xref: /OK3568_Linux_fs/external/rknn-toolkit2/examples/pytorch/resnet18/test.py (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyunimport numpy as np
2*4882a593Smuzhiyunimport cv2
3*4882a593Smuzhiyunfrom rknn.api import RKNN
4*4882a593Smuzhiyunimport torchvision.models as models
5*4882a593Smuzhiyunimport torch
6*4882a593Smuzhiyunimport os
7*4882a593Smuzhiyun
8*4882a593Smuzhiyun
9*4882a593Smuzhiyundef export_pytorch_model():
10*4882a593Smuzhiyun    net = models.resnet18(pretrained=True)
11*4882a593Smuzhiyun    net.eval()
12*4882a593Smuzhiyun    trace_model = torch.jit.trace(net, torch.Tensor(1, 3, 224, 224))
13*4882a593Smuzhiyun    trace_model.save('./resnet18.pt')
14*4882a593Smuzhiyun
15*4882a593Smuzhiyun
16*4882a593Smuzhiyundef show_outputs(output):
17*4882a593Smuzhiyun    output_sorted = sorted(output, reverse=True)
18*4882a593Smuzhiyun    top5_str = '\n-----TOP 5-----\n'
19*4882a593Smuzhiyun    for i in range(5):
20*4882a593Smuzhiyun        value = output_sorted[i]
21*4882a593Smuzhiyun        index = np.where(output == value)
22*4882a593Smuzhiyun        for j in range(len(index)):
23*4882a593Smuzhiyun            if (i + j) >= 5:
24*4882a593Smuzhiyun                break
25*4882a593Smuzhiyun            if value > 0:
26*4882a593Smuzhiyun                topi = '{}: {}\n'.format(index[j], value)
27*4882a593Smuzhiyun            else:
28*4882a593Smuzhiyun                topi = '-1: 0.0\n'
29*4882a593Smuzhiyun            top5_str += topi
30*4882a593Smuzhiyun    print(top5_str)
31*4882a593Smuzhiyun
32*4882a593Smuzhiyun
33*4882a593Smuzhiyundef show_perfs(perfs):
34*4882a593Smuzhiyun    perfs = 'perfs: {}\n'.format(perfs)
35*4882a593Smuzhiyun    print(perfs)
36*4882a593Smuzhiyun
37*4882a593Smuzhiyun
38*4882a593Smuzhiyundef softmax(x):
39*4882a593Smuzhiyun    return np.exp(x)/sum(np.exp(x))
40*4882a593Smuzhiyun
41*4882a593Smuzhiyun
42*4882a593Smuzhiyunif __name__ == '__main__':
43*4882a593Smuzhiyun
44*4882a593Smuzhiyun    model = './resnet18.pt'
45*4882a593Smuzhiyun    if not os.path.exists(model):
46*4882a593Smuzhiyun        export_pytorch_model()
47*4882a593Smuzhiyun
48*4882a593Smuzhiyun    input_size_list = [[1, 3, 224, 224]]
49*4882a593Smuzhiyun
50*4882a593Smuzhiyun    # Create RKNN object
51*4882a593Smuzhiyun    rknn = RKNN(verbose=True)
52*4882a593Smuzhiyun
53*4882a593Smuzhiyun    # Pre-process config
54*4882a593Smuzhiyun    print('--> Config model')
55*4882a593Smuzhiyun    rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.395, 58.395, 58.395])
56*4882a593Smuzhiyun    print('done')
57*4882a593Smuzhiyun
58*4882a593Smuzhiyun    # Load model
59*4882a593Smuzhiyun    print('--> Loading model')
60*4882a593Smuzhiyun    ret = rknn.load_pytorch(model=model, input_size_list=input_size_list)
61*4882a593Smuzhiyun    if ret != 0:
62*4882a593Smuzhiyun        print('Load model failed!')
63*4882a593Smuzhiyun        exit(ret)
64*4882a593Smuzhiyun    print('done')
65*4882a593Smuzhiyun
66*4882a593Smuzhiyun    # Build model
67*4882a593Smuzhiyun    print('--> Building model')
68*4882a593Smuzhiyun    ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
69*4882a593Smuzhiyun    if ret != 0:
70*4882a593Smuzhiyun        print('Build model failed!')
71*4882a593Smuzhiyun        exit(ret)
72*4882a593Smuzhiyun    print('done')
73*4882a593Smuzhiyun
74*4882a593Smuzhiyun    # Export rknn model
75*4882a593Smuzhiyun    print('--> Export rknn model')
76*4882a593Smuzhiyun    ret = rknn.export_rknn('./resnet_18.rknn')
77*4882a593Smuzhiyun    if ret != 0:
78*4882a593Smuzhiyun        print('Export rknn model failed!')
79*4882a593Smuzhiyun        exit(ret)
80*4882a593Smuzhiyun    print('done')
81*4882a593Smuzhiyun
82*4882a593Smuzhiyun    # Set inputs
83*4882a593Smuzhiyun    img = cv2.imread('./space_shuttle_224.jpg')
84*4882a593Smuzhiyun    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
85*4882a593Smuzhiyun
86*4882a593Smuzhiyun    # Init runtime environment
87*4882a593Smuzhiyun    print('--> Init runtime environment')
88*4882a593Smuzhiyun    ret = rknn.init_runtime()
89*4882a593Smuzhiyun    if ret != 0:
90*4882a593Smuzhiyun        print('Init runtime environment failed!')
91*4882a593Smuzhiyun        exit(ret)
92*4882a593Smuzhiyun    print('done')
93*4882a593Smuzhiyun
94*4882a593Smuzhiyun    # Inference
95*4882a593Smuzhiyun    print('--> Running model')
96*4882a593Smuzhiyun    outputs = rknn.inference(inputs=[img])
97*4882a593Smuzhiyun    np.save('./pytorch_resnet18_0.npy', outputs[0])
98*4882a593Smuzhiyun    show_outputs(softmax(np.array(outputs[0][0])))
99*4882a593Smuzhiyun    print('done')
100*4882a593Smuzhiyun
101*4882a593Smuzhiyun    rknn.release()
102