1*4882a593Smuzhiyunimport numpy as np 2*4882a593Smuzhiyunimport cv2 3*4882a593Smuzhiyunfrom rknn.api import RKNN 4*4882a593Smuzhiyun 5*4882a593Smuzhiyun 6*4882a593Smuzhiyundef show_outputs(outputs): 7*4882a593Smuzhiyun output = outputs[0][0] 8*4882a593Smuzhiyun output_sorted = sorted(output, reverse=True) 9*4882a593Smuzhiyun top5_str = 'mobilenet_v1\n-----TOP 5-----\n' 10*4882a593Smuzhiyun for i in range(5): 11*4882a593Smuzhiyun value = output_sorted[i] 12*4882a593Smuzhiyun index = np.where(output == value) 13*4882a593Smuzhiyun for j in range(len(index)): 14*4882a593Smuzhiyun if (i + j) >= 5: 15*4882a593Smuzhiyun break 16*4882a593Smuzhiyun if value > 0: 17*4882a593Smuzhiyun topi = '{}: {}\n'.format(index[j], value) 18*4882a593Smuzhiyun else: 19*4882a593Smuzhiyun topi = '-1: 0.0\n' 20*4882a593Smuzhiyun top5_str += topi 21*4882a593Smuzhiyun print(top5_str) 22*4882a593Smuzhiyun 23*4882a593Smuzhiyun 24*4882a593Smuzhiyunif __name__ == '__main__': 25*4882a593Smuzhiyun 26*4882a593Smuzhiyun # Create RKNN object 27*4882a593Smuzhiyun rknn = RKNN(verbose=True) 28*4882a593Smuzhiyun 29*4882a593Smuzhiyun # Pre-process config 30*4882a593Smuzhiyun print('--> Config model') 31*4882a593Smuzhiyun rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128], 32*4882a593Smuzhiyun quantized_method='layer', quantized_algorithm='mmse') 33*4882a593Smuzhiyun print('done') 34*4882a593Smuzhiyun 35*4882a593Smuzhiyun # Load model 36*4882a593Smuzhiyun print('--> Loading model') 37*4882a593Smuzhiyun ret = rknn.load_tensorflow(tf_pb='mobilenet_v1.pb', 38*4882a593Smuzhiyun inputs=['input'], 39*4882a593Smuzhiyun input_size_list=[[1, 224, 224, 3]], 40*4882a593Smuzhiyun outputs=['MobilenetV1/Logits/SpatialSqueeze']) 41*4882a593Smuzhiyun if ret != 0: 42*4882a593Smuzhiyun print('Load model failed!') 43*4882a593Smuzhiyun exit(ret) 44*4882a593Smuzhiyun print('done') 45*4882a593Smuzhiyun 46*4882a593Smuzhiyun # Build model 47*4882a593Smuzhiyun print('--> Building model') 48*4882a593Smuzhiyun ret = rknn.build(do_quantization=True, dataset='./dataset.txt') 49*4882a593Smuzhiyun if ret != 0: 50*4882a593Smuzhiyun print('Build model failed!') 51*4882a593Smuzhiyun exit(ret) 52*4882a593Smuzhiyun print('done') 53*4882a593Smuzhiyun 54*4882a593Smuzhiyun # Accuracy analysis 55*4882a593Smuzhiyun print('--> Accuracy analysis') 56*4882a593Smuzhiyun ret = rknn.accuracy_analysis(inputs=['dog_224x224.jpg'], output_dir=None) 57*4882a593Smuzhiyun if ret != 0: 58*4882a593Smuzhiyun print('Accuracy analysis failed!') 59*4882a593Smuzhiyun exit(ret) 60*4882a593Smuzhiyun print('done') 61*4882a593Smuzhiyun 62*4882a593Smuzhiyun f = open('./snapshot/error_analysis.txt') 63*4882a593Smuzhiyun lines = f.readlines() 64*4882a593Smuzhiyun cos = lines[-1].split()[2] 65*4882a593Smuzhiyun if float(cos) >= 0.963: 66*4882a593Smuzhiyun print('cos = {}, mmse work!'.format(cos)) 67*4882a593Smuzhiyun else: 68*4882a593Smuzhiyun print('cos = {} < 0.963, mmse abnormal!'.format(cos)) 69*4882a593Smuzhiyun f.close() 70*4882a593Smuzhiyun 71*4882a593Smuzhiyun # Set inputs 72*4882a593Smuzhiyun img = cv2.imread('./dog_224x224.jpg') 73*4882a593Smuzhiyun img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 74*4882a593Smuzhiyun img = np.expand_dims(img, 0) 75*4882a593Smuzhiyun 76*4882a593Smuzhiyun # Init runtime environment 77*4882a593Smuzhiyun print('--> Init runtime environment') 78*4882a593Smuzhiyun ret = rknn.init_runtime() 79*4882a593Smuzhiyun if ret != 0: 80*4882a593Smuzhiyun print('Init runtime environment failed!') 81*4882a593Smuzhiyun exit(ret) 82*4882a593Smuzhiyun print('done') 83*4882a593Smuzhiyun 84*4882a593Smuzhiyun # Inference 85*4882a593Smuzhiyun print('--> Running model') 86*4882a593Smuzhiyun outputs = rknn.inference(inputs=[img]) 87*4882a593Smuzhiyun np.save('./functions_mmse_0.npy', outputs[0]) 88*4882a593Smuzhiyun show_outputs(outputs) 89*4882a593Smuzhiyun print('done') 90*4882a593Smuzhiyun 91*4882a593Smuzhiyun rknn.release() 92