyun    output_sorted = sorted(output, reverse=True)
10*4882a593Smuzhiyun    top5_str = 'mobilenet\n-----TOP 5-----\n'
11*4882a593Smuzhiyun    for i in range(5):
12*4882a593Smuzhiyun        value = output_sorted[i]
13*4882a593Smuzhiyun        index = np.where(output == value)
14*4882a593Smuzhiyun        for j in range(len(index)):
15*4882a593Smuzhiyun            if (i + j) >= 5:
16*4882a593Smuzhiyun                break
17*4882a593Smuzhiyun            if value > 0:
18*4882a593Smuzhiyun                topi = '{}: {}\n'.format(index[j], value)
19*4882a593Smuzhiyun            else:
20*4882a593Smuzhiyun                topi = '-1: 0.0\n'
21*4882a593Smuzhiyun            top5_str += topi
22*4882a593Smuzhiyun    print(top5_str)
23*4882a593Smuzhiyun
24*4882a593Smuzhiyun
25*4882a593Smuzhiyunif __name__ == '__main__':
26*4882a593Smuzhiyun
27*4882a593Smuzhiyun    # Create RKNN object
28*4882a593Smuzhiyun    rknn = RKNN(verbose=True)
29*4882a593Smuzhiyun
30*4882a593Smuzhiyun    # Pre-process config
31*4882a593Smuzhiyun    print('--> Config model')
32*4882a593Smuzhiyun    rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], quant_img_RGB2BGR=True, model_pruning=True)
33*4882a593Smuzhiyun    print('done')
34*4882a593Smuzhiyun
35*4882a593Smuzhiyun    # Load model
36*4882a593Smuzhiyun    print('--> Loading model')
37*4882a593Smuzhiyun    ret = rknn.load_caffe(model='./mobilenet_deploy.prototxt',
38*4882a593Smuzhiyun                          blobs='./mobilenet.caffemodel')
39*4882a593Smuzhiyun    if ret != 0:
40*4882a593Smuzhiyun        print('Load model failed!')
41*4882a593Smuzhiyun        exit(ret)
42*4882a593Smuzhiyun    print('done')
43*4882a593Smuzhiyun
44*4882a593Smuzhiyun    # Build model
45*4882a593Smuzhiyun    print('--> Building model')
46*4882a593Smuzhiyun    ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
47*4882a593Smuzhiyun    if ret != 0:
48*4882a593Smuzhiyun        print('Build model failed!')
49*4882a593Smuzhiyun        exit(ret)
50*4882a593Smuzhiyun    print('done')
51*4882a593Smuzhiyun
52*4882a593Smuzhiyun    # Tips
53*4882a593Smuzhiyun    print('')
54*4882a593Smuzhiyun    print('======================================== Tips ==========================================================')
55*4882a593Smuzhiyun    print('When verbose is set to True, the following similar prompts will appear during the build process, ')
56*4882a593Smuzhiyun    print('indicating that model pruning has been effective for this model. (This means that approximately 6.9% ')
57*4882a593Smuzhiyun    print('of the weights have been removed, resulting in a saving of about 13.4% of the computational workload.)')
58*4882a593Smuzhiyun    print('Please note that not all models can be pruned, only models with sparse weights are likely to benefit from pruning.')
59*4882a593Smuzhiyun    print('')
60*4882a593Smuzhiyun    print('  I model_pruning ...')
61*4882a593Smuzhiyun    print('  I model_pruning results:')
62*4882a593Smuzhiyun    print('  I     -1.12144 MB (-6.9%)')
63*4882a593Smuzhiyun    print('  I     -0.00016 T (-13.4%)')
64*4882a593Smuzhiyun    print('  I model_pruning done.')
65*4882a593Smuzhiyun    print('')
66*4882a593Smuzhiyun    print('=========================================+++++++========================================================')
67*4882a593Smuzhiyun    print('')
68*4882a593Smuzhiyun
69*4882a593Smuzhiyun    # Export rknn model
70*4882a593Smuzhiyun    print('--> Export rknn model')
71*4882a593Smuzhiyun    ret = rknn.export_rknn('./mobilenet.rknn')
72*4882a593Smuzhiyun    if ret != 0:
73*4882a593Smuzhiyun        print('Export rknn model failed!')
74*4882a593Smuzhiyun        exit(ret)
75*4882a593Smuzhiyun    print('done')
76*4882a593Smuzhiyun
77*4882a593Smuzhiyun    # Set inputs
78*4882a593Smuzhiyun    img = cv2.imread('./dog_224x224.jpg')
79*4882a593Smuzhiyun
80*4882a593Smuzhiyun    # Init runtime environment
81*4882a593Smuzhiyun    print('--> Init runtime environment')
82*4882a593Smuzhiyun    ret = rknn.init_runtime()
83*4882a593Smuzhiyun    if ret != 0:
84*4882a593Smuzhiyun        print('Init runtime environment failed!')
85*4882a593Smuzhiyun        exit(ret)
86*4882a593Smuzhiyun    print('done')
87*4882a593Smuzhiyun
88*4882a593Smuzhiyun    # Inference
89*4882a593Smuzhiyun    print('--> Running model')
90*4882a593Smuzhiyun    outputs = rknn.inference(inputs=[img])
91*4882a593Smuzhiyun    show_outputs(outputs)
92*4882a593Smuzhiyun    print('done')
93*4882a593Smuzhiyun
94*4882a593Smuzhiyun    rknn.release()
95