1*4882a593Smuzhiyunimport numpy as np 2*4882a593Smuzhiyunimport cv2 3*4882a593Smuzhiyunfrom rknn.api import RKNN 4*4882a593Smuzhiyun 5*4882a593Smuzhiyun 6*4882a593Smuzhiyundef show_outputs(outputs): 7*4882a593Smuzhiyun output_ = outputs[0].reshape((-1, 1000)) 8*4882a593Smuzhiyun for output in output_: 9*4882a593Smuzhiyun output_sorted = sorted(output, reverse=True) 10*4882a593Smuzhiyun top5_str = 'mobilenet_v1\n-----TOP 5-----\n' 11*4882a593Smuzhiyun for i in range(5): 12*4882a593Smuzhiyun value = output_sorted[i] 13*4882a593Smuzhiyun index = np.where(output == value) 14*4882a593Smuzhiyun for j in range(len(index)): 15*4882a593Smuzhiyun if (i + j) >= 5: 16*4882a593Smuzhiyun break 17*4882a593Smuzhiyun if value > 0: 18*4882a593Smuzhiyun topi = '{}: {}\n'.format(index[j], value) 19*4882a593Smuzhiyun else: 20*4882a593Smuzhiyun topi = '-1: 0.0\n' 21*4882a593Smuzhiyun top5_str += topi 22*4882a593Smuzhiyun print(top5_str) 23*4882a593Smuzhiyun 24*4882a593Smuzhiyun 25*4882a593Smuzhiyundef show_perfs(perfs): 26*4882a593Smuzhiyun perfs = 'perfs: {}\n'.format(outputs) 27*4882a593Smuzhiyun print(perfs) 28*4882a593Smuzhiyun 29*4882a593Smuzhiyun 30*4882a593Smuzhiyunif __name__ == '__main__': 31*4882a593Smuzhiyun 32*4882a593Smuzhiyun # Create RKNN object 33*4882a593Smuzhiyun rknn = RKNN(verbose=True) 34*4882a593Smuzhiyun 35*4882a593Smuzhiyun # The multiple sets of input shapes specified by the user, to simulate the function of dynamic input. 36*4882a593Smuzhiyun # Please make sure the model can be dynamic when enable 'config.dynamic_input', and shape in dynamic_input are correctly! 37*4882a593Smuzhiyun dynamic_input = [ 38*4882a593Smuzhiyun [[1,3,224,224]], # set 0: [input0_224] 39*4882a593Smuzhiyun [[1,3,192,192]], # set 1: [input0_192] 40*4882a593Smuzhiyun [[1,3,160,160]], # set 2: [input0_160] 41*4882a593Smuzhiyun ] 42*4882a593Smuzhiyun 43*4882a593Smuzhiyun # Pre-process config 44*4882a593Smuzhiyun print('--> Config model') 45*4882a593Smuzhiyun rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], quant_img_RGB2BGR=True, dynamic_input=dynamic_input) 46*4882a593Smuzhiyun print('done') 47*4882a593Smuzhiyun 48*4882a593Smuzhiyun # Load model 49*4882a593Smuzhiyun print('--> Loading model') 50*4882a593Smuzhiyun ret = rknn.load_caffe(model='../../caffe/mobilenet_v2/mobilenet_v2.prototxt', 51*4882a593Smuzhiyun blobs='../../caffe/mobilenet_v2/mobilenet_v2.caffemodel') 52*4882a593Smuzhiyun if ret != 0: 53*4882a593Smuzhiyun print('Load model failed!') 54*4882a593Smuzhiyun exit(ret) 55*4882a593Smuzhiyun print('done') 56*4882a593Smuzhiyun 57*4882a593Smuzhiyun # Build model 58*4882a593Smuzhiyun print('--> Building model') 59*4882a593Smuzhiyun ret = rknn.build(do_quantization=True, dataset='../../caffe/mobilenet_v2/dataset.txt') 60*4882a593Smuzhiyun if ret != 0: 61*4882a593Smuzhiyun print('Build model failed!') 62*4882a593Smuzhiyun exit(ret) 63*4882a593Smuzhiyun print('done') 64*4882a593Smuzhiyun 65*4882a593Smuzhiyun # Export rknn model 66*4882a593Smuzhiyun print('--> Export rknn model') 67*4882a593Smuzhiyun ret = rknn.export_rknn('./mobilenet_v2.rknn') 68*4882a593Smuzhiyun if ret != 0: 69*4882a593Smuzhiyun print('Export rknn model failed!') 70*4882a593Smuzhiyun exit(ret) 71*4882a593Smuzhiyun print('done') 72*4882a593Smuzhiyun 73*4882a593Smuzhiyun # Init runtime environment 74*4882a593Smuzhiyun print('--> Init runtime environment') 75*4882a593Smuzhiyun ret = rknn.init_runtime() 76*4882a593Smuzhiyun if ret != 0: 77*4882a593Smuzhiyun print('Init runtime environment failed!') 78*4882a593Smuzhiyun exit(ret) 79*4882a593Smuzhiyun print('done') 80*4882a593Smuzhiyun 81*4882a593Smuzhiyun # Set inputs 82*4882a593Smuzhiyun img = cv2.imread('./dog_224x224.jpg') 83*4882a593Smuzhiyun 84*4882a593Smuzhiyun # Inference 85*4882a593Smuzhiyun print('--> Running model') 86*4882a593Smuzhiyun img2 = cv2.resize(img, (224,224)) 87*4882a593Smuzhiyun img2 = np.expand_dims(img2, 0) 88*4882a593Smuzhiyun img2 = np.transpose(img2, (0,3,1,2)) # [1,3,224,224] 89*4882a593Smuzhiyun outputs = rknn.inference(inputs=[img2], data_format=['nchw']) 90*4882a593Smuzhiyun np.save('./functions_dynamic_input_0.npy', outputs[0]) 91*4882a593Smuzhiyun show_outputs(outputs) 92*4882a593Smuzhiyun 93*4882a593Smuzhiyun img3 = cv2.resize(img, (160,160)) 94*4882a593Smuzhiyun img3 = np.expand_dims(img3, 0) 95*4882a593Smuzhiyun img3 = np.transpose(img3, (0,3,1,2)) # [1,3,160,160] 96*4882a593Smuzhiyun outputs = rknn.inference(inputs=[img3], data_format=['nchw']) 97*4882a593Smuzhiyun np.save('./functions_dynamic_input_1.npy', outputs[0]) 98*4882a593Smuzhiyun show_outputs(outputs) 99*4882a593Smuzhiyun print('done') 100*4882a593Smuzhiyun 101*4882a593Smuzhiyun rknn.release() 102