| /rk3399_ARM-atf/include/drivers/arm/ |
| H A D | gic.h | 5d893410026b590aa8af8d6f7009d3c2e000fe3e Tue Jan 07 11:00:03 UTC 2025 Boyan Karatotev <boyan.karatotev@arm.com> refactor(gic): promote most of the GIC driver to common code
More often than not, Arm based systems include some revision of a GIC. There are two ways of adding support for them in platform code - calling the top-level helpers from plat/arm/common/arm_gicvX.c or by using the driver directly. Both of these methods allow for a high degree of customisation - most functions are defined to be weak and there are no calls to any of them in generic code.
As it turns out, requirements around those GICs are largely the same. Platforms that use arm_gicvX.c use the helpers identically among each other. Platforms that use the driver directly tend to end up with calls that look a lot like the arm_gicvX.c helpers and the weakness of the functions are never exercised.
All of this results in a lot of code duplication to do what is essentially the same thing. Even though it's not a lot of code, when multiplied among many platforms it becomes significant and makes refactoring it quite difficult. It's also bug prone since the steps are a little convoluted and things are likely to work even with subtle errors (see 50009f61177421118f42d6a000611ba0e613d54b).
So promote as much of the GIC to be called from common code. Do the setup in bl31_main() and have every PSCI method do the state management directly instead of delegating it to the platform hooks. We can base this implementation on arm_gicvX.c since they already offer logical names and have worked quite well so far with minimal changes.
The main benefit of doing this is reduced code duplication. If we assume that, outside of some platform setup, GIC management is identical, then a platform can add support by telling the build system, regardless of GIC revision. The other benefit is performance - BL31 and PSCI already know the core_pos and they can pass it as an argument instead of having to call plat_my_core_pos(). Now, the only platform specific GIC actions necessary are the saving and restoring of context on entering and exiting a power domain. The PSCI library does not keep track of this so it is unable perform it itself. The routines themselves are also provided.
For compatibility all of this is hidden behind a build flag. Platforms are encouraged to adopt this driver, but it would not be practical to convert and validate every GIC based platform.
This patch renames the functions in question to follow the gic_<function>() convention. This allows the names to be version agnostic.
Finally, drop the weak definitions - they are unused, likely to remain so, and can be added back if the need arises.
Change-Id: I5b5267f4b72f633fb1096400ec8e4b208694135f Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
|
| /rk3399_ARM-atf/drivers/arm/gic/v2/ |
| H A D | gicv2_base.c | 5d893410026b590aa8af8d6f7009d3c2e000fe3e Tue Jan 07 11:00:03 UTC 2025 Boyan Karatotev <boyan.karatotev@arm.com> refactor(gic): promote most of the GIC driver to common code
More often than not, Arm based systems include some revision of a GIC. There are two ways of adding support for them in platform code - calling the top-level helpers from plat/arm/common/arm_gicvX.c or by using the driver directly. Both of these methods allow for a high degree of customisation - most functions are defined to be weak and there are no calls to any of them in generic code.
As it turns out, requirements around those GICs are largely the same. Platforms that use arm_gicvX.c use the helpers identically among each other. Platforms that use the driver directly tend to end up with calls that look a lot like the arm_gicvX.c helpers and the weakness of the functions are never exercised.
All of this results in a lot of code duplication to do what is essentially the same thing. Even though it's not a lot of code, when multiplied among many platforms it becomes significant and makes refactoring it quite difficult. It's also bug prone since the steps are a little convoluted and things are likely to work even with subtle errors (see 50009f61177421118f42d6a000611ba0e613d54b).
So promote as much of the GIC to be called from common code. Do the setup in bl31_main() and have every PSCI method do the state management directly instead of delegating it to the platform hooks. We can base this implementation on arm_gicvX.c since they already offer logical names and have worked quite well so far with minimal changes.
The main benefit of doing this is reduced code duplication. If we assume that, outside of some platform setup, GIC management is identical, then a platform can add support by telling the build system, regardless of GIC revision. The other benefit is performance - BL31 and PSCI already know the core_pos and they can pass it as an argument instead of having to call plat_my_core_pos(). Now, the only platform specific GIC actions necessary are the saving and restoring of context on entering and exiting a power domain. The PSCI library does not keep track of this so it is unable perform it itself. The routines themselves are also provided.
For compatibility all of this is hidden behind a build flag. Platforms are encouraged to adopt this driver, but it would not be practical to convert and validate every GIC based platform.
This patch renames the functions in question to follow the gic_<function>() convention. This allows the names to be version agnostic.
Finally, drop the weak definitions - they are unused, likely to remain so, and can be added back if the need arises.
Change-Id: I5b5267f4b72f633fb1096400ec8e4b208694135f Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
|
| /rk3399_ARM-atf/drivers/arm/gic/ |
| H A D | gic.mk | 5d893410026b590aa8af8d6f7009d3c2e000fe3e Tue Jan 07 11:00:03 UTC 2025 Boyan Karatotev <boyan.karatotev@arm.com> refactor(gic): promote most of the GIC driver to common code
More often than not, Arm based systems include some revision of a GIC. There are two ways of adding support for them in platform code - calling the top-level helpers from plat/arm/common/arm_gicvX.c or by using the driver directly. Both of these methods allow for a high degree of customisation - most functions are defined to be weak and there are no calls to any of them in generic code.
As it turns out, requirements around those GICs are largely the same. Platforms that use arm_gicvX.c use the helpers identically among each other. Platforms that use the driver directly tend to end up with calls that look a lot like the arm_gicvX.c helpers and the weakness of the functions are never exercised.
All of this results in a lot of code duplication to do what is essentially the same thing. Even though it's not a lot of code, when multiplied among many platforms it becomes significant and makes refactoring it quite difficult. It's also bug prone since the steps are a little convoluted and things are likely to work even with subtle errors (see 50009f61177421118f42d6a000611ba0e613d54b).
So promote as much of the GIC to be called from common code. Do the setup in bl31_main() and have every PSCI method do the state management directly instead of delegating it to the platform hooks. We can base this implementation on arm_gicvX.c since they already offer logical names and have worked quite well so far with minimal changes.
The main benefit of doing this is reduced code duplication. If we assume that, outside of some platform setup, GIC management is identical, then a platform can add support by telling the build system, regardless of GIC revision. The other benefit is performance - BL31 and PSCI already know the core_pos and they can pass it as an argument instead of having to call plat_my_core_pos(). Now, the only platform specific GIC actions necessary are the saving and restoring of context on entering and exiting a power domain. The PSCI library does not keep track of this so it is unable perform it itself. The routines themselves are also provided.
For compatibility all of this is hidden behind a build flag. Platforms are encouraged to adopt this driver, but it would not be practical to convert and validate every GIC based platform.
This patch renames the functions in question to follow the gic_<function>() convention. This allows the names to be version agnostic.
Finally, drop the weak definitions - they are unused, likely to remain so, and can be added back if the need arises.
Change-Id: I5b5267f4b72f633fb1096400ec8e4b208694135f Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
|
| /rk3399_ARM-atf/drivers/arm/gic/v3/ |
| H A D | gicv3_base.c | 5d893410026b590aa8af8d6f7009d3c2e000fe3e Tue Jan 07 11:00:03 UTC 2025 Boyan Karatotev <boyan.karatotev@arm.com> refactor(gic): promote most of the GIC driver to common code
More often than not, Arm based systems include some revision of a GIC. There are two ways of adding support for them in platform code - calling the top-level helpers from plat/arm/common/arm_gicvX.c or by using the driver directly. Both of these methods allow for a high degree of customisation - most functions are defined to be weak and there are no calls to any of them in generic code.
As it turns out, requirements around those GICs are largely the same. Platforms that use arm_gicvX.c use the helpers identically among each other. Platforms that use the driver directly tend to end up with calls that look a lot like the arm_gicvX.c helpers and the weakness of the functions are never exercised.
All of this results in a lot of code duplication to do what is essentially the same thing. Even though it's not a lot of code, when multiplied among many platforms it becomes significant and makes refactoring it quite difficult. It's also bug prone since the steps are a little convoluted and things are likely to work even with subtle errors (see 50009f61177421118f42d6a000611ba0e613d54b).
So promote as much of the GIC to be called from common code. Do the setup in bl31_main() and have every PSCI method do the state management directly instead of delegating it to the platform hooks. We can base this implementation on arm_gicvX.c since they already offer logical names and have worked quite well so far with minimal changes.
The main benefit of doing this is reduced code duplication. If we assume that, outside of some platform setup, GIC management is identical, then a platform can add support by telling the build system, regardless of GIC revision. The other benefit is performance - BL31 and PSCI already know the core_pos and they can pass it as an argument instead of having to call plat_my_core_pos(). Now, the only platform specific GIC actions necessary are the saving and restoring of context on entering and exiting a power domain. The PSCI library does not keep track of this so it is unable perform it itself. The routines themselves are also provided.
For compatibility all of this is hidden behind a build flag. Platforms are encouraged to adopt this driver, but it would not be practical to convert and validate every GIC based platform.
This patch renames the functions in question to follow the gic_<function>() convention. This allows the names to be version agnostic.
Finally, drop the weak definitions - they are unused, likely to remain so, and can be added back if the need arises.
Change-Id: I5b5267f4b72f633fb1096400ec8e4b208694135f Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
|
| /rk3399_ARM-atf/plat/arm/board/fvp/ |
| H A D | fvp_gicv3.c | 5d893410026b590aa8af8d6f7009d3c2e000fe3e Tue Jan 07 11:00:03 UTC 2025 Boyan Karatotev <boyan.karatotev@arm.com> refactor(gic): promote most of the GIC driver to common code
More often than not, Arm based systems include some revision of a GIC. There are two ways of adding support for them in platform code - calling the top-level helpers from plat/arm/common/arm_gicvX.c or by using the driver directly. Both of these methods allow for a high degree of customisation - most functions are defined to be weak and there are no calls to any of them in generic code.
As it turns out, requirements around those GICs are largely the same. Platforms that use arm_gicvX.c use the helpers identically among each other. Platforms that use the driver directly tend to end up with calls that look a lot like the arm_gicvX.c helpers and the weakness of the functions are never exercised.
All of this results in a lot of code duplication to do what is essentially the same thing. Even though it's not a lot of code, when multiplied among many platforms it becomes significant and makes refactoring it quite difficult. It's also bug prone since the steps are a little convoluted and things are likely to work even with subtle errors (see 50009f61177421118f42d6a000611ba0e613d54b).
So promote as much of the GIC to be called from common code. Do the setup in bl31_main() and have every PSCI method do the state management directly instead of delegating it to the platform hooks. We can base this implementation on arm_gicvX.c since they already offer logical names and have worked quite well so far with minimal changes.
The main benefit of doing this is reduced code duplication. If we assume that, outside of some platform setup, GIC management is identical, then a platform can add support by telling the build system, regardless of GIC revision. The other benefit is performance - BL31 and PSCI already know the core_pos and they can pass it as an argument instead of having to call plat_my_core_pos(). Now, the only platform specific GIC actions necessary are the saving and restoring of context on entering and exiting a power domain. The PSCI library does not keep track of this so it is unable perform it itself. The routines themselves are also provided.
For compatibility all of this is hidden behind a build flag. Platforms are encouraged to adopt this driver, but it would not be practical to convert and validate every GIC based platform.
This patch renames the functions in question to follow the gic_<function>() convention. This allows the names to be version agnostic.
Finally, drop the weak definitions - they are unused, likely to remain so, and can be added back if the need arises.
Change-Id: I5b5267f4b72f633fb1096400ec8e4b208694135f Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
|
| /rk3399_ARM-atf/lib/psci/ |
| H A D | psci_system_off.c | 5d893410026b590aa8af8d6f7009d3c2e000fe3e Tue Jan 07 11:00:03 UTC 2025 Boyan Karatotev <boyan.karatotev@arm.com> refactor(gic): promote most of the GIC driver to common code
More often than not, Arm based systems include some revision of a GIC. There are two ways of adding support for them in platform code - calling the top-level helpers from plat/arm/common/arm_gicvX.c or by using the driver directly. Both of these methods allow for a high degree of customisation - most functions are defined to be weak and there are no calls to any of them in generic code.
As it turns out, requirements around those GICs are largely the same. Platforms that use arm_gicvX.c use the helpers identically among each other. Platforms that use the driver directly tend to end up with calls that look a lot like the arm_gicvX.c helpers and the weakness of the functions are never exercised.
All of this results in a lot of code duplication to do what is essentially the same thing. Even though it's not a lot of code, when multiplied among many platforms it becomes significant and makes refactoring it quite difficult. It's also bug prone since the steps are a little convoluted and things are likely to work even with subtle errors (see 50009f61177421118f42d6a000611ba0e613d54b).
So promote as much of the GIC to be called from common code. Do the setup in bl31_main() and have every PSCI method do the state management directly instead of delegating it to the platform hooks. We can base this implementation on arm_gicvX.c since they already offer logical names and have worked quite well so far with minimal changes.
The main benefit of doing this is reduced code duplication. If we assume that, outside of some platform setup, GIC management is identical, then a platform can add support by telling the build system, regardless of GIC revision. The other benefit is performance - BL31 and PSCI already know the core_pos and they can pass it as an argument instead of having to call plat_my_core_pos(). Now, the only platform specific GIC actions necessary are the saving and restoring of context on entering and exiting a power domain. The PSCI library does not keep track of this so it is unable perform it itself. The routines themselves are also provided.
For compatibility all of this is hidden behind a build flag. Platforms are encouraged to adopt this driver, but it would not be practical to convert and validate every GIC based platform.
This patch renames the functions in question to follow the gic_<function>() convention. This allows the names to be version agnostic.
Finally, drop the weak definitions - they are unused, likely to remain so, and can be added back if the need arises.
Change-Id: I5b5267f4b72f633fb1096400ec8e4b208694135f Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
|
| H A D | psci_off.c | 5d893410026b590aa8af8d6f7009d3c2e000fe3e Tue Jan 07 11:00:03 UTC 2025 Boyan Karatotev <boyan.karatotev@arm.com> refactor(gic): promote most of the GIC driver to common code
More often than not, Arm based systems include some revision of a GIC. There are two ways of adding support for them in platform code - calling the top-level helpers from plat/arm/common/arm_gicvX.c or by using the driver directly. Both of these methods allow for a high degree of customisation - most functions are defined to be weak and there are no calls to any of them in generic code.
As it turns out, requirements around those GICs are largely the same. Platforms that use arm_gicvX.c use the helpers identically among each other. Platforms that use the driver directly tend to end up with calls that look a lot like the arm_gicvX.c helpers and the weakness of the functions are never exercised.
All of this results in a lot of code duplication to do what is essentially the same thing. Even though it's not a lot of code, when multiplied among many platforms it becomes significant and makes refactoring it quite difficult. It's also bug prone since the steps are a little convoluted and things are likely to work even with subtle errors (see 50009f61177421118f42d6a000611ba0e613d54b).
So promote as much of the GIC to be called from common code. Do the setup in bl31_main() and have every PSCI method do the state management directly instead of delegating it to the platform hooks. We can base this implementation on arm_gicvX.c since they already offer logical names and have worked quite well so far with minimal changes.
The main benefit of doing this is reduced code duplication. If we assume that, outside of some platform setup, GIC management is identical, then a platform can add support by telling the build system, regardless of GIC revision. The other benefit is performance - BL31 and PSCI already know the core_pos and they can pass it as an argument instead of having to call plat_my_core_pos(). Now, the only platform specific GIC actions necessary are the saving and restoring of context on entering and exiting a power domain. The PSCI library does not keep track of this so it is unable perform it itself. The routines themselves are also provided.
For compatibility all of this is hidden behind a build flag. Platforms are encouraged to adopt this driver, but it would not be practical to convert and validate every GIC based platform.
This patch renames the functions in question to follow the gic_<function>() convention. This allows the names to be version agnostic.
Finally, drop the weak definitions - they are unused, likely to remain so, and can be added back if the need arises.
Change-Id: I5b5267f4b72f633fb1096400ec8e4b208694135f Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
|
| H A D | psci_on.c | 5d893410026b590aa8af8d6f7009d3c2e000fe3e Tue Jan 07 11:00:03 UTC 2025 Boyan Karatotev <boyan.karatotev@arm.com> refactor(gic): promote most of the GIC driver to common code
More often than not, Arm based systems include some revision of a GIC. There are two ways of adding support for them in platform code - calling the top-level helpers from plat/arm/common/arm_gicvX.c or by using the driver directly. Both of these methods allow for a high degree of customisation - most functions are defined to be weak and there are no calls to any of them in generic code.
As it turns out, requirements around those GICs are largely the same. Platforms that use arm_gicvX.c use the helpers identically among each other. Platforms that use the driver directly tend to end up with calls that look a lot like the arm_gicvX.c helpers and the weakness of the functions are never exercised.
All of this results in a lot of code duplication to do what is essentially the same thing. Even though it's not a lot of code, when multiplied among many platforms it becomes significant and makes refactoring it quite difficult. It's also bug prone since the steps are a little convoluted and things are likely to work even with subtle errors (see 50009f61177421118f42d6a000611ba0e613d54b).
So promote as much of the GIC to be called from common code. Do the setup in bl31_main() and have every PSCI method do the state management directly instead of delegating it to the platform hooks. We can base this implementation on arm_gicvX.c since they already offer logical names and have worked quite well so far with minimal changes.
The main benefit of doing this is reduced code duplication. If we assume that, outside of some platform setup, GIC management is identical, then a platform can add support by telling the build system, regardless of GIC revision. The other benefit is performance - BL31 and PSCI already know the core_pos and they can pass it as an argument instead of having to call plat_my_core_pos(). Now, the only platform specific GIC actions necessary are the saving and restoring of context on entering and exiting a power domain. The PSCI library does not keep track of this so it is unable perform it itself. The routines themselves are also provided.
For compatibility all of this is hidden behind a build flag. Platforms are encouraged to adopt this driver, but it would not be practical to convert and validate every GIC based platform.
This patch renames the functions in question to follow the gic_<function>() convention. This allows the names to be version agnostic.
Finally, drop the weak definitions - they are unused, likely to remain so, and can be added back if the need arises.
Change-Id: I5b5267f4b72f633fb1096400ec8e4b208694135f Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
|
| H A D | psci_suspend.c | 5d893410026b590aa8af8d6f7009d3c2e000fe3e Tue Jan 07 11:00:03 UTC 2025 Boyan Karatotev <boyan.karatotev@arm.com> refactor(gic): promote most of the GIC driver to common code
More often than not, Arm based systems include some revision of a GIC. There are two ways of adding support for them in platform code - calling the top-level helpers from plat/arm/common/arm_gicvX.c or by using the driver directly. Both of these methods allow for a high degree of customisation - most functions are defined to be weak and there are no calls to any of them in generic code.
As it turns out, requirements around those GICs are largely the same. Platforms that use arm_gicvX.c use the helpers identically among each other. Platforms that use the driver directly tend to end up with calls that look a lot like the arm_gicvX.c helpers and the weakness of the functions are never exercised.
All of this results in a lot of code duplication to do what is essentially the same thing. Even though it's not a lot of code, when multiplied among many platforms it becomes significant and makes refactoring it quite difficult. It's also bug prone since the steps are a little convoluted and things are likely to work even with subtle errors (see 50009f61177421118f42d6a000611ba0e613d54b).
So promote as much of the GIC to be called from common code. Do the setup in bl31_main() and have every PSCI method do the state management directly instead of delegating it to the platform hooks. We can base this implementation on arm_gicvX.c since they already offer logical names and have worked quite well so far with minimal changes.
The main benefit of doing this is reduced code duplication. If we assume that, outside of some platform setup, GIC management is identical, then a platform can add support by telling the build system, regardless of GIC revision. The other benefit is performance - BL31 and PSCI already know the core_pos and they can pass it as an argument instead of having to call plat_my_core_pos(). Now, the only platform specific GIC actions necessary are the saving and restoring of context on entering and exiting a power domain. The PSCI library does not keep track of this so it is unable perform it itself. The routines themselves are also provided.
For compatibility all of this is hidden behind a build flag. Platforms are encouraged to adopt this driver, but it would not be practical to convert and validate every GIC based platform.
This patch renames the functions in question to follow the gic_<function>() convention. This allows the names to be version agnostic.
Finally, drop the weak definitions - they are unused, likely to remain so, and can be added back if the need arises.
Change-Id: I5b5267f4b72f633fb1096400ec8e4b208694135f Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
|
| /rk3399_ARM-atf/plat/arm/common/sp_min/ |
| H A D | arm_sp_min_setup.c | 5d893410026b590aa8af8d6f7009d3c2e000fe3e Tue Jan 07 11:00:03 UTC 2025 Boyan Karatotev <boyan.karatotev@arm.com> refactor(gic): promote most of the GIC driver to common code
More often than not, Arm based systems include some revision of a GIC. There are two ways of adding support for them in platform code - calling the top-level helpers from plat/arm/common/arm_gicvX.c or by using the driver directly. Both of these methods allow for a high degree of customisation - most functions are defined to be weak and there are no calls to any of them in generic code.
As it turns out, requirements around those GICs are largely the same. Platforms that use arm_gicvX.c use the helpers identically among each other. Platforms that use the driver directly tend to end up with calls that look a lot like the arm_gicvX.c helpers and the weakness of the functions are never exercised.
All of this results in a lot of code duplication to do what is essentially the same thing. Even though it's not a lot of code, when multiplied among many platforms it becomes significant and makes refactoring it quite difficult. It's also bug prone since the steps are a little convoluted and things are likely to work even with subtle errors (see 50009f61177421118f42d6a000611ba0e613d54b).
So promote as much of the GIC to be called from common code. Do the setup in bl31_main() and have every PSCI method do the state management directly instead of delegating it to the platform hooks. We can base this implementation on arm_gicvX.c since they already offer logical names and have worked quite well so far with minimal changes.
The main benefit of doing this is reduced code duplication. If we assume that, outside of some platform setup, GIC management is identical, then a platform can add support by telling the build system, regardless of GIC revision. The other benefit is performance - BL31 and PSCI already know the core_pos and they can pass it as an argument instead of having to call plat_my_core_pos(). Now, the only platform specific GIC actions necessary are the saving and restoring of context on entering and exiting a power domain. The PSCI library does not keep track of this so it is unable perform it itself. The routines themselves are also provided.
For compatibility all of this is hidden behind a build flag. Platforms are encouraged to adopt this driver, but it would not be practical to convert and validate every GIC based platform.
This patch renames the functions in question to follow the gic_<function>() convention. This allows the names to be version agnostic.
Finally, drop the weak definitions - they are unused, likely to remain so, and can be added back if the need arises.
Change-Id: I5b5267f4b72f633fb1096400ec8e4b208694135f Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
|
| /rk3399_ARM-atf/plat/arm/css/common/ |
| H A D | css_pm.c | 50009f61177421118f42d6a000611ba0e613d54b Wed Dec 11 15:30:52 UTC 2024 Boyan Karatotev <boyan.karatotev@arm.com> fix(css): turn the redistributor off on PSCI CPU_OFF
When GICR_WAKER.ProcessorSleep == 1 (i.e. after gicv3_cpuif_disable()) the GIC will assert the WakeRequest signal to try and wake the core up instead of delivering an interrupt. This is useful when a core is in some kind of suspend state.
However, when the core is properly off (CPU_OFF), it shouldn't get woken up in any way other than a CPU_ON call. In the general case interrupts would be routed away so this doesn't matter. But in case they aren't, we want the core to stay off.
So turn the redistributor off on CPU_OFF calls. This will prevent the WakeRequest from being sent.
Change-Id: I7f20591d1c83a4a9639281ef86caa79d6669b536 Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
|
| /rk3399_ARM-atf/bl31/ |
| H A D | bl31_main.c | 5d893410026b590aa8af8d6f7009d3c2e000fe3e Tue Jan 07 11:00:03 UTC 2025 Boyan Karatotev <boyan.karatotev@arm.com> refactor(gic): promote most of the GIC driver to common code
More often than not, Arm based systems include some revision of a GIC. There are two ways of adding support for them in platform code - calling the top-level helpers from plat/arm/common/arm_gicvX.c or by using the driver directly. Both of these methods allow for a high degree of customisation - most functions are defined to be weak and there are no calls to any of them in generic code.
As it turns out, requirements around those GICs are largely the same. Platforms that use arm_gicvX.c use the helpers identically among each other. Platforms that use the driver directly tend to end up with calls that look a lot like the arm_gicvX.c helpers and the weakness of the functions are never exercised.
All of this results in a lot of code duplication to do what is essentially the same thing. Even though it's not a lot of code, when multiplied among many platforms it becomes significant and makes refactoring it quite difficult. It's also bug prone since the steps are a little convoluted and things are likely to work even with subtle errors (see 50009f61177421118f42d6a000611ba0e613d54b).
So promote as much of the GIC to be called from common code. Do the setup in bl31_main() and have every PSCI method do the state management directly instead of delegating it to the platform hooks. We can base this implementation on arm_gicvX.c since they already offer logical names and have worked quite well so far with minimal changes.
The main benefit of doing this is reduced code duplication. If we assume that, outside of some platform setup, GIC management is identical, then a platform can add support by telling the build system, regardless of GIC revision. The other benefit is performance - BL31 and PSCI already know the core_pos and they can pass it as an argument instead of having to call plat_my_core_pos(). Now, the only platform specific GIC actions necessary are the saving and restoring of context on entering and exiting a power domain. The PSCI library does not keep track of this so it is unable perform it itself. The routines themselves are also provided.
For compatibility all of this is hidden behind a build flag. Platforms are encouraged to adopt this driver, but it would not be practical to convert and validate every GIC based platform.
This patch renames the functions in question to follow the gic_<function>() convention. This allows the names to be version agnostic.
Finally, drop the weak definitions - they are unused, likely to remain so, and can be added back if the need arises.
Change-Id: I5b5267f4b72f633fb1096400ec8e4b208694135f Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
|
| /rk3399_ARM-atf/include/plat/arm/common/ |
| H A D | plat_arm.h | 5d893410026b590aa8af8d6f7009d3c2e000fe3e Tue Jan 07 11:00:03 UTC 2025 Boyan Karatotev <boyan.karatotev@arm.com> refactor(gic): promote most of the GIC driver to common code
More often than not, Arm based systems include some revision of a GIC. There are two ways of adding support for them in platform code - calling the top-level helpers from plat/arm/common/arm_gicvX.c or by using the driver directly. Both of these methods allow for a high degree of customisation - most functions are defined to be weak and there are no calls to any of them in generic code.
As it turns out, requirements around those GICs are largely the same. Platforms that use arm_gicvX.c use the helpers identically among each other. Platforms that use the driver directly tend to end up with calls that look a lot like the arm_gicvX.c helpers and the weakness of the functions are never exercised.
All of this results in a lot of code duplication to do what is essentially the same thing. Even though it's not a lot of code, when multiplied among many platforms it becomes significant and makes refactoring it quite difficult. It's also bug prone since the steps are a little convoluted and things are likely to work even with subtle errors (see 50009f61177421118f42d6a000611ba0e613d54b).
So promote as much of the GIC to be called from common code. Do the setup in bl31_main() and have every PSCI method do the state management directly instead of delegating it to the platform hooks. We can base this implementation on arm_gicvX.c since they already offer logical names and have worked quite well so far with minimal changes.
The main benefit of doing this is reduced code duplication. If we assume that, outside of some platform setup, GIC management is identical, then a platform can add support by telling the build system, regardless of GIC revision. The other benefit is performance - BL31 and PSCI already know the core_pos and they can pass it as an argument instead of having to call plat_my_core_pos(). Now, the only platform specific GIC actions necessary are the saving and restoring of context on entering and exiting a power domain. The PSCI library does not keep track of this so it is unable perform it itself. The routines themselves are also provided.
For compatibility all of this is hidden behind a build flag. Platforms are encouraged to adopt this driver, but it would not be practical to convert and validate every GIC based platform.
This patch renames the functions in question to follow the gic_<function>() convention. This allows the names to be version agnostic.
Finally, drop the weak definitions - they are unused, likely to remain so, and can be added back if the need arises.
Change-Id: I5b5267f4b72f633fb1096400ec8e4b208694135f Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
|
| /rk3399_ARM-atf/make_helpers/ |
| H A D | defaults.mk | 5d893410026b590aa8af8d6f7009d3c2e000fe3e Tue Jan 07 11:00:03 UTC 2025 Boyan Karatotev <boyan.karatotev@arm.com> refactor(gic): promote most of the GIC driver to common code
More often than not, Arm based systems include some revision of a GIC. There are two ways of adding support for them in platform code - calling the top-level helpers from plat/arm/common/arm_gicvX.c or by using the driver directly. Both of these methods allow for a high degree of customisation - most functions are defined to be weak and there are no calls to any of them in generic code.
As it turns out, requirements around those GICs are largely the same. Platforms that use arm_gicvX.c use the helpers identically among each other. Platforms that use the driver directly tend to end up with calls that look a lot like the arm_gicvX.c helpers and the weakness of the functions are never exercised.
All of this results in a lot of code duplication to do what is essentially the same thing. Even though it's not a lot of code, when multiplied among many platforms it becomes significant and makes refactoring it quite difficult. It's also bug prone since the steps are a little convoluted and things are likely to work even with subtle errors (see 50009f61177421118f42d6a000611ba0e613d54b).
So promote as much of the GIC to be called from common code. Do the setup in bl31_main() and have every PSCI method do the state management directly instead of delegating it to the platform hooks. We can base this implementation on arm_gicvX.c since they already offer logical names and have worked quite well so far with minimal changes.
The main benefit of doing this is reduced code duplication. If we assume that, outside of some platform setup, GIC management is identical, then a platform can add support by telling the build system, regardless of GIC revision. The other benefit is performance - BL31 and PSCI already know the core_pos and they can pass it as an argument instead of having to call plat_my_core_pos(). Now, the only platform specific GIC actions necessary are the saving and restoring of context on entering and exiting a power domain. The PSCI library does not keep track of this so it is unable perform it itself. The routines themselves are also provided.
For compatibility all of this is hidden behind a build flag. Platforms are encouraged to adopt this driver, but it would not be practical to convert and validate every GIC based platform.
This patch renames the functions in question to follow the gic_<function>() convention. This allows the names to be version agnostic.
Finally, drop the weak definitions - they are unused, likely to remain so, and can be added back if the need arises.
Change-Id: I5b5267f4b72f633fb1096400ec8e4b208694135f Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
|
| /rk3399_ARM-atf/docs/getting_started/ |
| H A D | build-options.rst | 5d893410026b590aa8af8d6f7009d3c2e000fe3e Tue Jan 07 11:00:03 UTC 2025 Boyan Karatotev <boyan.karatotev@arm.com> refactor(gic): promote most of the GIC driver to common code
More often than not, Arm based systems include some revision of a GIC. There are two ways of adding support for them in platform code - calling the top-level helpers from plat/arm/common/arm_gicvX.c or by using the driver directly. Both of these methods allow for a high degree of customisation - most functions are defined to be weak and there are no calls to any of them in generic code.
As it turns out, requirements around those GICs are largely the same. Platforms that use arm_gicvX.c use the helpers identically among each other. Platforms that use the driver directly tend to end up with calls that look a lot like the arm_gicvX.c helpers and the weakness of the functions are never exercised.
All of this results in a lot of code duplication to do what is essentially the same thing. Even though it's not a lot of code, when multiplied among many platforms it becomes significant and makes refactoring it quite difficult. It's also bug prone since the steps are a little convoluted and things are likely to work even with subtle errors (see 50009f61177421118f42d6a000611ba0e613d54b).
So promote as much of the GIC to be called from common code. Do the setup in bl31_main() and have every PSCI method do the state management directly instead of delegating it to the platform hooks. We can base this implementation on arm_gicvX.c since they already offer logical names and have worked quite well so far with minimal changes.
The main benefit of doing this is reduced code duplication. If we assume that, outside of some platform setup, GIC management is identical, then a platform can add support by telling the build system, regardless of GIC revision. The other benefit is performance - BL31 and PSCI already know the core_pos and they can pass it as an argument instead of having to call plat_my_core_pos(). Now, the only platform specific GIC actions necessary are the saving and restoring of context on entering and exiting a power domain. The PSCI library does not keep track of this so it is unable perform it itself. The routines themselves are also provided.
For compatibility all of this is hidden behind a build flag. Platforms are encouraged to adopt this driver, but it would not be practical to convert and validate every GIC based platform.
This patch renames the functions in question to follow the gic_<function>() convention. This allows the names to be version agnostic.
Finally, drop the weak definitions - they are unused, likely to remain so, and can be added back if the need arises.
Change-Id: I5b5267f4b72f633fb1096400ec8e4b208694135f Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
|
| /rk3399_ARM-atf/ |
| H A D | Makefile | 5d893410026b590aa8af8d6f7009d3c2e000fe3e Tue Jan 07 11:00:03 UTC 2025 Boyan Karatotev <boyan.karatotev@arm.com> refactor(gic): promote most of the GIC driver to common code
More often than not, Arm based systems include some revision of a GIC. There are two ways of adding support for them in platform code - calling the top-level helpers from plat/arm/common/arm_gicvX.c or by using the driver directly. Both of these methods allow for a high degree of customisation - most functions are defined to be weak and there are no calls to any of them in generic code.
As it turns out, requirements around those GICs are largely the same. Platforms that use arm_gicvX.c use the helpers identically among each other. Platforms that use the driver directly tend to end up with calls that look a lot like the arm_gicvX.c helpers and the weakness of the functions are never exercised.
All of this results in a lot of code duplication to do what is essentially the same thing. Even though it's not a lot of code, when multiplied among many platforms it becomes significant and makes refactoring it quite difficult. It's also bug prone since the steps are a little convoluted and things are likely to work even with subtle errors (see 50009f61177421118f42d6a000611ba0e613d54b).
So promote as much of the GIC to be called from common code. Do the setup in bl31_main() and have every PSCI method do the state management directly instead of delegating it to the platform hooks. We can base this implementation on arm_gicvX.c since they already offer logical names and have worked quite well so far with minimal changes.
The main benefit of doing this is reduced code duplication. If we assume that, outside of some platform setup, GIC management is identical, then a platform can add support by telling the build system, regardless of GIC revision. The other benefit is performance - BL31 and PSCI already know the core_pos and they can pass it as an argument instead of having to call plat_my_core_pos(). Now, the only platform specific GIC actions necessary are the saving and restoring of context on entering and exiting a power domain. The PSCI library does not keep track of this so it is unable perform it itself. The routines themselves are also provided.
For compatibility all of this is hidden behind a build flag. Platforms are encouraged to adopt this driver, but it would not be practical to convert and validate every GIC based platform.
This patch renames the functions in question to follow the gic_<function>() convention. This allows the names to be version agnostic.
Finally, drop the weak definitions - they are unused, likely to remain so, and can be added back if the need arises.
Change-Id: I5b5267f4b72f633fb1096400ec8e4b208694135f Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
|