xref: /OK3568_Linux_fs/external/rknn-toolkit2/examples/functions/mmse/test.py (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1import numpy as np
2import cv2
3from rknn.api import RKNN
4
5
6def show_outputs(outputs):
7    output = outputs[0][0]
8    output_sorted = sorted(output, reverse=True)
9    top5_str = 'mobilenet_v1\n-----TOP 5-----\n'
10    for i in range(5):
11        value = output_sorted[i]
12        index = np.where(output == value)
13        for j in range(len(index)):
14            if (i + j) >= 5:
15                break
16            if value > 0:
17                topi = '{}: {}\n'.format(index[j], value)
18            else:
19                topi = '-1: 0.0\n'
20            top5_str += topi
21    print(top5_str)
22
23
24if __name__ == '__main__':
25
26    # Create RKNN object
27    rknn = RKNN(verbose=True)
28
29    # Pre-process config
30    print('--> Config model')
31    rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128],
32                quantized_method='layer', quantized_algorithm='mmse')
33    print('done')
34
35    # Load model
36    print('--> Loading model')
37    ret = rknn.load_tensorflow(tf_pb='mobilenet_v1.pb',
38                               inputs=['input'],
39                               input_size_list=[[1, 224, 224, 3]],
40                               outputs=['MobilenetV1/Logits/SpatialSqueeze'])
41    if ret != 0:
42        print('Load model failed!')
43        exit(ret)
44    print('done')
45
46    # Build model
47    print('--> Building model')
48    ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
49    if ret != 0:
50        print('Build model failed!')
51        exit(ret)
52    print('done')
53
54    # Accuracy analysis
55    print('--> Accuracy analysis')
56    ret = rknn.accuracy_analysis(inputs=['dog_224x224.jpg'], output_dir=None)
57    if ret != 0:
58        print('Accuracy analysis failed!')
59        exit(ret)
60    print('done')
61
62    f = open('./snapshot/error_analysis.txt')
63    lines = f.readlines()
64    cos = lines[-1].split()[2]
65    if float(cos) >= 0.963:
66        print('cos = {}, mmse work!'.format(cos))
67    else:
68        print('cos = {} < 0.963, mmse abnormal!'.format(cos))
69    f.close()
70
71    # Set inputs
72    img = cv2.imread('./dog_224x224.jpg')
73    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
74    img = np.expand_dims(img, 0)
75
76    # Init runtime environment
77    print('--> Init runtime environment')
78    ret = rknn.init_runtime()
79    if ret != 0:
80        print('Init runtime environment failed!')
81        exit(ret)
82    print('done')
83
84    # Inference
85    print('--> Running model')
86    outputs = rknn.inference(inputs=[img])
87    np.save('./functions_mmse_0.npy', outputs[0])
88    show_outputs(outputs)
89    print('done')
90
91    rknn.release()
92