1*4882a593Smuzhiyunimport numpy as np 2*4882a593Smuzhiyunimport cv2 3*4882a593Smuzhiyunfrom rknn.api import RKNN 4*4882a593Smuzhiyunimport torchvision.models as models 5*4882a593Smuzhiyunimport torch 6*4882a593Smuzhiyunimport os 7*4882a593Smuzhiyun 8*4882a593Smuzhiyun 9*4882a593Smuzhiyundef export_pytorch_model(): 10*4882a593Smuzhiyun net = models.resnet18(pretrained=True) 11*4882a593Smuzhiyun net.eval() 12*4882a593Smuzhiyun trace_model = torch.jit.trace(net, torch.Tensor(1, 3, 224, 224)) 13*4882a593Smuzhiyun trace_model.save('./resnet18.pt') 14*4882a593Smuzhiyun 15*4882a593Smuzhiyun 16*4882a593Smuzhiyundef show_outputs(output): 17*4882a593Smuzhiyun output_sorted = sorted(output, reverse=True) 18*4882a593Smuzhiyun top5_str = '\n-----TOP 5-----\n' 19*4882a593Smuzhiyun for i in range(5): 20*4882a593Smuzhiyun value = output_sorted[i] 21*4882a593Smuzhiyun index = np.where(output == value) 22*4882a593Smuzhiyun for j in range(len(index)): 23*4882a593Smuzhiyun if (i + j) >= 5: 24*4882a593Smuzhiyun break 25*4882a593Smuzhiyun if value > 0: 26*4882a593Smuzhiyun topi = '{}: {}\n'.format(index[j], value) 27*4882a593Smuzhiyun else: 28*4882a593Smuzhiyun topi = '-1: 0.0\n' 29*4882a593Smuzhiyun top5_str += topi 30*4882a593Smuzhiyun print(top5_str) 31*4882a593Smuzhiyun 32*4882a593Smuzhiyun 33*4882a593Smuzhiyundef show_perfs(perfs): 34*4882a593Smuzhiyun perfs = 'perfs: {}\n'.format(perfs) 35*4882a593Smuzhiyun print(perfs) 36*4882a593Smuzhiyun 37*4882a593Smuzhiyun 38*4882a593Smuzhiyundef softmax(x): 39*4882a593Smuzhiyun return np.exp(x)/sum(np.exp(x)) 40*4882a593Smuzhiyun 41*4882a593Smuzhiyun 42*4882a593Smuzhiyunif __name__ == '__main__': 43*4882a593Smuzhiyun 44*4882a593Smuzhiyun model = './resnet18.pt' 45*4882a593Smuzhiyun if not os.path.exists(model): 46*4882a593Smuzhiyun export_pytorch_model() 47*4882a593Smuzhiyun 48*4882a593Smuzhiyun input_size_list = [[1, 3, 224, 224]] 49*4882a593Smuzhiyun 50*4882a593Smuzhiyun # Create RKNN object 51*4882a593Smuzhiyun rknn = RKNN(verbose=True) 52*4882a593Smuzhiyun 53*4882a593Smuzhiyun # Pre-process config 54*4882a593Smuzhiyun print('--> Config model') 55*4882a593Smuzhiyun rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.395, 58.395, 58.395]) 56*4882a593Smuzhiyun print('done') 57*4882a593Smuzhiyun 58*4882a593Smuzhiyun # Load model 59*4882a593Smuzhiyun print('--> Loading model') 60*4882a593Smuzhiyun ret = rknn.load_pytorch(model=model, input_size_list=input_size_list) 61*4882a593Smuzhiyun if ret != 0: 62*4882a593Smuzhiyun print('Load model failed!') 63*4882a593Smuzhiyun exit(ret) 64*4882a593Smuzhiyun print('done') 65*4882a593Smuzhiyun 66*4882a593Smuzhiyun # Build model 67*4882a593Smuzhiyun print('--> Building model') 68*4882a593Smuzhiyun ret = rknn.build(do_quantization=True, dataset='./dataset.txt') 69*4882a593Smuzhiyun if ret != 0: 70*4882a593Smuzhiyun print('Build model failed!') 71*4882a593Smuzhiyun exit(ret) 72*4882a593Smuzhiyun print('done') 73*4882a593Smuzhiyun 74*4882a593Smuzhiyun # Export rknn model 75*4882a593Smuzhiyun print('--> Export rknn model') 76*4882a593Smuzhiyun ret = rknn.export_rknn('./resnet_18.rknn') 77*4882a593Smuzhiyun if ret != 0: 78*4882a593Smuzhiyun print('Export rknn model failed!') 79*4882a593Smuzhiyun exit(ret) 80*4882a593Smuzhiyun print('done') 81*4882a593Smuzhiyun 82*4882a593Smuzhiyun # Set inputs 83*4882a593Smuzhiyun img = cv2.imread('./space_shuttle_224.jpg') 84*4882a593Smuzhiyun img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 85*4882a593Smuzhiyun 86*4882a593Smuzhiyun # Init runtime environment 87*4882a593Smuzhiyun print('--> Init runtime environment') 88*4882a593Smuzhiyun ret = rknn.init_runtime() 89*4882a593Smuzhiyun if ret != 0: 90*4882a593Smuzhiyun print('Init runtime environment failed!') 91*4882a593Smuzhiyun exit(ret) 92*4882a593Smuzhiyun print('done') 93*4882a593Smuzhiyun 94*4882a593Smuzhiyun # Inference 95*4882a593Smuzhiyun print('--> Running model') 96*4882a593Smuzhiyun outputs = rknn.inference(inputs=[img]) 97*4882a593Smuzhiyun np.save('./pytorch_resnet18_0.npy', outputs[0]) 98*4882a593Smuzhiyun show_outputs(softmax(np.array(outputs[0][0]))) 99*4882a593Smuzhiyun print('done') 100*4882a593Smuzhiyun 101*4882a593Smuzhiyun rknn.release() 102