xref: /OK3568_Linux_fs/external/rknn-toolkit2/examples/functions/dynamic_input/test.py (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyunimport numpy as np
2*4882a593Smuzhiyunimport cv2
3*4882a593Smuzhiyunfrom rknn.api import RKNN
4*4882a593Smuzhiyun
5*4882a593Smuzhiyun
6*4882a593Smuzhiyundef show_outputs(outputs):
7*4882a593Smuzhiyun    output_ = outputs[0].reshape((-1, 1000))
8*4882a593Smuzhiyun    for output in output_:
9*4882a593Smuzhiyun        output_sorted = sorted(output, reverse=True)
10*4882a593Smuzhiyun        top5_str = 'mobilenet_v1\n-----TOP 5-----\n'
11*4882a593Smuzhiyun        for i in range(5):
12*4882a593Smuzhiyun            value = output_sorted[i]
13*4882a593Smuzhiyun            index = np.where(output == value)
14*4882a593Smuzhiyun            for j in range(len(index)):
15*4882a593Smuzhiyun                if (i + j) >= 5:
16*4882a593Smuzhiyun                    break
17*4882a593Smuzhiyun                if value > 0:
18*4882a593Smuzhiyun                    topi = '{}: {}\n'.format(index[j], value)
19*4882a593Smuzhiyun                else:
20*4882a593Smuzhiyun                    topi = '-1: 0.0\n'
21*4882a593Smuzhiyun                top5_str += topi
22*4882a593Smuzhiyun        print(top5_str)
23*4882a593Smuzhiyun
24*4882a593Smuzhiyun
25*4882a593Smuzhiyundef show_perfs(perfs):
26*4882a593Smuzhiyun    perfs = 'perfs: {}\n'.format(outputs)
27*4882a593Smuzhiyun    print(perfs)
28*4882a593Smuzhiyun
29*4882a593Smuzhiyun
30*4882a593Smuzhiyunif __name__ == '__main__':
31*4882a593Smuzhiyun
32*4882a593Smuzhiyun    # Create RKNN object
33*4882a593Smuzhiyun    rknn = RKNN(verbose=True)
34*4882a593Smuzhiyun
35*4882a593Smuzhiyun    # The multiple sets of input shapes specified by the user, to simulate the function of dynamic input.
36*4882a593Smuzhiyun    # Please make sure the model can be dynamic when enable 'config.dynamic_input', and shape in dynamic_input are correctly!
37*4882a593Smuzhiyun    dynamic_input = [
38*4882a593Smuzhiyun        [[1,3,224,224]],    # set 0: [input0_224]
39*4882a593Smuzhiyun        [[1,3,192,192]],    # set 1: [input0_192]
40*4882a593Smuzhiyun        [[1,3,160,160]],    # set 2: [input0_160]
41*4882a593Smuzhiyun    ]
42*4882a593Smuzhiyun
43*4882a593Smuzhiyun    # Pre-process config
44*4882a593Smuzhiyun    print('--> Config model')
45*4882a593Smuzhiyun    rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], quant_img_RGB2BGR=True, dynamic_input=dynamic_input)
46*4882a593Smuzhiyun    print('done')
47*4882a593Smuzhiyun
48*4882a593Smuzhiyun    # Load model
49*4882a593Smuzhiyun    print('--> Loading model')
50*4882a593Smuzhiyun    ret = rknn.load_caffe(model='../../caffe/mobilenet_v2/mobilenet_v2.prototxt',
51*4882a593Smuzhiyun                          blobs='../../caffe/mobilenet_v2/mobilenet_v2.caffemodel')
52*4882a593Smuzhiyun    if ret != 0:
53*4882a593Smuzhiyun        print('Load model failed!')
54*4882a593Smuzhiyun        exit(ret)
55*4882a593Smuzhiyun    print('done')
56*4882a593Smuzhiyun
57*4882a593Smuzhiyun    # Build model
58*4882a593Smuzhiyun    print('--> Building model')
59*4882a593Smuzhiyun    ret = rknn.build(do_quantization=True, dataset='../../caffe/mobilenet_v2/dataset.txt')
60*4882a593Smuzhiyun    if ret != 0:
61*4882a593Smuzhiyun        print('Build model failed!')
62*4882a593Smuzhiyun        exit(ret)
63*4882a593Smuzhiyun    print('done')
64*4882a593Smuzhiyun
65*4882a593Smuzhiyun    # Export rknn model
66*4882a593Smuzhiyun    print('--> Export rknn model')
67*4882a593Smuzhiyun    ret = rknn.export_rknn('./mobilenet_v2.rknn')
68*4882a593Smuzhiyun    if ret != 0:
69*4882a593Smuzhiyun        print('Export rknn model failed!')
70*4882a593Smuzhiyun        exit(ret)
71*4882a593Smuzhiyun    print('done')
72*4882a593Smuzhiyun
73*4882a593Smuzhiyun    # Init runtime environment
74*4882a593Smuzhiyun    print('--> Init runtime environment')
75*4882a593Smuzhiyun    ret = rknn.init_runtime()
76*4882a593Smuzhiyun    if ret != 0:
77*4882a593Smuzhiyun        print('Init runtime environment failed!')
78*4882a593Smuzhiyun        exit(ret)
79*4882a593Smuzhiyun    print('done')
80*4882a593Smuzhiyun
81*4882a593Smuzhiyun    # Set inputs
82*4882a593Smuzhiyun    img = cv2.imread('./dog_224x224.jpg')
83*4882a593Smuzhiyun
84*4882a593Smuzhiyun    # Inference
85*4882a593Smuzhiyun    print('--> Running model')
86*4882a593Smuzhiyun    img2 = cv2.resize(img, (224,224))
87*4882a593Smuzhiyun    img2 = np.expand_dims(img2, 0)
88*4882a593Smuzhiyun    img2 = np.transpose(img2, (0,3,1,2))    # [1,3,224,224]
89*4882a593Smuzhiyun    outputs = rknn.inference(inputs=[img2], data_format=['nchw'])
90*4882a593Smuzhiyun    np.save('./functions_dynamic_input_0.npy', outputs[0])
91*4882a593Smuzhiyun    show_outputs(outputs)
92*4882a593Smuzhiyun
93*4882a593Smuzhiyun    img3 = cv2.resize(img, (160,160))
94*4882a593Smuzhiyun    img3 = np.expand_dims(img3, 0)
95*4882a593Smuzhiyun    img3 = np.transpose(img3, (0,3,1,2))    # [1,3,160,160]
96*4882a593Smuzhiyun    outputs = rknn.inference(inputs=[img3], data_format=['nchw'])
97*4882a593Smuzhiyun    np.save('./functions_dynamic_input_1.npy', outputs[0])
98*4882a593Smuzhiyun    show_outputs(outputs)
99*4882a593Smuzhiyun    print('done')
100*4882a593Smuzhiyun
101*4882a593Smuzhiyun    rknn.release()
102