xref: /OK3568_Linux_fs/external/rknn-toolkit2/examples/functions/multi_input_test/test.py (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyunimport numpy as np
2*4882a593Smuzhiyunimport cv2
3*4882a593Smuzhiyunfrom rknn.api import RKNN
4*4882a593Smuzhiyun
5*4882a593Smuzhiyunif __name__ == '__main__':
6*4882a593Smuzhiyun
7*4882a593Smuzhiyun    # Create RKNN object
8*4882a593Smuzhiyun    rknn = RKNN(verbose=True)
9*4882a593Smuzhiyun
10*4882a593Smuzhiyun    # Pre-process config
11*4882a593Smuzhiyun    print('--> Config model')
12*4882a593Smuzhiyun    rknn.config(mean_values=[[127.5, 127.5, 127.5], [0, 0, 0], [0, 0, 0], [127.5]],
13*4882a593Smuzhiyun                std_values=[[128, 128, 128], [1, 1, 1], [1, 1, 1], [128]])
14*4882a593Smuzhiyun    print('done')
15*4882a593Smuzhiyun
16*4882a593Smuzhiyun    # Load model
17*4882a593Smuzhiyun    print('--> Loading model')
18*4882a593Smuzhiyun    ret = rknn.load_tensorflow(tf_pb='./conv_128.pb',
19*4882a593Smuzhiyun                               inputs=['input1', 'input2', 'input3', 'input4'],
20*4882a593Smuzhiyun                               outputs=['output'],
21*4882a593Smuzhiyun                               input_size_list=[[1, 128, 128, 3], [1, 128, 128, 3], [1, 128, 128, 3], [1, 128, 128, 1]])
22*4882a593Smuzhiyun    if ret != 0:
23*4882a593Smuzhiyun        print('Load model failed!')
24*4882a593Smuzhiyun        exit(ret)
25*4882a593Smuzhiyun    print('done')
26*4882a593Smuzhiyun
27*4882a593Smuzhiyun    # Build model
28*4882a593Smuzhiyun    print('--> Building model')
29*4882a593Smuzhiyun    ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
30*4882a593Smuzhiyun    if ret != 0:
31*4882a593Smuzhiyun        print('Build model failed!')
32*4882a593Smuzhiyun        exit(ret)
33*4882a593Smuzhiyun    print('done')
34*4882a593Smuzhiyun
35*4882a593Smuzhiyun    # Export rknn model
36*4882a593Smuzhiyun    print('--> Export rknn model')
37*4882a593Smuzhiyun    ret = rknn.export_rknn('./conv_128.rknn')
38*4882a593Smuzhiyun    if ret != 0:
39*4882a593Smuzhiyun        print('Export rknn model failed!')
40*4882a593Smuzhiyun        exit(ret)
41*4882a593Smuzhiyun    print('done')
42*4882a593Smuzhiyun
43*4882a593Smuzhiyun    # Init runtime environment
44*4882a593Smuzhiyun    print('--> Init runtime environment')
45*4882a593Smuzhiyun    ret = rknn.init_runtime()
46*4882a593Smuzhiyun    if ret != 0:
47*4882a593Smuzhiyun        print('Init runtime environment failed!')
48*4882a593Smuzhiyun        exit(ret)
49*4882a593Smuzhiyun    print('done')
50*4882a593Smuzhiyun
51*4882a593Smuzhiyun    # Set inputs
52*4882a593Smuzhiyun    img = cv2.imread('./dog_128x128.jpg')
53*4882a593Smuzhiyun    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)          # nhwc
54*4882a593Smuzhiyun
55*4882a593Smuzhiyun    img_gray = cv2.imread('./dog_128x128_gray.png', cv2.IMREAD_GRAYSCALE)
56*4882a593Smuzhiyun    img_gray = np.expand_dims(img_gray, -1)             # nhwc
57*4882a593Smuzhiyun
58*4882a593Smuzhiyun    input2 = np.load('input2.npy').astype('float32')    # nchw
59*4882a593Smuzhiyun
60*4882a593Smuzhiyun    input3 = np.load('input3.npy').astype('float32')    # nchw
61*4882a593Smuzhiyun
62*4882a593Smuzhiyun    # Inference
63*4882a593Smuzhiyun    print('--> Running model')
64*4882a593Smuzhiyun    outputs = rknn.inference(inputs=[img, input2, input3, img_gray], data_format=['nhwc', 'nchw', 'nchw', 'nhwc'])
65*4882a593Smuzhiyun    np.save('./functions_multi_input_test_0.npy', outputs[0])
66*4882a593Smuzhiyun    print('done')
67*4882a593Smuzhiyun    outputs[0] = outputs[0].reshape((1, -1))
68*4882a593Smuzhiyun    print('inference result: ', outputs)
69*4882a593Smuzhiyun
70*4882a593Smuzhiyun    rknn.release()
71