| 16c1c453 | 04-Oct-2021 |
J-Alves <joao.alves@arm.com> |
docs(ff-a): update documentation of FF-A interfaces
- Overview of FF-A v1.1 notifications feature, and list of all the new related interface. - FFA_RXTX_UNMAP now implemented, so provided descriptio
docs(ff-a): update documentation of FF-A interfaces
- Overview of FF-A v1.1 notifications feature, and list of all the new related interface. - FFA_RXTX_UNMAP now implemented, so provided description. - FF-A v1.1 interfaces documented: FFA_SPM_ID_GET and FFA_SECONDARY_EP_REGISTER.
Signed-off-by: J-Alves <joao.alves@arm.com> Change-Id: If40b4d2b2473f81ecfb2ddbf14852c3f10682867
show more ...
|
| 68120783 | 05-May-2021 |
Chris Kay <chris.kay@arm.com> |
feat(mpmm): add support for MPMM
MPMM - the Maximum Power Mitigation Mechanism - is an optional microarchitectural feature present on some Armv9-A cores, introduced with the Cortex-X2, Cortex-A710 a
feat(mpmm): add support for MPMM
MPMM - the Maximum Power Mitigation Mechanism - is an optional microarchitectural feature present on some Armv9-A cores, introduced with the Cortex-X2, Cortex-A710 and Cortex-A510 cores.
MPMM allows the SoC firmware to detect and limit high activity events to assist in SoC processor power domain dynamic power budgeting and limit the triggering of whole-rail (i.e. clock chopping) responses to overcurrent conditions.
This feature is enabled via the `ENABLE_MPMM` build option. Configuration can be done via FCONF by enabling `ENABLE_MPMM_FCONF`, or by via the plaform-implemented `plat_mpmm_topology` function.
Change-Id: I77da82808ad4744ece8263f0bf215c5a091c3167 Signed-off-by: Chris Kay <chris.kay@arm.com>
show more ...
|
| 742ca230 | 19-Aug-2021 |
Chris Kay <chris.kay@arm.com> |
feat(amu): enable per-core AMU auxiliary counters
This change makes AMU auxiliary counters configurable on a per-core basis, controlled by `ENABLE_AMU_AUXILIARY_COUNTERS`.
Auxiliary counters can be
feat(amu): enable per-core AMU auxiliary counters
This change makes AMU auxiliary counters configurable on a per-core basis, controlled by `ENABLE_AMU_AUXILIARY_COUNTERS`.
Auxiliary counters can be described via the `HW_CONFIG` device tree if the `ENABLE_AMU_FCONF` build option is enabled, or the platform must otherwise implement the `plat_amu_topology` function.
A new phandle property for `cpu` nodes (`amu`) has been introduced to the `HW_CONFIG` specification to allow CPUs to describe the view of their own AMU:
``` cpu0: cpu@0 { ...
amu = <&cpu0_amu>; }; ```
Multiple cores may share an `amu` handle if they implement the same set of auxiliary counters.
AMU counters are described for one or more AMUs through the use of a new `amus` node:
``` amus { cpu0_amu: amu-0 { #address-cells = <1>; #size-cells = <0>;
counter@0 { reg = <0>;
enable-at-el3; };
counter@n { reg = <n>;
... }; }; }; ```
This structure describes the **auxiliary** (group 1) AMU counters. Architected counters have architecturally-defined behaviour, and as such do not require DTB entries.
These `counter` nodes support two properties:
- The `reg` property represents the counter register index. - The presence of the `enable-at-el3` property determines whether the firmware should enable the counter prior to exiting EL3.
Change-Id: Ie43aee010518c5725a3b338a4899b0857caf4c28 Signed-off-by: Chris Kay <chris.kay@arm.com>
show more ...
|