xref: /OK3568_Linux_fs/external/rknn-toolkit2/examples/functions/multi_input_test/test.py (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1import numpy as np
2import cv2
3from rknn.api import RKNN
4
5if __name__ == '__main__':
6
7    # Create RKNN object
8    rknn = RKNN(verbose=True)
9
10    # Pre-process config
11    print('--> Config model')
12    rknn.config(mean_values=[[127.5, 127.5, 127.5], [0, 0, 0], [0, 0, 0], [127.5]],
13                std_values=[[128, 128, 128], [1, 1, 1], [1, 1, 1], [128]])
14    print('done')
15
16    # Load model
17    print('--> Loading model')
18    ret = rknn.load_tensorflow(tf_pb='./conv_128.pb',
19                               inputs=['input1', 'input2', 'input3', 'input4'],
20                               outputs=['output'],
21                               input_size_list=[[1, 128, 128, 3], [1, 128, 128, 3], [1, 128, 128, 3], [1, 128, 128, 1]])
22    if ret != 0:
23        print('Load model failed!')
24        exit(ret)
25    print('done')
26
27    # Build model
28    print('--> Building model')
29    ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
30    if ret != 0:
31        print('Build model failed!')
32        exit(ret)
33    print('done')
34
35    # Export rknn model
36    print('--> Export rknn model')
37    ret = rknn.export_rknn('./conv_128.rknn')
38    if ret != 0:
39        print('Export rknn model failed!')
40        exit(ret)
41    print('done')
42
43    # Init runtime environment
44    print('--> Init runtime environment')
45    ret = rknn.init_runtime()
46    if ret != 0:
47        print('Init runtime environment failed!')
48        exit(ret)
49    print('done')
50
51    # Set inputs
52    img = cv2.imread('./dog_128x128.jpg')
53    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)          # nhwc
54
55    img_gray = cv2.imread('./dog_128x128_gray.png', cv2.IMREAD_GRAYSCALE)
56    img_gray = np.expand_dims(img_gray, -1)             # nhwc
57
58    input2 = np.load('input2.npy').astype('float32')    # nchw
59
60    input3 = np.load('input3.npy').astype('float32')    # nchw
61
62    # Inference
63    print('--> Running model')
64    outputs = rknn.inference(inputs=[img, input2, input3, img_gray], data_format=['nhwc', 'nchw', 'nchw', 'nhwc'])
65    np.save('./functions_multi_input_test_0.npy', outputs[0])
66    print('done')
67    outputs[0] = outputs[0].reshape((1, -1))
68    print('inference result: ', outputs)
69
70    rknn.release()
71