xref: /rk3399_ARM-atf/bl31/bl31_main.c (revision 9acaf99f427623304e6cdf7a0d0bca8803282da6)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <string.h>
9 
10 #include <arch.h>
11 #include <arch_features.h>
12 #include <arch_helpers.h>
13 #include <bl31/bl31.h>
14 #include <bl31/ehf.h>
15 #include <common/bl_common.h>
16 #include <common/build_message.h>
17 #include <common/debug.h>
18 #include <common/feat_detect.h>
19 #include <common/runtime_svc.h>
20 #include <drivers/arm/dsu.h>
21 #include <drivers/arm/gic.h>
22 #include <drivers/console.h>
23 #include <lib/bootmarker_capture.h>
24 #include <lib/el3_runtime/context_debug.h>
25 #include <lib/el3_runtime/context_mgmt.h>
26 #include <lib/extensions/pauth.h>
27 #include <lib/gpt_rme/gpt_rme.h>
28 #include <lib/pmf/pmf.h>
29 #include <lib/runtime_instr.h>
30 #include <lib/xlat_tables/xlat_mmu_helpers.h>
31 #include <plat/common/platform.h>
32 #include <services/std_svc.h>
33 
34 #if ENABLE_RUNTIME_INSTRUMENTATION
35 	PMF_REGISTER_SERVICE_SMC(rt_instr_svc, PMF_RT_INSTR_SVC_ID,
36 		RT_INSTR_TOTAL_IDS, PMF_STORE_ENABLE)
37 #endif
38 
39 #if ENABLE_RUNTIME_INSTRUMENTATION
40 	PMF_REGISTER_SERVICE(bl_svc, PMF_RT_INSTR_SVC_ID,
41 		BL_TOTAL_IDS, PMF_DUMP_ENABLE)
42 #endif
43 
44 /*******************************************************************************
45  * This function pointer is used to initialise the BL32 image. It's initialized
46  * by SPD calling bl31_register_bl32_init after setting up all things necessary
47  * for SP execution. In cases where both SPD and SP are absent, or when SPD
48  * finds it impossible to execute SP, this pointer is left as NULL
49  ******************************************************************************/
50 static int32_t (*bl32_init)(void);
51 
52 /*****************************************************************************
53  * Function used to initialise RMM if RME is enabled
54  *****************************************************************************/
55 #if ENABLE_RME
56 static int32_t (*rmm_init)(void);
57 #endif
58 
59 /*******************************************************************************
60  * Variable to indicate whether next image to execute after BL31 is BL33
61  * (non-secure & default) or BL32 (secure).
62  ******************************************************************************/
63 static uint32_t next_image_type = (uint32_t)NON_SECURE;
64 
65 #ifdef SUPPORT_UNKNOWN_MPID
66 /*
67  * Flag to know whether an unsupported MPID has been detected. To avoid having it
68  * landing on the .bss section, it is initialized to a non-zero value, this way
69  * we avoid potential WAW hazards during system bring up.
70  * */
71 volatile uint32_t unsupported_mpid_flag = 1;
72 #endif
73 
74 /*
75  * Implement the ARM Standard Service function to get arguments for a
76  * particular service.
77  */
get_arm_std_svc_args(unsigned int svc_mask)78 uintptr_t get_arm_std_svc_args(unsigned int svc_mask)
79 {
80 	/* Setup the arguments for PSCI Library */
81 	DEFINE_STATIC_PSCI_LIB_ARGS_V1(psci_args, bl31_warm_entrypoint);
82 
83 	/* PSCI is the only ARM Standard Service implemented */
84 	assert(svc_mask == PSCI_FID_MASK);
85 
86 	return (uintptr_t)&psci_args;
87 }
88 
89 /*******************************************************************************
90  * Simple function to initialise all BL31 helper libraries.
91  ******************************************************************************/
bl31_lib_init(void)92 static void __init bl31_lib_init(void)
93 {
94 	cm_init();
95 }
96 
97 /*******************************************************************************
98  * BL31 is responsible for setting up the runtime services for the primary cpu
99  * before passing control to the bootloader or an Operating System. This
100  * function calls runtime_svc_init() which initializes all registered runtime
101  * services. The run time services would setup enough context for the core to
102  * switch to the next exception level. When this function returns, the core will
103  * switch to the programmed exception level via an ERET.
104  ******************************************************************************/
bl31_main(u_register_t arg0,u_register_t arg1,u_register_t arg2,u_register_t arg3)105 void __no_pauth bl31_main(u_register_t arg0, u_register_t arg1, u_register_t arg2,
106 		u_register_t arg3)
107 {
108 	unsigned int core_pos = plat_my_core_pos();
109 
110 	/* Enable early console if EARLY_CONSOLE flag is enabled */
111 	plat_setup_early_console();
112 
113 	/* Perform early platform-specific setup */
114 	bl31_early_platform_setup2(arg0, arg1, arg2, arg3);
115 
116 	/* Perform late platform-specific setup */
117 	bl31_plat_arch_setup();
118 
119 #if FEATURE_DETECTION
120 	/* Detect if features enabled during compilation are supported by PE. */
121 	detect_arch_features(core_pos);
122 #endif /* FEATURE_DETECTION */
123 
124 	/* Prints context_memory allocated for all the security states */
125 	report_ctx_memory_usage();
126 
127 	/* Init registers that never change for the lifetime of the core. */
128 	cm_manage_extensions_el3(core_pos);
129 
130 	/* Init per-world context registers */
131 	cm_manage_extensions_per_world();
132 
133 	NOTICE("BL31: %s\n", build_version_string);
134 	NOTICE("BL31: %s\n", build_message);
135 
136 #if ENABLE_RUNTIME_INSTRUMENTATION
137 	PMF_CAPTURE_TIMESTAMP(bl_svc, BL31_ENTRY, PMF_CACHE_MAINT);
138 #endif
139 
140 #ifdef SUPPORT_UNKNOWN_MPID
141 	if (unsupported_mpid_flag == 0) {
142 		NOTICE("Unsupported MPID detected!\n");
143 	}
144 #endif
145 
146 	/* Perform platform setup in BL31 */
147 	bl31_platform_setup();
148 
149 #if USE_DSU_DRIVER
150 	dsu_driver_init(&plat_dsu_data);
151 #endif
152 
153 #if USE_GIC_DRIVER
154 	/*
155 	 * Initialize the GIC driver as well as per-cpu and global interfaces.
156 	 * Platform has had an opportunity to initialise specifics.
157 	 */
158 	gic_init(core_pos);
159 	gic_pcpu_init(core_pos);
160 	gic_cpuif_enable(core_pos);
161 #endif /* USE_GIC_DRIVER */
162 
163 	/* Initialise helper libraries */
164 	bl31_lib_init();
165 
166 #if EL3_EXCEPTION_HANDLING
167 	INFO("BL31: Initialising Exception Handling Framework\n");
168 	ehf_init();
169 #endif
170 
171 	/* Initialize the runtime services e.g. psci. */
172 	INFO("BL31: Initializing runtime services\n");
173 	runtime_svc_init();
174 
175 	/*
176 	 * All the cold boot actions on the primary cpu are done. We now need to
177 	 * decide which is the next image and how to execute it.
178 	 * If the SPD runtime service is present, it would want to pass control
179 	 * to BL32 first in S-EL1. In that case, SPD would have registered a
180 	 * function to initialize bl32 where it takes responsibility of entering
181 	 * S-EL1 and returning control back to bl31_main. Similarly, if RME is
182 	 * enabled and a function is registered to initialize RMM, control is
183 	 * transferred to RMM in R-EL2. After RMM initialization, control is
184 	 * returned back to bl31_main. Once this is done we can prepare entry
185 	 * into BL33 as normal.
186 	 */
187 
188 	/*
189 	 * If SPD had registered an init hook, invoke it.
190 	 */
191 	if (bl32_init != NULL) {
192 		INFO("BL31: Initializing BL32\n");
193 
194 		console_flush();
195 		int32_t rc = (*bl32_init)();
196 
197 		if (rc == 0) {
198 			WARN("BL31: BL32 initialization failed\n");
199 		}
200 	}
201 
202 	/*
203 	 * If RME is enabled and init hook is registered, initialize RMM
204 	 * in R-EL2.
205 	 */
206 #if ENABLE_RME
207 	if (rmm_init != NULL) {
208 		INFO("BL31: Initializing RMM\n");
209 
210 		console_flush();
211 		int32_t rc = (*rmm_init)();
212 
213 		if (rc == 0) {
214 			WARN("BL31: RMM initialization failed\n");
215 		}
216 	}
217 #endif
218 
219 	/*
220 	 * We are ready to enter the next EL. Prepare entry into the image
221 	 * corresponding to the desired security state after the next ERET.
222 	 */
223 	bl31_prepare_next_image_entry();
224 
225 	/*
226 	 * Perform any platform specific runtime setup prior to cold boot exit
227 	 * from BL31
228 	 */
229 	bl31_plat_runtime_setup();
230 
231 #if ENABLE_RUNTIME_INSTRUMENTATION
232 	console_flush();
233 	PMF_CAPTURE_TIMESTAMP(bl_svc, BL31_EXIT, PMF_CACHE_MAINT);
234 #endif
235 
236 	console_flush();
237 	console_switch_state(CONSOLE_FLAG_RUNTIME);
238 }
239 
bl31_warmboot(void)240 void __no_pauth bl31_warmboot(void)
241 {
242 	unsigned int core_pos = plat_my_core_pos();
243 
244 #if FEATURE_DETECTION
245 	/* Detect if features enabled during compilation are supported by PE. */
246 	detect_arch_features(core_pos);
247 #endif /* FEATURE_DETECTION */
248 
249 	/*
250 	 * We're about to enable MMU and participate in PSCI state coordination.
251 	 *
252 	 * The PSCI implementation invokes platform routines that enable CPUs to
253 	 * participate in coherency. On a system where CPUs are not
254 	 * cache-coherent without appropriate platform specific programming,
255 	 * having caches enabled until such time might lead to coherency issues
256 	 * (resulting from stale data getting speculatively fetched, among
257 	 * others). Therefore we keep data caches disabled even after enabling
258 	 * the MMU for such platforms.
259 	 *
260 	 * On systems with hardware-assisted coherency, or on single cluster
261 	 * platforms, such platform specific programming is not required to
262 	 * enter coherency (as CPUs already are); and there's no reason to have
263 	 * caches disabled either.
264 	 */
265 #if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY
266 	bl31_plat_enable_mmu(0);
267 #else
268 	bl31_plat_enable_mmu(DISABLE_DCACHE);
269 #endif
270 
271 	/* Init registers that never change for the lifetime of the core. */
272 	cm_manage_extensions_el3(core_pos);
273 
274 #if ENABLE_RME
275 	/*
276 	 * At warm boot GPT data structures have already been initialized in RAM
277 	 * but the sysregs for this CPU need to be initialized. Note that the GPT
278 	 * accesses are controlled attributes in GPCCR and do not depend on the
279 	 * SCR_EL3.C bit.
280 	 */
281 	if (gpt_enable() != 0) {
282 		panic();
283 	}
284 #endif
285 
286 /* Enable DSU driver for each booting core */
287 #if USE_DSU_DRIVER
288 	dsu_driver_init(&plat_dsu_data);
289 #endif
290 
291 	psci_warmboot_entrypoint(core_pos);
292 }
293 
294 /*******************************************************************************
295  * Accessor functions to help runtime services decide which image should be
296  * executed after BL31. This is BL33 or the non-secure bootloader image by
297  * default but the Secure payload dispatcher could override this by requesting
298  * an entry into BL32 (Secure payload) first. If it does so then it should use
299  * the same API to program an entry into BL33 once BL32 initialisation is
300  * complete.
301  ******************************************************************************/
bl31_set_next_image_type(uint32_t security_state)302 void bl31_set_next_image_type(uint32_t security_state)
303 {
304 	assert(sec_state_is_valid(security_state));
305 	next_image_type = security_state;
306 }
307 
bl31_get_next_image_type(void)308 static uint32_t bl31_get_next_image_type(void)
309 {
310 	return next_image_type;
311 }
312 
313 /*******************************************************************************
314  * This function programs EL3 registers and performs other setup to enable entry
315  * into the next image after BL31 at the next ERET.
316  ******************************************************************************/
bl31_prepare_next_image_entry(void)317 void __init bl31_prepare_next_image_entry(void)
318 {
319 	const entry_point_info_t *next_image_info;
320 	uint32_t image_type;
321 
322 #if CTX_INCLUDE_AARCH32_REGS
323 	/*
324 	 * Ensure that the build flag to save AArch32 system registers in CPU
325 	 * context is not set for AArch64-only platforms.
326 	 */
327 	if (el_implemented(1) == EL_IMPL_A64ONLY) {
328 		ERROR("EL1 supports AArch64-only. Please set build flag "
329 				"CTX_INCLUDE_AARCH32_REGS = 0\n");
330 		panic();
331 	}
332 #endif
333 
334 	/* Determine which image to execute next */
335 	image_type = bl31_get_next_image_type();
336 
337 	/* Program EL3 registers to enable entry into the next EL */
338 	next_image_info = bl31_plat_get_next_image_ep_info(image_type);
339 	assert(next_image_info != NULL);
340 	assert(image_type == GET_SECURITY_STATE(next_image_info->h.attr));
341 
342 	INFO("BL31: Preparing for EL3 exit to %s world\n",
343 		(image_type == SECURE) ? "secure" : "normal");
344 	print_entry_point_info(next_image_info);
345 	cm_init_my_context(next_image_info);
346 
347 	/*
348 	* If we are entering the Non-secure world, use
349 	* 'cm_prepare_el3_exit_ns' to exit.
350 	*/
351 	if (image_type == NON_SECURE) {
352 		cm_prepare_el3_exit_ns();
353 	} else {
354 		cm_prepare_el3_exit(image_type);
355 	}
356 }
357 
358 /*******************************************************************************
359  * This function initializes the pointer to BL32 init function. This is expected
360  * to be called by the SPD after it finishes all its initialization
361  ******************************************************************************/
bl31_register_bl32_init(int32_t (* func)(void))362 void bl31_register_bl32_init(int32_t (*func)(void))
363 {
364 	bl32_init = func;
365 }
366 
367 #if ENABLE_RME
368 /*******************************************************************************
369  * This function initializes the pointer to RMM init function. This is expected
370  * to be called by the RMMD after it finishes all its initialization
371  ******************************************************************************/
bl31_register_rmm_init(int32_t (* func)(void))372 void bl31_register_rmm_init(int32_t (*func)(void))
373 {
374 	rmm_init = func;
375 }
376 #endif
377