xref: /OK3568_Linux_fs/external/rknn-toolkit2/examples/functions/batch_size/test.py (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1import numpy as np
2import cv2
3from rknn.api import RKNN
4
5
6def show_outputs(outputs):
7    output_ = outputs[0].reshape((-1, 1000))
8    for output in output_:
9        output_sorted = sorted(output, reverse=True)
10        top5_str = 'mobilenet_v1\n-----TOP 5-----\n'
11        for i in range(5):
12            value = output_sorted[i]
13            index = np.where(output == value)
14            for j in range(len(index)):
15                if (i + j) >= 5:
16                    break
17                if value > 0:
18                    topi = '{}: {}\n'.format(index[j], value)
19                else:
20                    topi = '-1: 0.0\n'
21                top5_str += topi
22        print(top5_str)
23
24
25def show_perfs(perfs):
26    perfs = 'perfs: {}\n'.format(outputs)
27    print(perfs)
28
29
30if __name__ == '__main__':
31
32    # Create RKNN object
33    rknn = RKNN(verbose=True)
34
35    # Pre-process config
36    print('--> Config model')
37    rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], quant_img_RGB2BGR=True)
38    print('done')
39
40    # Load model
41    print('--> Loading model')
42    ret = rknn.load_caffe(model='../../caffe/mobilenet_v2/mobilenet_v2.prototxt',
43                          blobs='../../caffe/mobilenet_v2/mobilenet_v2.caffemodel')
44    if ret != 0:
45        print('Load model failed!')
46        exit(ret)
47    print('done')
48
49    # Build model
50    print('--> Building model')
51    ret = rknn.build(do_quantization=True, dataset='./dataset.txt', rknn_batch_size=4)
52    if ret != 0:
53        print('Build model failed!')
54        exit(ret)
55    print('done')
56
57    # Export rknn model
58    print('--> Export rknn model')
59    ret = rknn.export_rknn('./mobilenet_v2.rknn')
60    if ret != 0:
61        print('Export rknn model failed!')
62        exit(ret)
63    print('done')
64
65    # Set inputs
66    img = cv2.imread('./dog_224x224.jpg')
67
68    img = np.expand_dims(img, 0)
69    img = np.concatenate((img, img, img, img), axis=0)
70
71    # Init runtime environment
72    print('--> Init runtime environment')
73    ret = rknn.init_runtime()
74    if ret != 0:
75        print('Init runtime environment failed!')
76        exit(ret)
77    print('done')
78
79    # Inference
80    print('--> Running model')
81    outputs = rknn.inference(inputs=[img])
82    np.save('./functions_batch_size_0.npy', outputs[0])
83    show_outputs(outputs)
84    print('done')
85
86    rknn.release()
87