xref: /utopia/UTPA2-700.0.x/modules/xc/hal/messi/pnl/halPNL.c (revision 53ee8cc121a030b8d368113ac3e966b4705770ef)
1 //<MStar Software>
2 //******************************************************************************
3 // MStar Software
4 // Copyright (c) 2010 - 2012 MStar Semiconductor, Inc. All rights reserved.
5 // All software, firmware and related documentation herein ("MStar Software") are
6 // intellectual property of MStar Semiconductor, Inc. ("MStar") and protected by
7 // law, including, but not limited to, copyright law and international treaties.
8 // Any use, modification, reproduction, retransmission, or republication of all
9 // or part of MStar Software is expressly prohibited, unless prior written
10 // permission has been granted by MStar.
11 //
12 // By accessing, browsing and/or using MStar Software, you acknowledge that you
13 // have read, understood, and agree, to be bound by below terms ("Terms") and to
14 // comply with all applicable laws and regulations:
15 //
16 // 1. MStar shall retain any and all right, ownership and interest to MStar
17 //    Software and any modification/derivatives thereof.
18 //    No right, ownership, or interest to MStar Software and any
19 //    modification/derivatives thereof is transferred to you under Terms.
20 //
21 // 2. You understand that MStar Software might include, incorporate or be
22 //    supplied together with third party`s software and the use of MStar
23 //    Software may require additional licenses from third parties.
24 //    Therefore, you hereby agree it is your sole responsibility to separately
25 //    obtain any and all third party right and license necessary for your use of
26 //    such third party`s software.
27 //
28 // 3. MStar Software and any modification/derivatives thereof shall be deemed as
29 //    MStar`s confidential information and you agree to keep MStar`s
30 //    confidential information in strictest confidence and not disclose to any
31 //    third party.
32 //
33 // 4. MStar Software is provided on an "AS IS" basis without warranties of any
34 //    kind. Any warranties are hereby expressly disclaimed by MStar, including
35 //    without limitation, any warranties of merchantability, non-infringement of
36 //    intellectual property rights, fitness for a particular purpose, error free
37 //    and in conformity with any international standard.  You agree to waive any
38 //    claim against MStar for any loss, damage, cost or expense that you may
39 //    incur related to your use of MStar Software.
40 //    In no event shall MStar be liable for any direct, indirect, incidental or
41 //    consequential damages, including without limitation, lost of profit or
42 //    revenues, lost or damage of data, and unauthorized system use.
43 //    You agree that this Section 4 shall still apply without being affected
44 //    even if MStar Software has been modified by MStar in accordance with your
45 //    request or instruction for your use, except otherwise agreed by both
46 //    parties in writing.
47 //
48 // 5. If requested, MStar may from time to time provide technical supports or
49 //    services in relation with MStar Software to you for your use of
50 //    MStar Software in conjunction with your or your customer`s product
51 //    ("Services").
52 //    You understand and agree that, except otherwise agreed by both parties in
53 //    writing, Services are provided on an "AS IS" basis and the warranty
54 //    disclaimer set forth in Section 4 above shall apply.
55 //
56 // 6. Nothing contained herein shall be construed as by implication, estoppels
57 //    or otherwise:
58 //    (a) conferring any license or right to use MStar name, trademark, service
59 //        mark, symbol or any other identification;
60 //    (b) obligating MStar or any of its affiliates to furnish any person,
61 //        including without limitation, you and your customers, any assistance
62 //        of any kind whatsoever, or any information; or
63 //    (c) conferring any license or right under any intellectual property right.
64 //
65 // 7. These terms shall be governed by and construed in accordance with the laws
66 //    of Taiwan, R.O.C., excluding its conflict of law rules.
67 //    Any and all dispute arising out hereof or related hereto shall be finally
68 //    settled by arbitration referred to the Chinese Arbitration Association,
69 //    Taipei in accordance with the ROC Arbitration Law and the Arbitration
70 //    Rules of the Association by three (3) arbitrators appointed in accordance
71 //    with the said Rules.
72 //    The place of arbitration shall be in Taipei, Taiwan and the language shall
73 //    be English.
74 //    The arbitration award shall be final and binding to both parties.
75 //
76 //******************************************************************************
77 //<MStar Software>
78 #ifndef _HAL_PNL_C_
79 #define _HAL_PNL_C_
80 
81 //-------------------------------------------------------------------------------------------------
82 //  Include Files
83 //-------------------------------------------------------------------------------------------------
84 
85 #include "MsCommon.h"
86 #include "MsTypes.h"
87 #include "utopia.h"
88 #include "utopia_dapi.h"
89 #include "apiPNL.h"
90 #include "apiPNL_v2.h"
91 #include "drvPNL.h"
92 #include "halPNL.h"
93 #include "PNL_private.h"
94 #include "pnl_hwreg_utility2.h"
95 #include "Messi_pnl_lpll_tbl.h"
96 
97 #ifdef MSOS_TYPE_LINUX_KERNEL
98 #include <linux/string.h>
99 #include <linux/delay.h>
100 #include <asm/div64.h>
101 #else
102 #include "string.h"
103 #define do_div(x,y) ((x)/=(y))
104 #endif
105 
106 //-------------------------------------------------------------------------------------------------
107 //  Driver Compiler Options
108 //-------------------------------------------------------------------------------------------------
109 
110 //-------------------------------------------------------------------------------------------------
111 //  Local Defines
112 //-------------------------------------------------------------------------------------------------
113 
114 #define UNUSED(x)       (x=x)
115 #if 1
116 #define HAL_PNL_DBG(_dbgSwitch_, _fmt, _args...)      { if((_dbgSwitch_ & _u16PnlDbgSwitch) != 0) printf("PNL:"_fmt, ##_args); }
117 #define HAL_MOD_CAL_DBG(x)    //x
118 #else
119 #define HAL_PNL_DBG(_dbgSwitch_, _fmt, _args...)      { }
120 #endif
121 
122 #define DAC_LPLL_ICTRL     0x0002
123 #define LVDS_LPLL_ICTRL    0x0001
124 
125 //Get MOD calibration time
126 #define MOD_CAL_TIMER   FALSE
127 
128 //-------------------------------------------------------------------------------------------------
129 //  Local Structurs
130 //-------------------------------------------------------------------------------------------------
131 
132 //-------------------------------------------------------------------------------------------------
133 //  Global Variables
134 //-------------------------------------------------------------------------------------------------
135 #define LANE_NUM_EACH_PINMAPPING_GROUP1 4
136 #define LANE_NUM_EACH_PINMAPPING_GROUP2 4
137 #define LANE_NUM_EACH_PINMAPPING_GROUP3 4
138 #define LANE_NUM_EACH_PINMAPPING_GROUP4 2
139 
140 #define PINMAPPING_EXP 16
141 //-------------------------------------------------------------------------------------------------
142 //  Local Variables
143 //-------------------------------------------------------------------------------------------------
144 MS_U8 LANE_AND_CLK_TBL[VBY1_CLK_TBL_ROW][3]=
145 { //lane(from)  lane(to) bit(mask)
146  { 0, 3, 0x02, },
147  { 4, 6, 0x04, },
148  { 7, 9, 0x08, },
149  { 10, 13, 0x10, }
150 };
151 //-------------------------------------------------------------------------------------------------
152 //  Debug Functions
153 //-------------------------------------------------------------------------------------------------
154 
155 //-------------------------------------------------------------------------------------------------
156 //  Local Functions
157 //-------------------------------------------------------------------------------------------------
158 
159 static void _MHal_PNL_Set_Clk(void *pInstance,
160                               MS_U8 u8LaneNum,
161                               MS_U16 u16OutputOrder0_3,
162                               MS_U16 u16OutputOrder4_7,
163                               MS_U16 u16OutputOrder8_11,
164                               MS_U16 u16OutputOrder12_13);
165 
166 static MS_U8 _MHal_PNL_Get_LaneNum(void *pInstance);
167 //-------------------------------------------------------------------------------------------------
168 //  Global Function
169 //-------------------------------------------------------------------------------------------------
170 /**
171 *   @brief: Power On MOD. but not mutex protected
172 *
173 */
MHal_MOD_PowerOn(void * pInstance,MS_BOOL bEn,MS_U8 u8LPLL_Type,MS_U8 DualModeType,MS_U16 u16OutputCFG0_7,MS_U16 u16OutputCFG8_15,MS_U16 u16OutputCFG16_21)174 MS_U8 MHal_MOD_PowerOn(void *pInstance, MS_BOOL bEn, MS_U8 u8LPLL_Type,MS_U8 DualModeType, MS_U16 u16OutputCFG0_7, MS_U16 u16OutputCFG8_15, MS_U16 u16OutputCFG16_21)
175 {
176     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
177     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
178     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
179     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
180 
181     if( bEn )
182     {
183         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, 0x00, BIT(8));
184 
185         //analog MOD power down. 1: power down, 0: power up
186         // For Mod2 no output signel
187         ///////////////////////////////////////////////////
188 
189         //2. Power on MOD (current and regulator)
190         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0x00 , BIT(0));
191         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, BIT(8) , BIT(8));
192 
193         //enable ib, enable ck
194         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0x1C, 0x1C);
195         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, (BIT(1) | BIT(0)), (BIT(1) | BIT(0)));
196 
197         // clock gen of dot-mini
198         if(u8LPLL_Type == E_PNL_TYPE_MINILVDS)
199         {
200             MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x4400);
201             MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x4400);
202         }
203         //// for osd dedicated output port, 1 port for video and 1 port for osd
204         else if((u8LPLL_Type == E_PNL_TYPE_HS_LVDS)&&
205                 (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Mode == E_PNL_MODE_SINGLE))
206         {
207             MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x0400);  // [11:8]reg_ckg_dot_mini_pre2_osd
208             MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x0044);  // [3:0]reg_ckg_dot_mini_osd
209                                                     // [7:4]reg_ckg_dot_mini_pre_osd
210         }
211         else
212         {
213             MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x0000);
214             MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x0000);
215         }
216 
217         // 3. 4. 5.
218         MHal_Output_LVDS_Pair_Setting(pInstance, DualModeType, u16OutputCFG0_7, u16OutputCFG8_15, u16OutputCFG16_21);
219     }
220     else
221     {
222         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, BIT(8), BIT(8));
223         if(u8LPLL_Type !=E_PNL_TYPE_MINILVDS)
224         {
225             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, BIT(0), BIT(0));                              //analog MOD power down. 1: power down, 0: power up
226             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0x00, BIT(8));
227         }
228 
229         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0, (BIT(1) | BIT(0) ));                           //enable ib, enable ck
230 
231         // clock gen of dot-mini
232         MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x1100);
233         MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x1100);
234 
235     }
236     return 1;
237 }
238 
239 /**
240 *   @brief: Setup the PVDD power 1:2.5V, 0:3.3V
241 *
242 */
MHal_MOD_PVDD_Power_Setting(void * pInstance,MS_BOOL bIs2p5)243 void MHal_MOD_PVDD_Power_Setting(void *pInstance, MS_BOOL bIs2p5)
244 {
245     //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, ((bIs2p5)? BIT(6):0), BIT(6));    //MOD PVDD=1: 0.9
246 }
247 
MHal_PNL_TCON_Init(void * pInstance)248 void MHal_PNL_TCON_Init(void *pInstance)
249 {
250 
251 }
252 
MHal_Shift_LVDS_Pair(void * pInstance,MS_U8 Type)253 void MHal_Shift_LVDS_Pair(void *pInstance, MS_U8 Type)
254 {
255     if(Type == 1)
256         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, (BIT(7) | BIT(6)), (BIT(7) | BIT(6))); // shift_lvds_pair, set LVDS Mode3
257     else
258         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, 0x0000, (BIT(7) | BIT(6)));
259 
260 }
261 
MHal_Output_LVDS_Pair_Setting(void * pInstance,MS_U8 Type,MS_U16 u16OutputCFG0_7,MS_U16 u16OutputCFG8_15,MS_U16 u16OutputCFG16_21)262 void MHal_Output_LVDS_Pair_Setting(void *pInstance, MS_U8 Type, MS_U16 u16OutputCFG0_7, MS_U16 u16OutputCFG8_15, MS_U16 u16OutputCFG16_21)
263 {
264 
265     if(Type == LVDS_DUAL_OUTPUT_SPECIAL )
266     {
267         MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x0555);
268         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x1554);
269     }
270     else if(Type == LVDS_SINGLE_OUTPUT_A)
271     {
272         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_00_L, 0x5550, 0xFFF0);
273         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0555);
274     }
275     else if( Type == LVDS_SINGLE_OUTPUT_B)
276     {
277         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_00_L, 0x5550, 0xFFF0);
278         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0555);
279     }
280     else if( Type == LVDS_OUTPUT_User)
281     {
282         MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, u16OutputCFG0_7);
283         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, u16OutputCFG8_15);
284     }
285     else
286     {
287         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_00_L, 0x5550, 0xFFF0);
288         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0555);
289     }
290 
291     MsOS_DelayTask(2);
292 
293 
294 }
295 
_MHal_PNL_Get_LaneNum(void * pInstance)296 static MS_U8 _MHal_PNL_Get_LaneNum(void *pInstance)
297 {
298     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
299     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
300     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
301     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
302 
303     MS_U8 u8LaneNum = 0;
304     //check lane num
305 
306     return u8LaneNum;
307 }
308 
_MHal_PNL_Set_Clk(void * pInstance,MS_U8 Type,MS_U16 u16OutputOrder0_3,MS_U16 u16OutputOrder4_7,MS_U16 u16OutputOrder8_11,MS_U16 u16OutputOrder12_13)309 static void _MHal_PNL_Set_Clk(void *pInstance,
310                               MS_U8 Type,
311                               MS_U16 u16OutputOrder0_3,
312                               MS_U16 u16OutputOrder4_7,
313                               MS_U16 u16OutputOrder8_11,
314                               MS_U16 u16OutputOrder12_13)
315 {
316     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
317     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
318     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
319     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
320 
321     if(Type == APIPNL_OUTPUT_CHANNEL_ORDER_USER )
322     {
323         MS_U8 u8Clk = 0;
324         MS_U8   u8LaneNum = 0;
325         MS_BOOL bSkip = TRUE;
326         MS_U8   u8Count = 0;
327         MS_U8   u8Count1 = 0;
328         MS_U8   u8StartLane = 0;
329 
330         //check lane num
331         u8LaneNum = _MHal_PNL_Get_LaneNum(pInstance);
332         if(u8LaneNum!=0)
333         {
334             bSkip = FALSE;
335         }
336         else
337         {
338             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0x1F, 0x1F); //open all clk
339             bSkip = TRUE;
340         }
341 
342         //count clk
343         if(!bSkip)
344         {
345             u8Clk = 0;
346             u8StartLane = 0;
347             for( u8Count = u8StartLane ; u8Count < (u8StartLane+LANE_NUM_EACH_PINMAPPING_GROUP1) ; u8Count++ )
348             {//lane 0 - lane 3
349                 if( ( u16OutputOrder0_3 % PINMAPPING_EXP ) < u8LaneNum)
350                 {
351                     u8Count1 = 0;
352                     do
353                     {
354                         if(u8Count>=LANE_AND_CLK_TBL[u8Count1][0] && u8Count<=LANE_AND_CLK_TBL[u8Count1][1])
355                         {
356                             u8Clk |= LANE_AND_CLK_TBL[u8Count1][2];
357                             u8Clk |= 0x01;//mod_a_reg38 [1]:clk enable
358                             break;
359                         }
360                         u8Count1 ++;
361                     }
362                     while(u8Count1<VBY1_CLK_TBL_ROW);
363                 }
364                 u16OutputOrder0_3 /= PINMAPPING_EXP;
365             }
366 
367             u8StartLane = 4;
368             for( u8Count = u8StartLane ; u8Count < (u8StartLane+LANE_NUM_EACH_PINMAPPING_GROUP2) ; u8Count++ )
369             {//lane 4 - lane 7
370                 if( ( u16OutputOrder4_7 % PINMAPPING_EXP ) < u8LaneNum)
371                 {
372                     u8Count1 = 0;
373                     do
374                     {
375                         if(u8Count>=LANE_AND_CLK_TBL[u8Count1][0] && u8Count<=LANE_AND_CLK_TBL[u8Count1][1])
376                         {
377                             u8Clk |= LANE_AND_CLK_TBL[u8Count1][2];
378                             u8Clk |= 0x01;//mod_a_reg38 [1]:clk enable
379                             break;
380                         }
381                         u8Count1 ++;
382                     }
383                     while(u8Count1<VBY1_CLK_TBL_ROW);
384                 }
385                 u16OutputOrder4_7 /= PINMAPPING_EXP;
386             }
387 
388             u8StartLane = 8;
389             for( u8Count = u8StartLane ; u8Count < (u8StartLane+LANE_NUM_EACH_PINMAPPING_GROUP3) ; u8Count++ )
390             {//lane 8 - lane 11
391                 if( ( u16OutputOrder8_11 % PINMAPPING_EXP ) < u8LaneNum)
392                 {
393                     u8Count1 = 0;
394                     do
395                     {
396                         if(u8Count>=LANE_AND_CLK_TBL[u8Count1][0] && u8Count<=LANE_AND_CLK_TBL[u8Count1][1])
397                         {
398                             u8Clk |= LANE_AND_CLK_TBL[u8Count1][2];
399                             u8Clk |= 0x01;//mod_a_reg38 [1]:clk enable
400                             break;
401                         }
402                         u8Count1 ++;
403                     }
404                     while(u8Count1<VBY1_CLK_TBL_ROW);
405                 }
406                 u16OutputOrder8_11 /= PINMAPPING_EXP;
407 
408             }
409 
410             u8StartLane = 12;
411             for( u8Count = u8StartLane ; u8Count < (u8StartLane+LANE_NUM_EACH_PINMAPPING_GROUP4) ; u8Count++ )
412             {//lane 12 - lane 13
413                 if( ( u16OutputOrder12_13 % PINMAPPING_EXP ) < u8LaneNum)
414                 {
415                     u8Count1 = 0;
416                     do
417                     {
418                         if(u8Count>=LANE_AND_CLK_TBL[u8Count1][0] && u8Count<=LANE_AND_CLK_TBL[u8Count1][1])
419                         {
420                             u8Clk |= LANE_AND_CLK_TBL[u8Count1][2];
421                             u8Clk |= 0x01;//mod_a_reg38 [1]:clk enable
422                             break;
423                         }
424                         u8Count1 ++;
425                     }
426                     while(u8Count1<VBY1_CLK_TBL_ROW);
427                 }
428                 u16OutputOrder12_13 /= PINMAPPING_EXP;
429             }
430 
431             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, u8Clk, 0x1F);
432         }
433     }
434     else
435     {
436         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0x1F, 0x1F);
437     }
438 }
439 
MHal_Output_Channel_Order(void * pInstance,MS_U8 Type,MS_U16 u16OutputOrder0_3,MS_U16 u16OutputOrder4_7,MS_U16 u16OutputOrder8_11,MS_U16 u16OutputOrder12_13)440 void MHal_Output_Channel_Order(void *pInstance,
441                                MS_U8 Type,
442                                MS_U16 u16OutputOrder0_3,
443                                MS_U16 u16OutputOrder4_7,
444                                MS_U16 u16OutputOrder8_11,
445                                MS_U16 u16OutputOrder12_13)
446 {
447     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
448     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
449     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
450     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
451 
452     if(Type == APIPNL_OUTPUT_CHANNEL_ORDER_USER )
453     {
454         MOD_W2BYTE(REG_MOD_BK00_08_L, u16OutputOrder0_3);
455         MOD_W2BYTE(REG_MOD_BK00_09_L, u16OutputOrder4_7);
456         MOD_W2BYTE(REG_MOD_BK00_0A_L, u16OutputOrder8_11);
457         MOD_W2BYTE(REG_MOD_BK00_0B_L, u16OutputOrder12_13);
458     }
459     else
460     {
461         if(   (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_8LANE)
462             ||(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_8BIT_8LANE))
463         {
464             if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16MOD_CTRLA & BIT(1))
465             {
466                 MOD_W2BYTE(REG_MOD_BK00_08_L, 0xDCBA);
467                 MOD_W2BYTE(REG_MOD_BK00_09_L, 0x6420);
468                 MOD_W2BYTE(REG_MOD_BK00_0A_L, 0x7531);
469                 MOD_W2BYTE(REG_MOD_BK00_0B_L, 0x0098);
470             }
471             else
472             {
473                 MOD_W2BYTE(REG_MOD_BK00_08_L, 0xDCBA);
474                 MOD_W2BYTE(REG_MOD_BK00_09_L, 0x3210);
475                 MOD_W2BYTE(REG_MOD_BK00_0A_L, 0x7654);
476                 MOD_W2BYTE(REG_MOD_BK00_0B_L, 0x0098);
477             }
478         }
479         else if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_LVDS)
480         {//LVDS
481             MOD_W2BYTE(REG_MOD_BK00_08_L, 0x10DC);
482             MOD_W2BYTE(REG_MOD_BK00_09_L, 0x5432);
483             MOD_W2BYTE(REG_MOD_BK00_0A_L, 0x9876);
484             MOD_W2BYTE(REG_MOD_BK00_0B_L, 0x00BA);
485         }
486         else
487         {
488             MOD_W2BYTE(REG_MOD_BK00_08_L, 0xDCBA);
489             MOD_W2BYTE(REG_MOD_BK00_09_L, 0x3210);
490             MOD_W2BYTE(REG_MOD_BK00_0A_L, 0x7654);
491             MOD_W2BYTE(REG_MOD_BK00_0B_L, 0x0098);
492         }
493     }
494 
495 }
496 
MHal_PQ_Clock_Gen_For_Gamma(void * pInstance)497 void MHal_PQ_Clock_Gen_For_Gamma(void *pInstance)
498 {
499     W2BYTEMSK(REG_CLKGEN0_52_L, 0x00, 0x07);
500 }
501 
MHal_VOP_SetGammaMappingMode(void * pInstance,MS_U8 u8Mapping)502 void MHal_VOP_SetGammaMappingMode(void *pInstance, MS_U8 u8Mapping)
503 {
504     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
505     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
506 
507     if(u8Mapping & GAMMA_MAPPING)
508     {
509         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_74_L, (u8Mapping & GAMMA_10BIT_MAPPING)? BIT(15):0, BIT(15));
510     }
511     else
512     {
513         PNL_ASSERT(0, "Invalid eSupportGammaMapMode [%d] Passed to [%s], please make sure the u8Mapping[%d] is valid\n.",
514                        u8Mapping, __FUNCTION__, u8Mapping);
515     }
516 }
517 
Hal_VOP_Is_GammaMappingMode_enable(void * pInstance)518 MS_BOOL Hal_VOP_Is_GammaMappingMode_enable(void *pInstance)
519 {
520     // Only support 1024 entry
521     return TRUE;
522 }
523 
524 // After A5, 8 bit mode only support burst write!!!
Hal_VOP_Is_GammaSupportSignalWrite(void * pInstance,DRVPNL_GAMMA_MAPPEING_MODE u8Mapping)525 MS_BOOL Hal_VOP_Is_GammaSupportSignalWrite(void *pInstance, DRVPNL_GAMMA_MAPPEING_MODE u8Mapping)
526 {
527     if( u8Mapping == E_DRVPNL_GAMMA_10BIT_MAPPING )
528         return TRUE;
529     else
530         return FALSE;
531 }
532 
533 
hal_PNL_WriteGamma12Bit(void * pInstance,MS_U8 u8Channel,MS_BOOL bBurstWrite,MS_U16 u16Addr,MS_U16 u16GammaValue)534 void hal_PNL_WriteGamma12Bit(void *pInstance, MS_U8 u8Channel, MS_BOOL bBurstWrite, MS_U16 u16Addr, MS_U16 u16GammaValue)
535 {
536     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
537     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
538 
539     MS_U16 u16Delay = 0xFFFF;
540 
541     PNL_DBG(PNL_DBGLEVEL_GAMMA, "Write [ch %d][addr 0x%x]: 0x%x \n", u8Channel, u16Addr, u16GammaValue);
542 
543     if (!bBurstWrite )
544     {
545         while (SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, 0xE0) && (--u16Delay));          // Check whether the Write chanel is ready
546         PNL_ASSERT(u16Delay > 0, "%s\n", "WriteGamma timeout");
547 
548         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6C_L, u16Addr, 0x3FF);                          // set address port
549         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, (REG_SC_BK10_6E_L + u8Channel *2), u16GammaValue, 0xFFF);      // Set channel data
550 
551         // kick off write
552         switch(u8Channel)
553         {
554             case 0:  // Red
555                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6D_L, BIT(5), BIT(5));
556                 break;
557 
558             case 1:  // Green
559                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6D_L, BIT(6), BIT(6));
560                 break;
561 
562             case 2:  // Blue
563                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6D_L, BIT(7), BIT(7));
564                 break;
565         }
566 
567         while (SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6D_L, 0xE0) && (--u16Delay));          // Check whether the Write chanel is ready
568     }
569     else
570     {
571 
572         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6E_L, u16GammaValue, 0xFFF);
573     }
574 
575 
576     PNL_ASSERT(u16Delay > 0, "%s\n", "WriteGamma timeout");
577 }
578 
579 
hal_PNL_SetMaxGammaValue(void * pInstance,MS_U8 u8Channel,MS_U16 u16MaxGammaValue)580 void hal_PNL_SetMaxGammaValue(void *pInstance, MS_U8 u8Channel, MS_U16 u16MaxGammaValue)
581 {
582     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
583     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
584 
585     PNL_DBG(PNL_DBGLEVEL_GAMMA, "Max gamma of SC%u %d is 0x%x\n", (unsigned int)pPNLInstancePrivate->u32DeviceID, u8Channel, u16MaxGammaValue);
586 
587     switch(u8Channel)
588     {
589         case 0:  // max. Red
590                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7A_L , u16MaxGammaValue, 0xFFF);           // max. base 0
591                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7B_L , u16MaxGammaValue, 0xFFF);           // max. base 1
592             break;
593 
594         case 1:  // max. Green
595                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7C_L , u16MaxGammaValue, 0xFFF);           // max. base 0
596                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7D_L , u16MaxGammaValue, 0xFFF);           // max. base 1
597             break;
598 
599         case 2:  //max.  Blue
600                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7E_L , u16MaxGammaValue, 0xFFF);           // max. base 0
601                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7F_L , u16MaxGammaValue, 0xFFF);           // max. base 1
602             break;
603      }
604 
605 }
606 
607 /////////////////////////////////////////////////////////////////////////////
608 // Gamma format (12 bit LUT)
609 //      0, 1, 2, 3, ..., NumOfLevel, totally N Sets of tNormalGammaR/G/B[],
610 //      1 set uses 2 bytes of memory.
611 //
612 // [T2 and before ] N = 256
613 // [T3]             N = 256 or 1024
614 // ______________________________________________________________________________
615 //  Byte | 0         1           2               n-1        n
616 //    [G1|G0]       [G0]       [G1] . ...... .  [Gmax]    [Gmax]
617 //    3:0  3:0      11:4       11:4              3:0       11:4
618 //
619 
Hal_PNL_Set12BitGammaPerChannel(void * pInstance,MS_U8 u8Channel,MS_U8 * u8Tab,DRVPNL_GAMMA_MAPPEING_MODE GammaMapMode)620 void Hal_PNL_Set12BitGammaPerChannel(void *pInstance, MS_U8 u8Channel, MS_U8 * u8Tab, DRVPNL_GAMMA_MAPPEING_MODE GammaMapMode)
621 {
622     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
623     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
624 
625     MS_U16 u16Addr            = 0;
626     MS_U16 u16CodeTableIndex  = u16Addr/2*3;
627     MS_U16 u16GammaValue      = 0;
628     MS_U16 u16MaxGammaValue   = 0;
629     MS_U16 u16NumOfLevel = GammaMapMode == E_DRVPNL_GAMMA_8BIT_MAPPING ? 256 : 1024;
630     MS_BOOL bUsingBurstWrite = !Hal_VOP_Is_GammaSupportSignalWrite(pInstance,GammaMapMode);
631 #if 0 //The patch for Messi Burst Write bug. Mantis: 1111420
632     bUsingBurstWrite=FALSE;
633 #endif
634 
635     // Go to burst write if not support
636     if ( bUsingBurstWrite )
637     {
638         // 1.   initial burst write address, LUT_ADDR[7:0]
639         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6C_L, 0x00 , 0x3FF);
640 
641         // 2.   select burst write channel, REG_LUT_BW_CH_SEL[1:0]
642         switch(u8Channel)
643         {
644             case 0:  // Red
645                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, 0x00 , BIT(3) | BIT(2) );
646                 break;
647 
648             case 1:  // Green
649                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, BIT(2) , BIT(3) | BIT(2) );
650                 break;
651 
652             case 2:  // Blue
653                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, BIT(3) , BIT(3) | BIT(2) );
654                 break;
655         }
656 
657         // 3.   enable burst write mode, REG_LUT_BW_MAIN_EN
658         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, BIT(0) , BIT(0)); // Burst write enable
659 
660     }
661 
662     //printf("\33[0;31m Gamma Mapping mode %d \n \33[m",GammaMapMode );
663     // write gamma table per one channel
664     for(; u16Addr < u16NumOfLevel; u16CodeTableIndex += 3)
665     {
666         // gamma x
667         u16GammaValue = u8Tab[u16CodeTableIndex] & 0x0F;
668         u16GammaValue |= u8Tab[u16CodeTableIndex+1] << 4;
669 
670         PNL_DBG(PNL_DBGLEVEL_GAMMA,"Gamma x: SrcGTbl[%d] = 0x%x, [%d] = 0x%x, Gamma = 0x%x, GammaLvl=%d\n",
671                                     u16CodeTableIndex, u8Tab[u16CodeTableIndex], u16CodeTableIndex+1, u8Tab[u16CodeTableIndex+1], u16GammaValue, u16NumOfLevel);
672 
673         if(u16MaxGammaValue < u16GammaValue)
674         {
675             u16MaxGammaValue = u16GammaValue;
676         }
677 
678         // write gamma value
679         hal_PNL_WriteGamma12Bit(pInstance,u8Channel,bUsingBurstWrite, u16Addr, u16GammaValue);
680         u16Addr++;
681 
682         // gamma x+1
683         u16GammaValue = (u8Tab[u16CodeTableIndex] & 0xF0) >> 4;
684         u16GammaValue |= u8Tab[u16CodeTableIndex+2] << 4;
685 
686         PNL_DBG(PNL_DBGLEVEL_GAMMA, "Gamma x+1: SrcGTbl[%d] = 0x%x, [%d] = 0x%x, Gamma = 0x%x\n", u16CodeTableIndex, u8Tab[u16CodeTableIndex], u16CodeTableIndex+2, u8Tab[u16CodeTableIndex+2], u16GammaValue);
687 
688         if(u16MaxGammaValue < u16GammaValue)
689         {
690             u16MaxGammaValue = u16GammaValue;
691         }
692 
693         // write gamma value
694         hal_PNL_WriteGamma12Bit(pInstance,u8Channel,bUsingBurstWrite, u16Addr, u16GammaValue);
695         u16Addr++;
696     }
697 
698     if ( bUsingBurstWrite )
699     {
700         // 5.   after finish burst write data of one channel, disable burst write mode
701         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, 0x00 , BIT(0));
702     }
703 
704     hal_PNL_SetMaxGammaValue(pInstance,u8Channel, u16MaxGammaValue);
705 }
706 /////////////////////////////////////////////////////////////////////////////
707 // Gamma format (12 bit LUT)
708 //      0, 1, 2, 3, ..., NumOfLevel, totally N Sets of tNormalGammaR/G/B[],
709 //      1 set uses 2 bytes of memory.
710 //
711 // [T2 and before ] N = 256
712 // [T3]             N = 256 or 1024
713 // ______________________________________________________________________________
714 //  Byte | 0         1           2               n-1        n
715 //    [G1|G0]       [G0]       [G1] . ...... .  [Gmax]    [Gmax]
716 //    3:0  3:0      11:4       11:4              3:0       11:4
717 //
718 #ifdef MONACO_SC2
Hal_PNL_Set12BitGammaPerChannel_SC2(void * pInstance,MS_U8 u8Channel,MS_U8 * u8Tab,DRVPNL_GAMMA_MAPPEING_MODE GammaMapMode)719 void Hal_PNL_Set12BitGammaPerChannel_SC2(void *pInstance, MS_U8 u8Channel, MS_U8 * u8Tab, DRVPNL_GAMMA_MAPPEING_MODE GammaMapMode )
720 {
721     MS_U16 u16Addr             = 0;
722     MS_U16 u16CodeTableIndex  = u16Addr/2*3;
723     MS_U16 u16GammaValue      = 0;
724     MS_U16 u16MaxGammaValue   = 0;
725     MS_U16 u16NumOfLevel = GammaMapMode == E_DRVPNL_GAMMA_8BIT_MAPPING ? 256 : 1024;
726     MS_BOOL bUsingBurstWrite = !Hal_VOP_Is_GammaSupportSignalWrite(pInstance,GammaMapMode);
727     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
728     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
729 
730     // Go to burst write if not support
731     if ( bUsingBurstWrite )
732     {
733         // 1.   initial burst write address, LUT_ADDR[7:0]
734         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6C_L, 0x00 , 0x3FF);
735 
736         // 2.   select burst write channel, REG_LUT_BW_CH_SEL[1:0]
737         switch(u8Channel)
738         {
739             case 0:  // Red
740                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, 0x00 , BIT(3) | BIT(2) );
741                 break;
742 
743             case 1:  // Green
744                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, BIT(2) , BIT(3) | BIT(2) );
745                 break;
746 
747             case 2:  // Blue
748                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, BIT(3) , BIT(3) | BIT(2) );
749                 break;
750         }
751 
752         // 3.   enable burst write mode, REG_LUT_BW_MAIN_EN
753         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, BIT(0) , BIT(0)); // Burst write enable
754 
755     }
756 
757     //printf("\33[0;31m Gamma Mapping mode %d \n \33[m",GammaMapMode );
758     // write gamma table per one channel
759     for(; u16Addr < u16NumOfLevel; u16CodeTableIndex += 3)
760     {
761         // gamma x
762         u16GammaValue = u8Tab[u16CodeTableIndex] & 0x0F;
763         u16GammaValue |= u8Tab[u16CodeTableIndex+1] << 4;
764 
765         PNL_DBG(PNL_DBGLEVEL_GAMMA,"Gamma x: SrcGTbl[%d] = 0x%x, [%d] = 0x%x, Gamma = 0x%x, GammaLvl=%d\n",
766                                     u16CodeTableIndex, u8Tab[u16CodeTableIndex], u16CodeTableIndex+1, u8Tab[u16CodeTableIndex+1], u16GammaValue, u16NumOfLevel);
767 
768         if(u16MaxGammaValue < u16GammaValue)
769         {
770             u16MaxGammaValue = u16GammaValue;
771         }
772 
773         // write gamma value
774         hal_PNL_WriteGamma12Bit(pInstance,u8Channel,bUsingBurstWrite, u16Addr, u16GammaValue);
775         u16Addr++;
776 
777         // gamma x+1
778         u16GammaValue = (u8Tab[u16CodeTableIndex] & 0xF0) >> 4;
779         u16GammaValue |= u8Tab[u16CodeTableIndex+2] << 4;
780 
781         PNL_DBG(PNL_DBGLEVEL_GAMMA, "Gamma x+1: SrcGTbl[%d] = 0x%x, [%d] = 0x%x, Gamma = 0x%x\n", u16CodeTableIndex, u8Tab[u16CodeTableIndex], u16CodeTableIndex+2, u8Tab[u16CodeTableIndex+2], u16GammaValue);
782 
783         if(u16MaxGammaValue < u16GammaValue)
784             {
785             u16MaxGammaValue = u16GammaValue;
786             }
787 
788         // write gamma value
789         hal_PNL_WriteGamma12Bit(pInstance,u8Channel,bUsingBurstWrite, u16Addr, u16GammaValue);
790         u16Addr++;
791     }
792 
793     if ( bUsingBurstWrite )
794     {
795         // 5.   after finish burst write data of one channel, disable burst write mode
796         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, 0x00 , BIT(0));
797     }
798 
799     hal_PNL_SetMaxGammaValue(pInstance,u8Channel, u16MaxGammaValue);
800 }
801 #endif
802 // src : 1 (scaler lpll)
803 // src : 0 (frc lpll)
MHal_PNL_FRC_lpll_src_sel(void * pInstance,MS_U8 u8src)804 MS_U8 MHal_PNL_FRC_lpll_src_sel(void *pInstance, MS_U8 u8src)
805 {
806     if (u8src > 1)
807     {
808         return FALSE;
809     }
810     else
811     {
812         //Not support FRCINSIDE(frc lpll) for Monet
813 #if 0
814 
815         W2BYTEMSK(L_BK_LPLL(0x00), 0x00, 0x0F);
816         W2BYTEMSK(L_BK_LPLL(0x7F), u8src?BIT(8):0, BIT(8));
817         if(u8src==0)
818         {
819             W2BYTEMSK(L_BK_LPLL(0x00), 0x01, 0x0F);
820             W2BYTEMSK(L_BK_LPLL(0x7F), BIT(8), BIT(8));
821             W2BYTEMSK(L_BK_LPLL(0x00), 0x00, 0x0F); // restore to sub bnak 0
822         }
823 #endif
824         return TRUE;
825     }
826 
827 }
828 
_MHal_PNL_GetSupportedLPLLIndex(void * pInstance,PNL_TYPE eLPLL_Type,PNL_MODE eLPLL_Mode,MS_U64 ldHz,PNL_LPLL_TYPE_SEL lpll_type_sel)829 static MS_U8 _MHal_PNL_GetSupportedLPLLIndex(void *pInstance,
830                                                                  PNL_TYPE eLPLL_Type,
831                                                                  PNL_MODE eLPLL_Mode,
832                                                                  MS_U64 ldHz, PNL_LPLL_TYPE_SEL lpll_type_sel)
833 {
834     MS_U8 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MAX;
835 #if defined (__aarch64__)
836     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]eLPLL_Type=%u, eLPLL_Mode=%u, ldHz=%lu, lpll_type_sel=%u\n", __FUNCTION__, __LINE__, eLPLL_Type, eLPLL_Mode, ldHz, lpll_type_sel);
837 #else
838     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]eLPLL_Type=%u, eLPLL_Mode=%u, ldHz=%llu, lpll_type_sel=%u\n", __FUNCTION__, __LINE__, eLPLL_Type, eLPLL_Mode, ldHz, lpll_type_sel);
839 #endif
840 
841     switch(lpll_type_sel)
842     {
843         default:
844         case E_PNL_LPLL_VIDEO:
845         {
846             switch (eLPLL_Type)
847             {
848                 case E_PNL_TYPE_TTL:
849                     if ((ldHz >= 250000000) && (ldHz < 500000000))
850                     {
851                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_TTL_25to50MHz;
852                     }
853                     else if((ldHz >= 500000000) && (ldHz < 750000000))
854                     {
855                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_TTL_50to75MHz;
856                     }
857                     else
858                     {
859                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_TTL_75to150MHz;
860                     }
861 
862                 break;
863 
864                 case E_PNL_TYPE_LVDS:
865                     switch (eLPLL_Mode)
866                     {
867                         case E_PNL_MODE_SINGLE:
868                             u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_LVDS_1CH_50to80MHz;
869                         break;
870 
871                         default:
872                         case E_PNL_MODE_DUAL:
873                             if ((ldHz >= 500000000) && (ldHz < 1150000000))
874                             {
875                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_LVDS_2CH_50to115MHz;
876                             }
877                             else
878                             {
879                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_LVDS_2CH_115to150MHz;
880                             }
881                         break;
882                     }
883                 break;
884 
885                 case E_PNL_TYPE_HS_LVDS:
886 
887                         if((ldHz >= 500000000) && (ldHz < 1150000000))
888                         {
889                             u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_HS_LVDS_1CH_50to115MHz;
890                         }
891                         else
892                         {
893                             u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_HS_LVDS_1CH_115to150MHz;
894                         }
895 
896                 break;
897 
898                 case E_PNL_LPLL_MINILVDS_1CH_3P_8BIT:
899                     u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_1CH_3PAIR_8BIT_50to80MHz;
900                 break;
901                 case E_PNL_LPLL_MINILVDS_2CH_3P_8BIT:
902                     if((ldHz >= 500000000) && (ldHz < 1000000000))
903                     {
904                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_8BIT_50to100MHz;
905                     }
906                     else
907                     {
908                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_8BIT_100to150MHz;
909                     }
910                 break;
911 
912                 case E_PNL_LPLL_MINILVDS_2CH_6P_8BIT:
913                     if((ldHz >= 500000000) && (ldHz < 1000000000))
914                     {
915                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_6PAIR_8BIT_50to100MHz;
916                     }
917                     else
918                     {
919                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_6PAIR_8BIT_100to150MHz;
920                     }
921                 break;
922 
923                 case E_PNL_LPLL_MINILVDS_1CH_3P_6BIT:
924                     if((ldHz >= 500000000) && (ldHz < 666700000))
925                     {
926                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_1BK_3PAIR_6BIT_50to66_67MHz;
927                     }
928                     else
929                     {
930                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_1BK_3PAIR_6BIT_66_67to80MHz;
931                     }
932                 break;
933 
934                 case E_PNL_LPLL_MINILVDS_2CH_3P_6BIT:
935                     if ((ldHz <= 500000000) && (ldHz < 666700000))
936                     {
937                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_6BIT_50to66_67MHz;
938                     }
939                     else if((ldHz >= 666700000) && (ldHz < 1333300000))
940                     {
941                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_6BIT_66_67to133_33MHz;
942                     }
943                     else
944                     {
945                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_6BIT_133_33to150MHz;
946                     }
947                 break;
948 
949                 case E_PNL_LPLL_MINILVDS_2CH_6P_6BIT:
950                     if ((ldHz <= 500000000) && (ldHz < 670000000))
951                     {
952                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_6BIT_50to66_67MHz;
953                     }
954                     else if((ldHz >= 670000000) && (ldHz < 1330000000))
955                     {
956                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_6BIT_66_67to133_33MHz;
957                     }
958                     else
959                     {
960                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_6BIT_133_33to150MHz;
961                     }
962                 break;
963 
964                 case E_PNL_LPLL_EPI28_4P:
965                     if((ldHz >= 800000000) && (ldHz < 1140000000))
966                     {
967                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_4PAIR_80to114MHz;
968                     }
969                     else
970                     {
971                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_4PAIR_114to150MHz;
972                     }
973                 break;
974 
975                 case E_PNL_LPLL_EPI28_6P:
976                     u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_6PAIR_80to150MHz;
977                 break;
978 
979                 case E_PNL_LPLL_EPI28_8P:
980                     if((ldHz >= 800000000) && (ldHz < 1140000000))
981                     {
982                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_8PAIR_80to114MHz;
983                     }
984                     else
985                     {
986                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_8PAIR_114to150MHz;
987                     }
988                 break;
989 
990                 default:
991                     u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MAX;
992                 break;
993             }
994         }
995         break;
996 
997     }
998     return u8SupportedLPLLIndex;
999 }
1000 
_MHal_PNL_DumpLPLLTable(void * pInstance,MS_U8 LPLLTblIndex,PNL_LPLL_TYPE_SEL lpll_type_sel)1001 static void _MHal_PNL_DumpLPLLTable(void *pInstance, MS_U8 LPLLTblIndex, PNL_LPLL_TYPE_SEL lpll_type_sel)
1002 {
1003     if(lpll_type_sel == E_PNL_LPLL_VIDEO)
1004     {
1005         if (LPLLTblIndex == E_PNL_SUPPORTED_LPLL_MAX)
1006         {
1007             printf("[%s,%5d] Unspported LPLL Type, skip LPLL setting\n",__FUNCTION__,__LINE__);
1008             return;
1009         }
1010 
1011         int indexCounter = 0;
1012 
1013         for(indexCounter = 0 ; indexCounter<LPLL_REG_NUM; indexCounter++)
1014         {
1015             if (LPLLSettingTBL[LPLLTblIndex][indexCounter].address == 0xFF) //delay in micro second
1016             {
1017                 MsOS_DelayTaskUs(LPLLSettingTBL[LPLLTblIndex][indexCounter].value);
1018                 continue; // step forward to next register setting.
1019             }
1020 
1021             W2BYTEMSK(L_BK_LPLL(LPLLSettingTBL[LPLLTblIndex][indexCounter].address),
1022                       LPLLSettingTBL[LPLLTblIndex][indexCounter].value,
1023                       LPLLSettingTBL[LPLLTblIndex][indexCounter].mask);
1024         }
1025         PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]LPLLTblIndex=%u\n", __FUNCTION__, __LINE__, LPLLTblIndex);
1026     }
1027 
1028 }
1029 
MHal_PNL_Init_LPLL(void * pInstance,PNL_TYPE eLPLL_Type,PNL_MODE eLPLL_Mode,MS_U64 ldHz)1030 void MHal_PNL_Init_LPLL(void *pInstance, PNL_TYPE eLPLL_Type,PNL_MODE eLPLL_Mode,MS_U64 ldHz)
1031 {
1032     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1033     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1034     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1035     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1036     E_PNL_SUPPORTED_LPLL_TYPE u8SupportedLPLLLIndex = E_PNL_SUPPORTED_LPLL_MAX;
1037     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__);
1038 
1039     u8SupportedLPLLLIndex = _MHal_PNL_GetSupportedLPLLIndex(pInstance, eLPLL_Type,eLPLL_Mode,ldHz, E_PNL_LPLL_VIDEO);
1040 
1041     if (u8SupportedLPLLLIndex == E_PNL_SUPPORTED_LPLL_MAX)
1042     {
1043         printf("Not Supported LPLL Type, skip LPLL Init\n");
1044         return;
1045     }
1046 
1047     _MHal_PNL_DumpLPLLTable(pInstance, u8SupportedLPLLLIndex, E_PNL_LPLL_VIDEO);
1048 
1049 
1050     MHal_MOD_PVDD_Power_Setting(pInstance, pPNLResourcePrivate->sthalPNL._bPVDD_2V5); // Einstein is always use 3.3V PVDD Power.
1051 }
1052 
MHal_PNL_Get_Loop_DIV(void * pInstance,MS_U8 u8LPLL_Mode,MS_U8 eLPLL_Type,MS_U64 ldHz)1053 MS_U8 MHal_PNL_Get_Loop_DIV(void *pInstance, MS_U8 u8LPLL_Mode, MS_U8 eLPLL_Type, MS_U64 ldHz)
1054 {
1055     MS_U16 u16loop_div = 0;
1056     E_PNL_SUPPORTED_LPLL_TYPE u8SupportedLPLLLIndex = E_PNL_SUPPORTED_LPLL_MAX;
1057 #if defined (__aarch64__)
1058     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]E_PNL_LPLL_VIDEO : eLPLL_Type=%u, u8LPLL_Mode=%u, ldHz=%lu\n", __FUNCTION__, __LINE__, eLPLL_Type, u8LPLL_Mode, ldHz);
1059 #else
1060     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]E_PNL_LPLL_VIDEO : eLPLL_Type=%u, u8LPLL_Mode=%u, ldHz=%llu\n", __FUNCTION__, __LINE__, eLPLL_Type, u8LPLL_Mode, ldHz);
1061 #endif
1062     u8SupportedLPLLLIndex = _MHal_PNL_GetSupportedLPLLIndex(pInstance, eLPLL_Type,u8LPLL_Mode,ldHz,E_PNL_LPLL_VIDEO);
1063 
1064     if (u8SupportedLPLLLIndex == E_PNL_SUPPORTED_LPLL_MAX)
1065     {
1066         printf("[%s,%5d] Error LPLL type\n",__FUNCTION__,__LINE__);
1067         u16loop_div = 0 ;
1068     }
1069     else
1070     {
1071         u16loop_div = u16LoopDiv[u8SupportedLPLLLIndex];
1072     }
1073     PNL_DBG(PNL_DBGLEVEL_INIT, "E_PNL_LPLL_VIDEO : u16loop_div=%u\n", u16loop_div);
1074 
1075     u16loop_div *= 2;
1076     return u16loop_div;
1077 }
1078 
MHal_PNL_Get_LPLL_LoopGain(void * pInstance,MS_U8 eLPLL_Mode,MS_U8 eLPLL_Type,MS_U64 ldHz)1079 MS_U16 MHal_PNL_Get_LPLL_LoopGain(void *pInstance, MS_U8 eLPLL_Mode, MS_U8 eLPLL_Type, MS_U64 ldHz)
1080 {
1081     MS_U16 u16loop_gain = 0;
1082     E_PNL_SUPPORTED_LPLL_TYPE u8SupportedLPLLLIndex = E_PNL_SUPPORTED_LPLL_MAX;
1083 #if defined (__aarch64__)
1084     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]E_PNL_LPLL_VIDEO : eLPLL_Type=%u, eLPLL_Mode=%u, ldHz=%lu\n", __FUNCTION__, __LINE__, eLPLL_Type, eLPLL_Mode, ldHz);
1085 #else
1086     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]E_PNL_LPLL_VIDEO : eLPLL_Type=%u, eLPLL_Mode=%u, ldHz=%llu\n", __FUNCTION__, __LINE__, eLPLL_Type, eLPLL_Mode, ldHz);
1087 #endif
1088     u8SupportedLPLLLIndex = _MHal_PNL_GetSupportedLPLLIndex(pInstance, eLPLL_Type,eLPLL_Mode,ldHz,E_PNL_LPLL_VIDEO);
1089 
1090     if (u8SupportedLPLLLIndex == E_PNL_SUPPORTED_LPLL_MAX)
1091     {
1092         printf("[%s,%5d] Error LPLL type\n",__FUNCTION__,__LINE__);
1093         u16loop_gain = 0 ;
1094     }
1095     else
1096     {
1097         u16loop_gain = u16LoopGain[u8SupportedLPLLLIndex];
1098     }
1099     PNL_DBG(PNL_DBGLEVEL_INIT, "E_PNL_LPLL_VIDEO : u16loop_gain=%u\n", u16loop_gain);
1100     return u16loop_gain;
1101 }
1102 
1103 #define SKIP_TIMING_CHANGE_CAP  TRUE
Hal_PNL_SkipTimingChange_GetCaps(void * pInstance)1104 MS_BOOL Hal_PNL_SkipTimingChange_GetCaps(void *pInstance)
1105 {
1106     #if (SKIP_TIMING_CHANGE_CAP)
1107         return TRUE;
1108     #else
1109         return FALSE;
1110     #endif
1111 }
1112 
MHal_PNL_PreSetModeOn(void * pInstance,MS_BOOL bSetMode)1113 void MHal_PNL_PreSetModeOn(void *pInstance, MS_BOOL bSetMode)
1114 {
1115     if (bSetMode == TRUE)
1116     {
1117         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, 0, BIT(15));
1118     }
1119     else
1120     {
1121         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, BIT(15), BIT(15));
1122     }
1123 }
1124 
MHal_PNL_HWLVDSReservedtoLRFlag(void * pInstance,PNL_DrvHW_LVDSResInfo lvdsresinfo)1125 void MHal_PNL_HWLVDSReservedtoLRFlag(void *pInstance, PNL_DrvHW_LVDSResInfo lvdsresinfo)
1126 {
1127     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1128     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1129     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1130     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1131 
1132     if (lvdsresinfo.bEnable)
1133     {
1134         if (lvdsresinfo.u16channel & BIT(0))  // Channel A
1135         {
1136             if (lvdsresinfo.u32pair & BIT(3))  // pair 3
1137             {
1138                 MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, BIT(15), BIT(15));
1139             }
1140             if (lvdsresinfo.u32pair & BIT(4))  // pair 4
1141             {
1142                 MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, BIT(14), BIT(14));
1143             }
1144         }
1145         if (lvdsresinfo.u16channel & BIT(1))  // Channel B
1146         {
1147             if (lvdsresinfo.u32pair & BIT(3))  // pair 3
1148             {
1149                 MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, BIT(13), BIT(13));
1150             }
1151             if (lvdsresinfo.u32pair & BIT(4))  // pair 4
1152             {
1153                 MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, BIT(12), BIT(12));
1154             }
1155         }
1156 
1157     }
1158     else
1159     {
1160         MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, 0x0000, (BIT(15) | BIT(14) | BIT(13) | BIT(12)));
1161 
1162     }
1163 }
1164 
1165 ////////////////////////////////////////////////////////////////////////
1166 // Turn OD function
1167 ////////////////////////////////////////////////////////////////////////
MHal_PNL_OverDriver_Init(void * pInstance,MS_PHY u32OD_MSB_Addr,MS_PHY u32OD_MSB_limit,MS_U32 u32OD_LSB_Addr,MS_U32 u32OD_LSB_limit,MS_U8 u8MIUSel)1168 void MHal_PNL_OverDriver_Init(void *pInstance, MS_PHY u32OD_MSB_Addr, MS_PHY u32OD_MSB_limit, MS_U32 u32OD_LSB_Addr, MS_U32 u32OD_LSB_limit, MS_U8 u8MIUSel)
1169 {
1170     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1171     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1172     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK16_61_L,u8MIUSel<<8,BIT(8)|BIT(9)); // OD MIU select
1173 
1174     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_15_L, (MS_U16)(u32OD_MSB_Addr & 0xFFFF)); // OD MSB request base address
1175     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_16_L, (MS_U16)((u32OD_MSB_Addr >> 16) & 0x00FF), 0x00FF); // OD MSB request base address
1176     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_60_L, (MS_U16)((u32OD_MSB_Addr >> 24) & 0x0003), 0x0003); // OD MSB request base address
1177     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_17_L, (MS_U16)(u32OD_MSB_limit & 0xFFFF)); // OD MSB request address limit
1178     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_18_L, (MS_U16)((u32OD_MSB_limit >> 16) & 0x00FF), 0x00FF); // OD MSB request address limit
1179     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_60_L, (MS_U16)((u32OD_MSB_limit >> 24) & 0x0003)<<2, 0x000C); // OD MSB request address limit
1180     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_39_L, (MS_U16)(u32OD_LSB_limit & 0xFFFF)); // OD frame buffer write address limit
1181     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3A_L, (MS_U16)((u32OD_LSB_limit >> 16) & 0x00FF), 0x00FF); // OD frame buffer write address limit
1182     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3B_L, (MS_U16)(u32OD_LSB_limit & 0xFFFF)); // OD frame buffer read address limit
1183     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3C_L, (MS_U16)((u32OD_LSB_limit >> 16) & 0x00FF), 0x00FF); // OD frame buffer read address limit
1184     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_4F_L, (MS_U16)(u32OD_LSB_Addr & 0xFFFF)); // OD LSB request base address
1185     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_50_L, (MS_U16)((u32OD_LSB_Addr >> 16) & 0x00FF), 0x00FF); // OD LSB request base address
1186     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_50_L, (MS_U16)((u32OD_LSB_limit & 0x00FF) << 8), 0xFF00); // OD LSB request limit address
1187     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_51_L, (MS_U16)((u32OD_LSB_limit >> 8) & 0xFFFF)); // OD LSB request limit address
1188 
1189     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_1A_L, 0x4020); // OD request rFIFO limit threshold, priority threshold
1190     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_1C_L, 0x4020); // OD request wFIFO limit threshold, priority threshold
1191     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3A_L, 0x00, BIT(14)); // OD strength gradually bypass
1192     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3A_L, 0x2F00, 0x3F00);    // OD strength gradually slop
1193     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_12_L, 0x0C, 0xFF);    // OD active threshold
1194 
1195 }
1196 
MHal_PNL_OverDriver_Enable(void * pInstance,MS_BOOL bEnable)1197 void MHal_PNL_OverDriver_Enable(void *pInstance, MS_BOOL bEnable)
1198 {
1199     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1200     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1201 
1202     // OD mode
1203     // OD used user weight to output blending directly
1204     // OD Enable
1205     if (bEnable)
1206     {
1207         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, 0x2D, 0x2F);
1208     }
1209     else
1210     {
1211         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, 0x2C, 0x2F);
1212     }
1213 }
1214 
MHal_PNL_OverDriver_TBL(void * pInstance,MS_U8 u8ODTbl[1056])1215 void MHal_PNL_OverDriver_TBL(void *pInstance, MS_U8 u8ODTbl[1056])
1216 {
1217     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1218     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1219 
1220     MS_U16 i;
1221     MS_U8 u8target;
1222     MS_BOOL bEnable;
1223 
1224     bEnable = SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, BIT(0));
1225     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, 0x00, BIT(0)); // OD enable
1226     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_01_L, 0x0E, 0x0E); // OD table SRAM enable, RGB channel
1227 
1228     u8target= u8ODTbl[9];
1229     for (i=0; i<272; i++)
1230     {
1231         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_03_L, (i == 9)?u8target:(u8target ^ u8ODTbl[i]), 0x00FF);
1232         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_02_L, (i|0x8000), 0x81FF);
1233         while(SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_02_L, BIT(15)));
1234     }
1235 
1236     u8target= u8ODTbl[(272+19)];
1237     for (i=0; i<272; i++)
1238     {
1239         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_06_L, (i == 19)?u8target:(u8target ^ u8ODTbl[(272+i)]), 0x00FF);
1240         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_05_L, (i|0x8000), 0x81FF);
1241         while(SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_05_L, BIT(15)));
1242     }
1243 
1244     u8target= u8ODTbl[(272*2+29)];
1245     for (i=0; i<256; i++)
1246     {
1247         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_09_L, (i == 29)?u8target:(u8target ^ u8ODTbl[(272*2+i)]), 0x00FF);
1248         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_08_L, (i|0x8000), 0x81FF);
1249         while(SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_08_L, BIT(15)));
1250     }
1251 
1252     u8target= u8ODTbl[(272*2+256+39)];
1253     for (i=0; i<256; i++)
1254     {
1255         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_0C_L, (i == 39)?u8target:(u8target ^ u8ODTbl[(272*2+256+i)]), 0x00FF);
1256         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_0B_L, (i|0x8000), 0x81FF);
1257         while(SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_0D_L, BIT(15)));
1258     }
1259 
1260     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_01_L, 0x00, 0x0E); // OD table SRAM enable, RGB channel
1261     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, bEnable, BIT(0)); // OD enable
1262 }
1263 
_MHal_PNL_MOD_Swing_Refactor_AfterCAL(void * pInstance,MS_U16 u16Swing_Level)1264 MS_U16 _MHal_PNL_MOD_Swing_Refactor_AfterCAL(void *pInstance, MS_U16 u16Swing_Level)
1265 {
1266     MS_U8 u8ibcal = 0x00;
1267     MS_U16 u16AfterCal_value = 0;
1268     MS_U16 u16Cus_value = 0;
1269 
1270     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1271     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1272     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1273     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1274     // =========
1275     // GCR_CAL_LEVEL[1:0] : REG_MOD_A_BK00_70_L =>
1276     // 2'b00 250mV ' GCR_ICON_CHx[5:0]=2'h15 (decimal 21)
1277     // 2'b01 350mV ' GCR_ICON_CHx[5:0]=2'h1F (decimal 31)
1278     // 2'b10 300mV ' GCR_ICON_CHx[5:0]=2'h1A (decimal 26)
1279     // 2'b11 200mV ' GCR_ICON_CHx[5:0]=2'h10 (decimal 16)
1280     // =========
1281     switch(pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET)
1282     {
1283         default:
1284         case 0:
1285             u8ibcal = 0x15;
1286         break;
1287         case 1:
1288             u8ibcal = 0x1F;
1289         break;
1290         case 2:
1291             u8ibcal = 0x1A;
1292         break;
1293         case 3:
1294             u8ibcal = 0x10;
1295         break;
1296     }
1297     u16Cus_value = (u16Swing_Level) * (pPNLResourcePrivate->sthalPNL._u8MOD_CALI_VALUE + 4)/(u8ibcal + 4);
1298     u16AfterCal_value = (u16Cus_value-40)/10+2;
1299 
1300     HAL_MOD_CAL_DBG(printf("\r\n--Swing value after refactor = %d\n", u16AfterCal_value));
1301 
1302     return u16AfterCal_value;
1303 }
1304 
MHal_PNL_MODSwingRegToRealLevelValue(void * pInstance,MS_U16 u16SwingRegValue)1305 MS_U16 MHal_PNL_MODSwingRegToRealLevelValue(void *pInstance, MS_U16 u16SwingRegValue)
1306 {
1307     MS_U8 u8ibcal = 0x00;
1308     MS_U16 u16SwingRealLevelValue = 0;
1309     MS_U16 u16CusValue = 0;
1310     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1311     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1312     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1313     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1314     // =========
1315     // GCR_CAL_LEVEL[1:0] : REG_MOD_A_BK00_70_L =>
1316     // 2'b00 250mV ' GCR_ICON_CHx[5:0]=2'h15 (decimal 21)
1317     // 2'b01 350mV ' GCR_ICON_CHx[5:0]=2'h1F (decimal 31)
1318     // 2'b10 300mV ' GCR_ICON_CHx[5:0]=2'h1A (decimal 26)
1319     // 2'b11 200mV ' GCR_ICON_CHx[5:0]=2'h10 (decimal 16)
1320     // =========
1321     switch(pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET)
1322     {
1323         default:
1324         case 0:
1325             u8ibcal = 0x15;
1326         break;
1327         case 1:
1328             u8ibcal = 0x1F;
1329         break;
1330         case 2:
1331             u8ibcal = 0x1A;
1332         break;
1333         case 3:
1334             u8ibcal = 0x10;
1335         break;
1336     }
1337 
1338     u16CusValue =  ((u16SwingRegValue-2)*10)+40;
1339     u16SwingRealLevelValue=(u16CusValue*(u8ibcal + 4))/(pPNLResourcePrivate->sthalPNL._u8MOD_CALI_VALUE + 4);
1340 
1341     HAL_MOD_CAL_DBG(printf("\r\n--Swing Real Level Value = %d\n", u16SwingRealLevelValue));
1342 
1343     return u16SwingRealLevelValue;
1344 }
1345 
MHal_PNL_MOD_Control_Out_Swing(void * pInstance,MS_U16 u16Swing_Level)1346 MS_BOOL MHal_PNL_MOD_Control_Out_Swing(void *pInstance, MS_U16 u16Swing_Level)
1347 {
1348     MS_BOOL bStatus = FALSE;
1349 
1350     MS_U16 u16ValidSwing = 0;
1351     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1352     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1353     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1354     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1355 
1356     if((pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_LVDS)||
1357       (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_HS_LVDS))
1358     {
1359         if(u16Swing_Level>600)
1360             u16Swing_Level=600;
1361         if(u16Swing_Level<40)
1362             u16Swing_Level=40;
1363 
1364         u16ValidSwing = _MHal_PNL_MOD_Swing_Refactor_AfterCAL(pInstance, u16Swing_Level);
1365     }
1366     else
1367     {
1368         u16ValidSwing = u16Swing_Level;
1369     }
1370 
1371     // Disable HW calibration keep mode first, to make SW icon value can write into register.
1372     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0x00, BIT(15)); // disable keep mode
1373 
1374     MOD_A_W2BYTE(REG_MOD_A_BK00_08_L,u16ValidSwing |(u16ValidSwing <<8)); // refine ch0/1 calibration result
1375     MOD_A_W2BYTE(REG_MOD_A_BK00_09_L,u16ValidSwing |(u16ValidSwing <<8)); // refine ch2/3 calibration result
1376     MOD_A_W2BYTE(REG_MOD_A_BK00_0A_L,u16ValidSwing |(u16ValidSwing <<8)); // refine ch4/5 calibration result
1377     MOD_A_W2BYTE(REG_MOD_A_BK00_0B_L,u16ValidSwing |(u16ValidSwing <<8)); // refine ch6/7 calibration result
1378     MOD_A_W2BYTE(REG_MOD_A_BK00_0C_L,u16ValidSwing |(u16ValidSwing <<8)); // refine ch8/9 calibration result
1379     MOD_A_W2BYTE(REG_MOD_A_BK00_0D_L,u16ValidSwing |(u16ValidSwing <<8)); // refine ch10/11 calibration result
1380     MOD_A_W2BYTE(REG_MOD_A_BK00_0E_L,u16ValidSwing |(u16ValidSwing <<8)); // refine ch12/13 calibration result
1381 
1382     bStatus = TRUE;
1383 
1384     return bStatus;
1385 }
1386 
1387 ////////////////////////////////////////////////////////////////////////
1388 // Turn Pre-Emphasis Current function
1389 ////////////////////////////////////////////////////////////////////////
MHal_PNL_MOD_Control_Out_PE_Current(void * pInstance,MS_U16 u16Current_Level)1390 MS_BOOL MHal_PNL_MOD_Control_Out_PE_Current (void *pInstance, MS_U16 u16Current_Level)
1391 {
1392     MS_BOOL bStatus = FALSE;
1393     MS_U16 u16ValidCurrent = u16Current_Level & 0x0F;
1394 
1395     MOD_A_W2BYTE(REG_MOD_A_BK00_18_L,
1396         ( (u16ValidCurrent  ) |(u16ValidCurrent << 4 )|(u16ValidCurrent << 8 )
1397         |(u16ValidCurrent << 12 )));
1398 
1399     MOD_A_W2BYTE(REG_MOD_A_BK00_19_L,
1400         ( (u16ValidCurrent  ) |(u16ValidCurrent << 4 )|(u16ValidCurrent << 8 )
1401         |(u16ValidCurrent << 12 )));
1402 
1403     MOD_A_W2BYTE(REG_MOD_A_BK00_1A_L,
1404         ( (u16ValidCurrent  ) |(u16ValidCurrent << 4 )|(u16ValidCurrent << 8 )
1405         |(u16ValidCurrent << 12 )));
1406 
1407     MOD_A_W2BYTE(REG_MOD_A_BK00_1B_L,
1408         ( (u16ValidCurrent  ) |(u16ValidCurrent << 4 )|(u16ValidCurrent << 8 )
1409         |(u16ValidCurrent << 12 )));
1410 
1411     bStatus = TRUE;
1412 
1413     return bStatus;
1414 }
1415 
MHal_PNL_MOD_PECurrent_Setting(void * pInstance,MS_U16 u16Current_Level,MS_U16 u16Channel_Select)1416 void MHal_PNL_MOD_PECurrent_Setting(void *pInstance, MS_U16 u16Current_Level, MS_U16 u16Channel_Select)
1417 {
1418     MS_U16 u16ValidCurrent = u16Current_Level & 0x0F;
1419     MS_U16 u16Ch00_03_mask,u16Ch04_07_mask,u16Ch08_11_mask,u16Ch12_15_mask  = 0;
1420 
1421     u16Ch00_03_mask = (((u16Channel_Select & BIT(0))? 0x000F:0x00)|((u16Channel_Select & BIT(1))? 0x00F0:0x00)
1422                      |((u16Channel_Select & BIT(2))? 0x0F00:0x00)|((u16Channel_Select & BIT(3))? 0xF000:0x00));
1423     u16Ch04_07_mask = (((u16Channel_Select & BIT(4))? 0x000F:0x00)|((u16Channel_Select & BIT(5))? 0x00F0:0x00)
1424                      |((u16Channel_Select & BIT(6))? 0x0F00:0x00)|((u16Channel_Select & BIT(7))? 0xF000:0x00));
1425     u16Ch08_11_mask = (((u16Channel_Select & BIT(8))? 0x000F:0x00)|((u16Channel_Select & BIT(9))? 0x00F0:0x00)
1426                      |((u16Channel_Select & BIT(10))? 0x0F00:0x00)|((u16Channel_Select & BIT(11))? 0xF000:0x00));
1427     u16Ch12_15_mask = (((u16Channel_Select & BIT(12))? 0x000F:0x00)|((u16Channel_Select & BIT(13))? 0x00F0:0x00)
1428                      |((u16Channel_Select & BIT(14))? 0x0F00:0x00)|((u16Channel_Select & BIT(15))? 0xF000:0x00));
1429 
1430     if(u16Ch00_03_mask)
1431     {
1432         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_18_L,
1433             ((u16ValidCurrent)|(u16ValidCurrent << 4)|(u16ValidCurrent << 8)|(u16ValidCurrent << 12 )), u16Ch00_03_mask);
1434     }
1435     else
1436     {
1437         MOD_A_W2BYTE(REG_MOD_A_BK00_18_L,0x00);
1438     }
1439 
1440     if(u16Ch04_07_mask)
1441     {
1442         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_19_L,
1443             ((u16ValidCurrent)|(u16ValidCurrent << 4)|(u16ValidCurrent << 8)|(u16ValidCurrent << 12 )), u16Ch04_07_mask);
1444     }
1445     else
1446     {
1447         MOD_A_W2BYTE(REG_MOD_A_BK00_19_L,0x00);
1448     }
1449 
1450     if(u16Ch08_11_mask)
1451     {
1452         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_1A_L,
1453             ((u16ValidCurrent)|(u16ValidCurrent << 4)|(u16ValidCurrent << 8)|(u16ValidCurrent << 12 )), u16Ch08_11_mask);
1454     }
1455     else
1456     {
1457         MOD_A_W2BYTE(REG_MOD_A_BK00_1A_L,0x00);
1458     }
1459 
1460     if(u16Ch12_15_mask)
1461     {
1462         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_1B_L,
1463             ((u16ValidCurrent)|(u16ValidCurrent << 4)|(u16ValidCurrent << 8)|(u16ValidCurrent << 12 )), u16Ch12_15_mask);
1464     }
1465     else
1466     {
1467         MOD_A_W2BYTE(REG_MOD_A_BK00_1B_L,0x00);
1468     }
1469 }
1470 
1471 ////////////////////////////////////////////////////////////////////////
1472 // 1.Turn TTL low-power mode function
1473 // 2.Turn internal termination function
1474 // 3.Turn DRIVER BIAS OP function
1475 ////////////////////////////////////////////////////////////////////////
MHal_PNL_MOD_Control_Out_TTL_Resistor_OP(void * pInstance,MS_BOOL bEnble)1476 MS_BOOL MHal_PNL_MOD_Control_Out_TTL_Resistor_OP (void *pInstance, MS_BOOL bEnble)
1477 {
1478     MS_BOOL bStatus = FALSE;
1479     if(bEnble)
1480     {
1481         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_34_L, 0xFFFF, 0xFFFF); //Enable TTL low-power mode
1482 //        MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, 0x001E, 0x001E);
1483 
1484         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_32_L, 0xFFFF, 0xFFFF); //GCR_EN_RINT (internal termination open)
1485         MOD_W2BYTEMSK(REG_MOD_BK00_76_L, 0x003F, 0x003F);
1486 
1487         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3C_L, 0xFFFF, 0xFFFF); //Disable DRIVER BIAS OP
1488         MOD_W2BYTEMSK(REG_MOD_BK00_7A_L, 0x003F, 0x003F);
1489     }
1490     else
1491     {
1492         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_34_L, 0x0000, 0xFFFF); //Disable TTL low-power mode
1493 //        MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, 0x0000, 0x001E);
1494 
1495         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_32_L, 0x0000, 0xFFFF); //GCR_EN_RINT (internal termination close)
1496         MOD_W2BYTEMSK(REG_MOD_BK00_76_L, 0x0000, 0x003F);
1497 
1498         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3C_L, 0x0000, 0xFFFF); //Enable DRIVER BIAS OP
1499         MOD_W2BYTEMSK(REG_MOD_BK00_7A_L, 0x0000, 0x003F);
1500     }
1501 
1502     bStatus = TRUE;
1503     return bStatus;
1504 }
1505 
MHal_PNL_PreInit(void * pInstance,PNL_OUTPUT_MODE eParam)1506 void MHal_PNL_PreInit(void *pInstance, PNL_OUTPUT_MODE eParam)
1507 {
1508     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1509     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1510     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1511     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1512     pPNLResourcePrivate->sthalPNL._eDrvPnlInitOptions = eParam;
1513 }
1514 
MHal_PNL_Get_Output_MODE(void * pInstance)1515 PNL_OUTPUT_MODE MHal_PNL_Get_Output_MODE(void *pInstance)
1516 {
1517     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1518     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1519     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1520     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1521     PNL_OUTPUT_MODE eParam = pPNLResourcePrivate->sthalPNL._eDrvPnlInitOptions;
1522 
1523     return eParam;
1524 }
1525 
msReadEfuse(void * pInstance,MS_U8 u8Bank,MS_U32 u32Mask)1526 MS_U32 msReadEfuse(void *pInstance, MS_U8 u8Bank, MS_U32 u32Mask)
1527 {
1528     MS_U32 u32Result = 0;
1529     MS_U8 u8Count = 0;
1530 
1531     W2BYTEMSK(0x2050, u8Bank<<2, BMASK(8:2));  /// reg28[8:2]Addr 6~0
1532     W2BYTEMSK(0x2050, BIT(13), BIT(13));       /// Reg28[13] Margin Read
1533     while(R2BYTEMSK(0x2050, BIT(13)) == BIT(13))
1534     {
1535         MsOS_DelayTask(1);
1536         u8Count ++;
1537 
1538         if (u8Count >10)
1539             break;
1540     }
1541 
1542     u32Result = (R4BYTE(0x2058)& u32Mask);    /// reg2C,2D read value
1543     printf("[%s][%d]u32Result=%x, after mask u32Result=%x\n", __FUNCTION__, __LINE__, (unsigned int)R4BYTE(0x2058), (unsigned int)u32Result);
1544     return u32Result;
1545 
1546 }
1547 
msSetVBY1RconValue(void * pInstance)1548 void msSetVBY1RconValue(void *pInstance)
1549 {
1550     MS_U16 u16DefaultICON_Max = 40, u16DefaultICON_Min = 7;
1551     MS_U16 u16DefaultICON = 18;
1552     MS_U32 u32Mask = 0x3F;
1553     MS_BOOL bEfuseMode = FALSE;
1554     MS_U16 u16SwingOffset = 0;  // by HW RD request
1555     MS_U16 u16temp = 0;
1556     if (msReadEfuse(pInstance, 0x4E, BIT(6)) == BIT(6))
1557         bEfuseMode = TRUE;
1558 
1559 
1560     // Disable HW calibration keep mode first, to make SW icon value can write into register.
1561     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0, BIT(15));
1562 
1563     if (bEfuseMode)
1564     {
1565         if(((MS_U16)msReadEfuse(pInstance, 0x4E, u32Mask) + u16SwingOffset) > u16DefaultICON_Max)
1566             u16temp = u16DefaultICON;
1567         else if(((MS_U16)msReadEfuse(pInstance, 0x4E, u32Mask) + u16SwingOffset) < u16DefaultICON_Min)
1568             u16temp = u16DefaultICON;
1569         else
1570             u16temp = (MS_U16)msReadEfuse(pInstance, 0x4E, u32Mask) + u16SwingOffset;
1571     }
1572     else
1573     {
1574         u16temp = u16DefaultICON;
1575     }
1576 
1577     //ch0~ch13 rcon setting
1578     u16temp &= (u16temp&(MS_U16)u32Mask);
1579     printf("[%s][%d]u16temp= %x\n", __FUNCTION__, __LINE__, u16temp);
1580 
1581     MOD_A_W2BYTE(REG_MOD_A_BK00_10_L, (u16temp<<8|u16temp));
1582     MOD_A_W2BYTE(REG_MOD_A_BK00_11_L, (u16temp<<8|u16temp));
1583     MOD_A_W2BYTE(REG_MOD_A_BK00_12_L, (u16temp<<8|u16temp));
1584     MOD_A_W2BYTE(REG_MOD_A_BK00_13_L, (u16temp<<8|u16temp));
1585     MOD_A_W2BYTE(REG_MOD_A_BK00_14_L, (u16temp<<8|u16temp));
1586     MOD_A_W2BYTE(REG_MOD_A_BK00_15_L, (u16temp<<8|u16temp));
1587     MOD_A_W2BYTE(REG_MOD_A_BK00_16_L, (u16temp<<8|u16temp));
1588 }
1589 
MHal_PNL_SetOutputType(void * pInstance,PNL_OUTPUT_MODE eOutputMode,PNL_TYPE eLPLL_Type)1590 void MHal_PNL_SetOutputType(void *pInstance, PNL_OUTPUT_MODE eOutputMode, PNL_TYPE eLPLL_Type)
1591 {
1592     MS_U16 u16ValidSwing2 = 0;
1593     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1594     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1595     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1596     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1597     if( eLPLL_Type == E_PNL_TYPE_TTL)
1598     {
1599         // select pair output to be TTL
1600         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0020,0x0020);
1601         MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x0000);
1602         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0000);
1603         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0000,0x0020);
1604 
1605         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, 0x0000, (BIT(7) | BIT(6))); // shift_lvds_pair
1606 
1607         // other TTL setting
1608         MOD_A_W2BYTE(REG_MOD_A_BK00_68_L, 0x0000);     // TTL output enable
1609 
1610         MOD_A_W2BYTE(REG_MOD_A_BK00_40_L, 0x0000);
1611         MOD_A_W2BYTE(REG_MOD_A_BK00_41_L, 0x0000);
1612         MOD_W2BYTEMSK(REG_MOD_BK00_7E_L, 0x0000, 0xE000);
1613 
1614         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, 0x3FF, 0x3FF);       // TTL skew
1615 
1616         // GPO gating
1617         MOD_W2BYTEMSK(REG_MOD_BK00_4A_L, BIT(8), BIT(8));         // GPO gating
1618     }
1619     //// for osd dedicated output port, 1 port for video and 1 port for osd
1620     else if((eLPLL_Type == E_PNL_TYPE_HS_LVDS)&&
1621             (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Mode == E_PNL_MODE_SINGLE))
1622     {
1623         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0xC01F , 0xFFFF); // enable clk_dot_mini_pre_osd & clk_dot_mini_osd
1624         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, BIT(3), 0xFFFF ); // enable osd lvds path
1625         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, BIT(15), BIT(15)); //[15]sw_rst
1626         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0xC000 , 0xF000); // enable clk_dot_mini_pre_osd & clk_dot_mini_osd
1627     }
1628     else
1629     {
1630         switch(eOutputMode)
1631         {
1632             case E_PNL_OUTPUT_NO_OUTPUT:
1633                 // if MOD_45[5:0] = 0x3F && XC_MOD_EXT_DATA_EN_L = 0x0,
1634                 // then if XC_MOD_OUTPUT_CONF_L = 0x0 ---> output TTL as tri-state
1635                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0020,0x0020);
1636                 MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x0000);
1637                 MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0000);
1638                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0000,0x0020);
1639 
1640                 //----------------------------------
1641                 // Purpose: Set the output to be the GPO, and let it's level to Low
1642                 // 1. External Enable, Pair 0~5
1643                 // 2. GPIO Enable, pair 0~5
1644                 // 3. GPIO Output data : All low, pair 0~5
1645                 // 4. GPIO OEZ: output piar 0~5
1646                 //----------------------------------
1647 
1648                 //1.External Enable, Pair 0~5
1649                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_40_L, 0x0FFF, 0x0FFF);
1650                 //2.GPIO Enable, pair 0~5
1651                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_48_L, 0x0FFF, 0x0FFF);
1652                 //3.GPIO Output data : All low, pair 0~5
1653                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_44_L, 0x0000, 0x0FFF);
1654                 //4.GPIO OEZ: output piar 0~5
1655                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_42_L, 0x0000, 0x0FFF);
1656 
1657                 //1.External Enable, Pair 6~15
1658                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_40_L, 0xF000, 0xF000);
1659                 MOD_A_W2BYTE(REG_MOD_A_BK00_41_L, 0xFFFF);
1660                 //2.GPIO Enable, pair 6~15
1661                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_48_L, 0xF000, 0xF000);
1662                 MOD_A_W2BYTE(REG_MOD_A_BK00_49_L, 0xFFFF);
1663                 //3.GPIO Output data : All low, pair 6~15
1664                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_44_L, 0x0000, 0xF000);
1665                 MOD_A_W2BYTE(REG_MOD_A_BK00_45_L, 0x0000);
1666                 //4.GPIO OEZ: output piar 6~15
1667                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_42_L, 0x0000, 0xF000);
1668                 MOD_A_W2BYTE(REG_MOD_A_BK00_43_L, 0x0000);
1669 
1670                 //1234.External Enable, Pair 16~17
1671                 MOD_W2BYTE(REG_MOD_BK00_7E_L, 0xFF00);
1672 
1673                 //1.External Enable, Pair 18~20, 2.GPIO Enable, pair 18~20
1674                 MOD_W2BYTEMSK(REG_MOD_BK00_7C_L, 0x3F3F, 0x3F3F);
1675                 //3.GPIO Output data : All low, pair 18~20
1676                 MOD_W2BYTEMSK(REG_MOD_BK00_7A_L, 0x0000, 0x3F00);
1677                 //4.GPIO OEZ: output piar 18~20
1678                 MOD_W2BYTEMSK(REG_MOD_BK00_7F_L, 0x0000, 0xFC00);
1679                 break;
1680 
1681             case E_PNL_OUTPUT_CLK_ONLY:
1682                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_00_L, 0, 0xF000);
1683                 MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x4004);
1684                 break;
1685 
1686             case E_PNL_OUTPUT_DATA_ONLY:
1687             case E_PNL_OUTPUT_CLK_DATA:
1688             default:
1689 
1690                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_48_L, 0x0000, 0xF000);
1691                 MOD_A_W2BYTE(REG_MOD_A_BK00_49_L, 0x0000);
1692                 //1. set GCR_PVDD_2P5=1��b1;           MOD PVDD power:    1: 2.5V
1693                 //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, 0, BIT(6));
1694                 //2. set PD_IB_MOD=1��b0;
1695                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0x00 , BIT(0));
1696                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, BIT(8) , BIT(8));
1697 
1698 
1699                 //  save ch6 init value
1700                 u16ValidSwing2 = (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_0B_L, 0x3F00)>>8);
1701                 //3. set Desired Pairs: GCR_ICON[5:0]=6h3f (current all open);
1702                 MHal_PNL_MOD_Control_Out_Swing(pInstance, MHal_PNL_MODSwingRegToRealLevelValue(pInstance, 0x3F));
1703                 //4. set Desired Pairs: GCR_PE_ADJ[2:0]=3h7 (pre-emphasis current all open )
1704                 MHal_PNL_MOD_Control_Out_PE_Current (pInstance, 0x07);
1705                 //5. Enable low-power modeinternal termination Open, Enable OP
1706                 MHal_PNL_MOD_Control_Out_TTL_Resistor_OP (pInstance, 1);
1707 
1708                 MsOS_DelayTask(1);
1709 
1710                 //6. Enable low-power modeinternal termination Open, Enable OP
1711                 MHal_Output_LVDS_Pair_Setting(pInstance,
1712                                               pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type,
1713                                               pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7,
1714                                               pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15,
1715                                               pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21);
1716                 MHal_Shift_LVDS_Pair(pInstance, pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Shift);
1717 
1718                 //7. set Desired Pairs: GCR_PE_ADJ[2:0]=3��h0 (pre-emphasis current all Close)
1719                 MHal_PNL_MOD_Control_Out_PE_Current (pInstance, 0x00);
1720                 //8. set Desired Pairs: GCR_ICON[5:0]    (current all init);
1721                 MHal_PNL_MOD_Control_Out_Swing(pInstance, MHal_PNL_MODSwingRegToRealLevelValue(pInstance, u16ValidSwing2));
1722                 //9. Disable low-power modeinternal termination Close, Disable OP
1723                 MHal_PNL_MOD_Control_Out_TTL_Resistor_OP (pInstance, 0);
1724 
1725                 // other TTL setting
1726                 MOD_A_W2BYTE(REG_MOD_A_BK00_68_L, 0x003F);     // LVDS output enable, [5:4] Output enable: PANEL_LVDS/ PANEL_miniLVDS/ PANEL_RSDS
1727 
1728                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_40_L, 0x0000, 0xF000);
1729                 MOD_A_W2BYTE(REG_MOD_A_BK00_41_L, 0x0000);
1730                 MOD_W2BYTEMSK(REG_MOD_BK00_7E_L, 0x0000, 0x000F);
1731 
1732                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, 0x000, 0x3FF);    // TTL skew
1733 
1734                 // GPO gating
1735                 MOD_W2BYTEMSK(REG_MOD_BK00_4A_L, 0x0, BIT(8));     // GPO gating
1736 
1737                 break;
1738         }
1739     }
1740 
1741 //    MHal_PNL_Bringup(pInstance);
1742 }
1743 
Mhal_PNL_Flock_LPLLSet(void * pInstance,MS_U64 ldHz)1744 void Mhal_PNL_Flock_LPLLSet(void *pInstance, MS_U64 ldHz)
1745 {
1746     UNUSED(ldHz);
1747 }
1748 
MHal_PNL_MISC_Control(void * pInstance,MS_U32 u32PNL_MISC)1749 void MHal_PNL_MISC_Control(void *pInstance, MS_U32 u32PNL_MISC)
1750 {
1751     if(u32PNL_MISC & E_DRVPNL_MISC_MFC_ENABLE)
1752     {
1753         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, BIT(7), BIT(7));       // shift LVDS pair
1754     }
1755 }
1756 
MHal_PNL_Init_XC_Clk(void * pInstance,PNL_InitData * pstPanelInitData)1757 void MHal_PNL_Init_XC_Clk(void *pInstance, PNL_InitData *pstPanelInitData)
1758 {
1759     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__);
1760 
1761     // setup output dot clock
1762 #if 0
1763     W2BYTEMSK(REG_CKG_ODCLK, CKG_ODCLK_CLK_LPLL, CKG_ODCLK_MASK);      // select source tobe LPLL clock
1764     W2BYTEMSK(REG_CKG_ODCLK, DISABLE, CKG_ODCLK_INVERT);               // clock not invert
1765     W2BYTEMSK(REG_CKG_ODCLK, DISABLE, CKG_ODCLK_GATED);                // enable clock
1766 
1767     W2BYTEMSK(REG_CKG_BT656, CKG_BT656_CLK_LPLL, CKG_BT656_MASK);      // select source tobe LPLL clock
1768     W2BYTEMSK(REG_CKG_BT656, DISABLE, CKG_ODCLK_INVERT);               // clock not invert
1769     W2BYTEMSK(REG_CKG_BT656, DISABLE, CKG_ODCLK_GATED);                // enable clock
1770 
1771     W2BYTE(REG_CLKGEN0_57_L,0x0000); //[15:12]ckg_bt656 [3:0]ckg_fifo
1772     W2BYTE(REG_CLKGEN0_58_L,0x0000); //[3:0]ckg_tx_mod
1773     W2BYTE(REG_CLKGEN0_63_L,0x0000); //[11:8]ckg_tx_mod [3:0]ckg_osd2mod
1774 
1775     W2BYTE(REG_CLKGEN1_31_L, 0x0000); //[11:8]ckg_odclk_frc
1776 
1777 #else
1778     W2BYTEMSK(L_CLKGEN0(0x53), CKG_ODCLK_CLK_LPLL, CKG_ODCLK_MASK);      // select source tobe LPLL clock
1779     W2BYTEMSK(L_CLKGEN0(0x53), DISABLE, CKG_ODCLK_INVERT);               // clock not invert
1780     W2BYTEMSK(L_CLKGEN0(0x53), DISABLE, CKG_ODCLK_GATED);                // enable clock
1781 
1782     W2BYTEMSK(L_CLKGEN0(0x53), 0xC0, 0xF0);      //  reg_ckg_odclk_mft
1783 
1784 #if 0
1785     W2BYTEMSK(L_CLKGEN0(0x53), CKG_BT656_CLK_LPLL, CKG_BT656_MASK);      // select source tobe LPLL clock
1786     W2BYTEMSK(L_CLKGEN0(0x53), DISABLE, CKG_ODCLK_INVERT);               // clock not invert
1787     W2BYTEMSK(L_CLKGEN0(0x53), DISABLE, CKG_ODCLK_GATED);                // enable clock
1788 #endif
1789     W2BYTE(L_CLKGEN0(0x57),0x0000); //[15:12]ckg_bt656 [3:0]ckg_fifo
1790     W2BYTE(L_CLKGEN0(0x58),0x0000); //[3:0]ckg_tx_mod
1791     W2BYTE(L_CLKGEN0(0x63),0x0000); //[11:8]ckg_tx_mod [3:0]ckg_osd2mod
1792 
1793     W2BYTE(L_CLKGEN1(0x31), 0x0000); //[11:8]ckg_odclk_frc
1794 
1795 #endif
1796 
1797 
1798     W2BYTE(REG_RVD_09_L, 0x0000); //[12:8]ckg_vby1_fifo_osd [3:0]clk_vby1_fifo
1799     W2BYTE(REG_CLKGEN0_57_L,0x0000); //[3:0]ckg_fifo
1800 
1801     if((pstPanelInitData->eLPLL_Type == E_PNL_TYPE_HS_LVDS)&&(pstPanelInitData->eLPLL_Mode == E_PNL_MODE_SINGLE))
1802     {
1803         W2BYTE(L_CLKGEN0(0x63), 0x0410);   //[11:8]ckg_tx_mod_osd[4:0]osd2mod
1804         W2BYTE(REG_RVD_09_L, 0x1000); //[12:8]ckg_vby1_fifo_osd [3:0]clk_vby1_fifo+
1805     }
1806 }
1807 
MHal_PNL_Init_MOD(void * pInstance,PNL_InitData * pstPanelInitData)1808 void MHal_PNL_Init_MOD(void *pInstance, PNL_InitData *pstPanelInitData)
1809 {
1810     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1811     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1812     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1813     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1814 
1815     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__);
1816 
1817     //------------------------------------------------------------------------
1818 
1819     PNL_DBG(PNL_DBGLEVEL_INIT, "u16MOD_CTRL0 = %x\n", pstPanelInitData->u16MOD_CTRL0);
1820     PNL_DBG(PNL_DBGLEVEL_INIT, "u16MOD_CTRL9 = %x\n", pstPanelInitData->u16MOD_CTRL9);
1821     PNL_DBG(PNL_DBGLEVEL_INIT, "u16MOD_CTRLA = %x\n", pstPanelInitData->u16MOD_CTRLA);
1822     PNL_DBG(PNL_DBGLEVEL_INIT, "u8MOD_CTRLB  = %x\n", pstPanelInitData->u8MOD_CTRLB);
1823 
1824     //-------------------------------------------------------------------------
1825     // Set MOD registers
1826     //-------------------------------------------------------------------------
1827 
1828     MOD_W2BYTEMSK(REG_MOD_BK00_40_L, pstPanelInitData->u16MOD_CTRL0, LBMASK);
1829 
1830     //    GPIO is controlled in drvPadConf.c
1831     //    MDrv_Write2Byte(L_BK_MOD(0x46), 0x0000);    //EXT GPO disable
1832     //    MDrv_Write2Byte(L_BK_MOD(0x47), 0x0000);    //EXT GPO disable
1833 
1834     MOD_W2BYTE(REG_MOD_BK00_49_L, pstPanelInitData->u16MOD_CTRL9); //{L_BK_MOD(0x49), 0x00}, // [7,6] : output formate selction 10: 8bit, 01: 6bit :other 10bit, bit shift
1835     MHal_Output_Channel_Order(pInstance,
1836                               pPNLResourcePrivate->stdrvPNL._stPnlInitData.u8OutputOrderType,
1837                               pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder0_3,
1838                               pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder4_7,
1839                               pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder8_11,
1840                               pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder12_13);
1841 
1842 
1843     MOD_W2BYTE(REG_MOD_BK00_4A_L, pstPanelInitData->u16MOD_CTRLA);
1844     MOD_W2BYTE(REG_MOD_BK00_4B_L,  pstPanelInitData->u8MOD_CTRLB);  //[1:0]ti_bitmode 10:8bit  11:6bit  0x:10bit
1845 
1846     //dual port lvds _start_//
1847     // output configure for 26 pair output 00: TTL, 01: LVDS/RSDS/mini-LVDS data differential pair, 10: mini-LVDS clock output, 11: RSDS clock output
1848     _MHal_PNL_Set_Clk(pInstance,
1849                       pPNLResourcePrivate->stdrvPNL._stPnlInitData.u8OutputOrderType,
1850                       pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder0_3,
1851                       pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder4_7,
1852                       pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder8_11,
1853                       pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder12_13);
1854     //dual port lvds _end_//
1855 
1856     //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, (_u8PnlDiffSwingLevel << 1), 0xFE);       //differential output swing level
1857     //if(((pstPanelInitData->eLPLL_Type_Ext>= E_PNL_LPLL_VBY1_10BIT_4LANE)&&
1858     //    (pstPanelInitData->eLPLL_Type_Ext<= E_PNL_LPLL_VBY1_8BIT_8LANE)))
1859     //    MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0xC000, 0xF000);       //bank selection for skew clock
1860 
1861     //if(!MHal_PNL_MOD_Control_Out_Swing(_u8PnlDiffSwingLevel))
1862     //    printf(">>Swing Level setting error!!\n");
1863     if(pstPanelInitData->eLPLL_Type != E_PNL_TYPE_MINILVDS)
1864     {
1865         MOD_W2BYTEMSK(REG_MOD_A_BK00_70_L, 0x7, 0x07);
1866     }
1867 
1868     //// Patch for Vx1 and it should be control by panel ini
1869 
1870     MOD_A_W2BYTE(REG_MOD_A_BK00_31_L, pstPanelInitData->u16LVDSTxSwapValue);
1871 
1872 
1873     // TODO: move from MDrv_Scaler_Init(), need to double check!
1874     MOD_W2BYTEMSK(REG_MOD_BK00_53_L, BIT(0), BIT(0));
1875 
1876 
1877     //--------------------------------------------------------------
1878     //Depend On Bitmode to set Dither
1879     //--------------------------------------------------------------
1880 
1881 
1882     // always enable noise dither and disable TAILCUT
1883     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, ((pstPanelInitData->u8PanelNoiseDith ? XC_PAFRC_DITH_NOISEDITH_EN : (1 - XC_PAFRC_DITH_NOISEDITH_EN)) <<3) , BIT(3));
1884     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, XC_PAFRC_DITH_TAILCUT_DISABLE, BIT(4));
1885 
1886     switch(pstPanelInitData->u8MOD_CTRLB & 0x03)//[1:0]ti_bitmode b'10:8bit  11:6bit  0x:10bit
1887     {
1888         case HAL_TI_6BIT_MODE:
1889             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, BIT(0), BIT(0));
1890             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, BIT(2), BIT(2));
1891             break;
1892 
1893         case HAL_TI_8BIT_MODE:
1894             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, BIT(0), BIT(0));
1895             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, 0x00, BIT(2));
1896             break;
1897 
1898         case HAL_TI_10BIT_MODE:
1899         default:
1900             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, 0x00, BIT(0));
1901             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, 0x00, BIT(2));
1902             break;
1903     }
1904 
1905 
1906     //-----depend on bitmode to set Dither------------------------------
1907     MHal_PNL_SetOutputType(pInstance, pPNLResourcePrivate->sthalPNL._eDrvPnlInitOptions, pstPanelInitData->eLPLL_Type);     // TTL to Ursa
1908 
1909     //MHal_PNL_Bringup(pInstance);
1910 
1911     MHal_PNL_MISC_Control(pInstance, pstPanelInitData->u32PNL_MISC);
1912 
1913     PNL_DBG(PNL_DBGLEVEL_INIT, "OutputType  = %x, eLPLL_Type = %x\n", pPNLResourcePrivate->sthalPNL._eDrvPnlInitOptions, pstPanelInitData->eLPLL_Type);
1914     PNL_DBG(PNL_DBGLEVEL_INIT, "u32PNL_MISC  = %x\n", (unsigned int)pstPanelInitData->u32PNL_MISC);
1915 
1916 }
1917 
MHal_PNL_DumpMODReg(void * pInstance,MS_U32 u32Addr,MS_U16 u16Value,MS_BOOL bHiByte,MS_U16 u16Mask)1918 void MHal_PNL_DumpMODReg(void *pInstance, MS_U32 u32Addr, MS_U16 u16Value, MS_BOOL bHiByte, MS_U16 u16Mask)
1919 {
1920     if (bHiByte)
1921     {
1922         MOD_W2BYTEMSK(u32Addr, (u16Value << 8), (u16Mask << 8));
1923     }
1924     else
1925     {
1926         MOD_W2BYTEMSK(u32Addr, u16Value, u16Mask);
1927     }
1928 }
1929 
MHal_MOD_Calibration_Init(void * pInstance,PNL_ModCali_InitData * pstModCaliInitData)1930 void MHal_MOD_Calibration_Init(void *pInstance, PNL_ModCali_InitData *pstModCaliInitData)
1931 {
1932     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1933     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1934     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1935     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1936     // Setup the default swing level
1937     pPNLResourcePrivate->sthalPNL._u16PnlDefault_SwingLevel = pstModCaliInitData->u16ExpectSwingLevel;   //mv
1938 #if 0
1939     // Pair setting
1940     // =========
1941     // Select calibration source pair, 00: ch2, 01: ch6, 10:ch8, 11:ch12
1942     //MOD_7D_L[3:2]
1943     // =========
1944     //in msModCurrentCalibration, it will transfer to the real data
1945 
1946     switch(pstModCaliInitData->u8ModCaliPairSel)
1947     {
1948         default:
1949         case 0:
1950         //ch 2
1951             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_PAIR_SEL = 0x00; // ch2
1952         break;
1953         case 1:
1954         //ch 6
1955             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_PAIR_SEL = 0x01; // ch6, calibration initialized value
1956         break;
1957         case 2:
1958         //ch 8
1959             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_PAIR_SEL = 0x02;
1960         break;
1961         case 3:
1962         //ch 12
1963             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_PAIR_SEL = 0x03;
1964         break;
1965     }
1966 #endif
1967     // Target setting
1968     // =========
1969     // GCR_CAL_LEVEL[1:0] : REG_MOD_A_BK00_70_L =>
1970     // =========
1971     //in msModCurrentCalibration, it will transfer to the real data
1972     switch(pstModCaliInitData->u8ModCaliTarget)
1973     {
1974         default:
1975         case 0:
1976             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET = 0;
1977         break;
1978         case 1:
1979             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET = 1;
1980         break;
1981         case 2:
1982             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET = 2;
1983         break;
1984         case 3:
1985             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET = 3;
1986         break;
1987     }
1988     // Offset setting, for fine tune
1989     //_usMOD_CALI_OFFSET = pstModCaliInitData->s8ModCaliOffset;
1990     // _u8MOD_CALI_VALUE is a real value; the _u8MOD_CALI_VALUE is an idea value
1991     // Target value should be the same with _u8MOD_CALI_VALUE to be a default value
1992     pPNLResourcePrivate->sthalPNL._u8MOD_CALI_VALUE= pstModCaliInitData->u8ModCaliTarget;
1993     // PVDD setting
1994     pPNLResourcePrivate->sthalPNL._bPVDD_2V5 = pstModCaliInitData->bPVDD_2V5;
1995 
1996     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__);
1997     PNL_DBG(PNL_DBGLEVEL_INIT, "u16ExpectSwingLevel = %u\n", pstModCaliInitData->u16ExpectSwingLevel);
1998     PNL_DBG(PNL_DBGLEVEL_INIT, "u8ModCaliTarget     = %x\n", pstModCaliInitData->u8ModCaliTarget);
1999     PNL_DBG(PNL_DBGLEVEL_INIT, "_u8MOD_CALI_TARGET  = %x\n", pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET);
2000     PNL_DBG(PNL_DBGLEVEL_INIT, "_u8MOD_CALI_VALUE   = %x\n", pPNLResourcePrivate->sthalPNL._u8MOD_CALI_VALUE);
2001     PNL_DBG(PNL_DBGLEVEL_INIT, "bPVDD_2V5           = %x\n", pstModCaliInitData->bPVDD_2V5);
2002 
2003 }
2004 
MHal_BD_LVDS_Output_Type(void * pInstance,MS_U16 Type)2005 void MHal_BD_LVDS_Output_Type(void *pInstance, MS_U16 Type)
2006 {
2007     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2008     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2009     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2010     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2011     if(Type == LVDS_DUAL_OUTPUT_SPECIAL )
2012     {
2013         pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Shift = LVDS_DUAL_OUTPUT_SPECIAL;
2014         pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type = 1;
2015     }
2016     else
2017     {
2018         pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type  = Type;
2019     }
2020     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__);
2021     PNL_DBG(PNL_DBGLEVEL_INIT, "_u8MOD_LVDS_Pair_Type = %u\n", pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type);
2022 
2023 }
2024 
msModCalDDAOUT(void)2025 MS_BOOL msModCalDDAOUT(void)
2026 {
2027    // W2BYTEMSK(BK_MOD(0x7D), ENABLE, 8:8);
2028    // MsOS_DelayTask(10);  //10ms
2029     return (MS_BOOL)((MOD_R2BYTEMSK(REG_MOD_A_BK00_74_L, BIT(8))) >> 8);
2030 }
2031 
msModCurrentCalibration(void * pInstance)2032 MS_U8 msModCurrentCalibration(void *pInstance)
2033 {
2034 #if MOD_CAL_TIMER
2035         MS_U32 delay_start_time;
2036         delay_start_time=MsOS_GetSystemTime();
2037 #endif
2038 
2039 #if (!ENABLE_Auto_ModCurrentCalibration)
2040         return 0x60;
2041 #else
2042     MS_U8 u8cur_ibcal=0;
2043     MS_U16 u16reg_32da = 0, u16reg_32dc = 0 , u16cur_ibcal = 0;
2044     MS_U16 u16DefaultICON_Max = 0x2E, u16DefaultICON_Min = 0x06;
2045     MS_U16 u16DefaultICON = 0x19;
2046     MS_U32 u32Mask = 0xFF;
2047     MS_U16 u16icon_ch0_1=0,u16icon_ch2_3=0,u16icon_ch4_5=0,u16icon_ch6_7=0,
2048            u16icon_ch8_9=0,u16icon_ch10_11=0,u16icon_ch12_13=0;
2049     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2050     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2051     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2052     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2053     u16reg_32da = MOD_A_R2BYTE(REG_MOD_A_BK00_00_L);
2054     u16reg_32dc = MOD_A_R2BYTE(REG_MOD_A_BK00_01_L);
2055 
2056     PNL_DBG(PNL_DBGLEVEL_CALIBRATION, "[%s][%d]\n", __FUNCTION__, __LINE__);
2057 
2058     // (1) Set keep mode to auto write calibration result into register.
2059     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, BIT(15), BIT(15));
2060 
2061     // (2) Set calibration step waiting time
2062     MOD_A_W2BYTE(REG_MOD_A_BK00_71_L, 0x0009); // reg_1ms_cnt
2063     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0x0009, 0x00FF); // reg_hw_cal_wait
2064 
2065     // (3) Set calibration toggle time
2066     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0x0500, 0x0F00);
2067 
2068     // (4) Select calibration level (LVDS is 250mV)
2069     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_70_L, pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET, BIT(2)|BIT(1)|BIT(0));    // Select calibration target voltage, 00: 250mV, 01:350mV, 10: 300mV, 11: 200mV
2070 
2071     // (5) Store output configuration value and Enable each pair test mode
2072     MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0xFFFF);
2073     MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0FFF);
2074 
2075     // (6) Enable Calibration mode
2076     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_70_L, BIT(7), BIT(7));         // Enable calibration function
2077 
2078     // (7) Calibration fire on
2079     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_73_L, BIT(15), BIT(15));
2080 
2081     // (8) Wait 3ms
2082     MsOS_DelayTask(3);
2083 
2084     // (9) Read Finish and Fail flagbit
2085     if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_73_L, 0x6000) == 0x4000)
2086     {
2087         //printf("\033[0;31m [%s][%d] cal ok, break  \033[0m\n", __FUNCTION__, __LINE__);
2088     }
2089     else
2090     {
2091         //printf("\033[0;31m [%s][%d] cal ng,  \033[0m\n", __FUNCTION__, __LINE__);
2092     }
2093 
2094     // (10)
2095     // store ICON for each channel to avoid read not correct value when toogle
2096     // REG_MOD_A_BK00_72[15]
2097     u16icon_ch0_1   = MOD_A_R2BYTE(REG_MOD_A_BK00_08_L);
2098     u16icon_ch2_3   = MOD_A_R2BYTE(REG_MOD_A_BK00_09_L);
2099     u16icon_ch4_5   = MOD_A_R2BYTE(REG_MOD_A_BK00_0A_L);
2100     u16icon_ch6_7   = MOD_A_R2BYTE(REG_MOD_A_BK00_0B_L);
2101     u16icon_ch8_9   = MOD_A_R2BYTE(REG_MOD_A_BK00_0C_L);
2102     u16icon_ch10_11 = MOD_A_R2BYTE(REG_MOD_A_BK00_0D_L);
2103     u16icon_ch12_13 = MOD_A_R2BYTE(REG_MOD_A_BK00_0E_L);
2104 
2105     if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_73_L, 0x6000) == 0x4000) // finsh= 1,fail= 0
2106     {
2107         // Error handling for calibration fail or unexpected calibraiton result case
2108         // ch0
2109         u8cur_ibcal = (u16icon_ch0_1&0x00FF);
2110         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0x00, BIT(15)); // disable keep mode
2111         if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max))
2112         {
2113             u16cur_ibcal = u16DefaultICON;
2114         }
2115         else
2116         {
2117             u16cur_ibcal = u8cur_ibcal;
2118         }
2119         // ch1
2120         u8cur_ibcal = (u16icon_ch0_1&0xFF00)>>8;
2121         if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max))
2122         {
2123             u16cur_ibcal = (u16cur_ibcal&0xFF) |(u16DefaultICON <<8);
2124         }
2125         else
2126         {
2127             u16cur_ibcal = (u16cur_ibcal&0xFF) |(u8cur_ibcal <<8);
2128         }
2129         //refine ch0/ch1 calibration result
2130         MOD_A_W2BYTE(REG_MOD_A_BK00_08_L, u16cur_ibcal);
2131 
2132         // ch2
2133         u8cur_ibcal = (u16icon_ch2_3&0x00FF);
2134         if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max))
2135         {
2136             u16cur_ibcal = u16DefaultICON;
2137         }
2138         else
2139         {
2140             u16cur_ibcal = u8cur_ibcal;
2141         }
2142         // ch3
2143         u8cur_ibcal = (u16icon_ch2_3&0xFF00)>>8;
2144 
2145         if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max))
2146         {
2147              u16cur_ibcal = (u16cur_ibcal&0xFF) |(u16DefaultICON <<8);
2148         }
2149         else
2150         {
2151              u16cur_ibcal = (u16cur_ibcal&0xFF) |(u8cur_ibcal <<8);
2152         }
2153         //refine ch2/ch3 calibration result
2154         MOD_A_W2BYTE(REG_MOD_A_BK00_09_L, u16cur_ibcal);
2155 
2156         // ch4
2157         u8cur_ibcal = (u16icon_ch4_5&0x00FF);
2158 
2159         if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max))
2160         {
2161             u16cur_ibcal = u16DefaultICON;
2162         }
2163         else
2164         {
2165             u16cur_ibcal = u8cur_ibcal;
2166         }
2167         // ch5
2168         u8cur_ibcal = (u16icon_ch4_5&0xFF00)>>8;
2169 
2170         if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max))
2171         {
2172             u16cur_ibcal = (u16cur_ibcal&0xFF) |(u16DefaultICON <<8);
2173         }
2174         else
2175         {
2176             u16cur_ibcal = (u16cur_ibcal&0xFF) |(u8cur_ibcal <<8);
2177         }
2178         //refine ch4/ch5 calibration result
2179         MOD_A_W2BYTE(REG_MOD_A_BK00_0A_L, u16cur_ibcal);
2180 
2181         // ch6
2182         u8cur_ibcal = (u16icon_ch6_7&0x00FF);
2183 
2184         if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max))
2185         {
2186             u16cur_ibcal = u16DefaultICON;
2187         }
2188         else
2189         {
2190             u16cur_ibcal = u8cur_ibcal;
2191         }
2192         // ch7
2193         u8cur_ibcal = (u16icon_ch6_7&0xFF00)>>8;
2194 
2195         if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max))
2196         {
2197             //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0B_L, u16DefaultICON <<8, (MS_U16)u32Mask<<8);  // refine ch7 calibration result
2198             u16cur_ibcal = (u16cur_ibcal&0xFF) |(u16DefaultICON <<8);
2199         }
2200         else
2201         {
2202             u16cur_ibcal = (u16cur_ibcal&0xFF) |(u8cur_ibcal <<8);
2203         }
2204         //refine ch6/ch7 calibration result
2205         MOD_A_W2BYTE(REG_MOD_A_BK00_0B_L, u16cur_ibcal);
2206 
2207         // ch8
2208         u8cur_ibcal = (u16icon_ch8_9&0x00FF);
2209 
2210         if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max))
2211         {
2212             u16cur_ibcal = u16DefaultICON;
2213         }
2214         else
2215         {
2216             //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0C_L, u8cur_ibcal, (MS_U16)u32Mask);  // refine ch8 calibration result
2217             u16cur_ibcal = u8cur_ibcal;
2218         }
2219         // ch9
2220         u8cur_ibcal = (u16icon_ch8_9&0xFF00)>>8;
2221         if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max))
2222         {
2223             u16cur_ibcal = (u16cur_ibcal&0xFF) |(u16DefaultICON <<8);
2224         }
2225         else
2226         {
2227             //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0C_L, u8cur_ibcal <<8, (MS_U16)u32Mask<<8);  // refine ch9 calibration result
2228             u16cur_ibcal = (u16cur_ibcal&0xFF) |(u8cur_ibcal <<8);
2229         }
2230         //refine ch8/ch9 calibration result
2231         MOD_A_W2BYTE(REG_MOD_A_BK00_0C_L, u16cur_ibcal);
2232 
2233         // ch10
2234         u8cur_ibcal = (u16icon_ch10_11&0x00FF);
2235         if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max))
2236         {
2237             u16cur_ibcal = u16DefaultICON;
2238         }
2239         else
2240         {
2241             u16cur_ibcal = u8cur_ibcal;
2242         }
2243         // ch11
2244         u8cur_ibcal = (u16icon_ch10_11&0xFF00)>>8;
2245         if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max))
2246         {
2247             u16cur_ibcal = (u16cur_ibcal&0xFF) |(u16DefaultICON <<8);
2248         }
2249         else
2250         {
2251             //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0D_L, u8cur_ibcal <<8, (MS_U16)u32Mask<<8);  // refine ch11 calibration result
2252             u16cur_ibcal = (u16cur_ibcal&0xFF) |(u8cur_ibcal <<8);
2253         }
2254         //refine ch10/ch11 calibration result
2255         MOD_A_W2BYTE(REG_MOD_A_BK00_0D_L, u16cur_ibcal);
2256 
2257         // ch12
2258         u8cur_ibcal = (u16icon_ch12_13&0x00FF);
2259 
2260         if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max))
2261         {
2262             u16cur_ibcal = u16DefaultICON;
2263         }
2264         else
2265         {
2266             u16cur_ibcal = u8cur_ibcal;
2267         }
2268         // ch13
2269         u8cur_ibcal = (u16icon_ch12_13&0xFF00)>>8;
2270         if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max))
2271         {
2272             u16cur_ibcal = (u16cur_ibcal&0xFF) |(u16DefaultICON <<8);
2273         }
2274         else
2275         {
2276             //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0E_L, u8cur_ibcal <<8, (MS_U16)u32Mask<<8);  // refine ch13 calibration result
2277             u16cur_ibcal = (u16cur_ibcal&0xFF) |(u8cur_ibcal <<8);
2278         }
2279         //refine ch12/ch13 calibration result
2280         MOD_A_W2BYTE(REG_MOD_A_BK00_0E_L, u16cur_ibcal);
2281     }
2282     else // Fail = 1
2283     {
2284         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0x00, BIT(15)); // disable keep mode
2285 
2286         MOD_A_W2BYTE(REG_MOD_A_BK00_08_L,u16DefaultICON |(u16DefaultICON <<8)); // refine ch0/1 calibration result
2287         MOD_A_W2BYTE(REG_MOD_A_BK00_09_L,u16DefaultICON |(u16DefaultICON <<8)); // refine ch2/3 calibration result
2288         MOD_A_W2BYTE(REG_MOD_A_BK00_0A_L,u16DefaultICON |(u16DefaultICON <<8)); // refine ch4/5 calibration result
2289         MOD_A_W2BYTE(REG_MOD_A_BK00_0B_L,u16DefaultICON |(u16DefaultICON <<8)); // refine ch6/7 calibration result
2290         MOD_A_W2BYTE(REG_MOD_A_BK00_0C_L,u16DefaultICON |(u16DefaultICON <<8)); // refine ch8/9 calibration result
2291         MOD_A_W2BYTE(REG_MOD_A_BK00_0D_L,u16DefaultICON |(u16DefaultICON <<8)); // refine ch10/11 calibration result
2292         MOD_A_W2BYTE(REG_MOD_A_BK00_0E_L,u16DefaultICON |(u16DefaultICON <<8)); // refine ch12/13 calibration result
2293     }
2294 
2295     // (11) Restore each pair output configuration
2296     MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, u16reg_32da);
2297     MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, u16reg_32dc);
2298 
2299     // (12) Disable calibration mode
2300     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_70_L, 0x00, BIT(7)); // Diable Hardware calibration
2301 
2302     // With HW calibration mode, HW would cal for each channel, and each channel would get different value
2303     // Return channel 2 vaule
2304     u8cur_ibcal = MOD_A_R2BYTEMSK(REG_MOD_A_BK00_09_L, 0x00FF); // return ch2 calibration result
2305 
2306 #if MOD_CAL_TIMER
2307     PNL_DBG(PNL_DBGLEVEL_CALIBRATION, "[%s] takes %ld ms\n", __FUNCTION__, (MsOS_GetSystemTime()-delay_start_time));
2308 #endif
2309     PNL_DBG(PNL_DBGLEVEL_CALIBRATION, "\r\n Calibration result= %x\n", u8cur_ibcal);
2310 
2311     return (u8cur_ibcal&0xFF);//MOD_A_R2BYTEMSK(REG_MOD_A_BK00_0D_L, 0x003F);
2312 #endif
2313 }
2314 
MHal_PNL_MOD_Calibration(void * pInstance)2315 PNL_Result MHal_PNL_MOD_Calibration(void *pInstance)
2316 {
2317     MS_U8 u8Cab;
2318     MS_U8 u8BackUSBPwrStatus;
2319     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2320     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2321     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2322     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2323 
2324     u8BackUSBPwrStatus = R2BYTEMSK(L_BK_UTMI1(0x04), BIT(7));
2325 
2326     W2BYTEMSK(L_BK_UTMI1(0x04), 0x00, BIT(7));
2327 
2328     u8Cab = msModCurrentCalibration(pInstance);
2329 
2330     W2BYTEMSK(L_BK_UTMI1(0x04), u8BackUSBPwrStatus, BIT(7));
2331 
2332     if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type !=E_PNL_TYPE_MINILVDS)
2333         MOD_W2BYTEMSK(REG_MOD_A_BK00_70_L, u8Cab, 0x07);
2334 
2335     return E_PNL_OK;
2336 
2337 }
2338 
MHal_PNL_PowerDownLPLL(void * pInstance,MS_BOOL bEnable)2339 static void MHal_PNL_PowerDownLPLL(void *pInstance, MS_BOOL bEnable)
2340 {
2341     if(bEnable)
2342     {
2343         W2BYTEMSK(L_BK_LPLL(0x03), BIT(5), BIT(5));
2344     }
2345     else
2346     {
2347         W2BYTEMSK(L_BK_LPLL(0x03), FALSE, BIT(5));
2348     }
2349 }
2350 
MHal_PNL_En(void * pInstance,MS_BOOL bPanelOn,MS_BOOL bCalEn)2351 PNL_Result MHal_PNL_En(void *pInstance, MS_BOOL bPanelOn, MS_BOOL bCalEn)
2352 {
2353     MS_U8 u8Cab;
2354     MS_U8 u8BackUSBPwrStatus;
2355     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2356     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2357     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2358     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2359 
2360     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "[%s][%d]\n", __FUNCTION__, __LINE__);
2361 
2362     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u32PNL_MISC = %x\n", (unsigned int)pPNLResourcePrivate->stdrvPNL._stPnlInitData.u32PNL_MISC);
2363     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "bPanelOn = %x\n", bPanelOn);
2364     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "eLPLL_Type            = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type);
2365     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "_u8MOD_LVDS_Pair_Type = %x\n", pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type);
2366     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG0_7       = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7);
2367     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG8_15      = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15);
2368     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG16_21     = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21);
2369 
2370     MS_U16 u16PortA = MOD_A_R2BYTE(REG_MOD_A_BK00_00_L);
2371     MS_U16 u16PortB = MOD_A_R2BYTE(REG_MOD_A_BK00_01_L);
2372 
2373     if(u16PortA!=0)
2374         pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7   = MOD_A_R2BYTE(REG_MOD_A_BK00_00_L);
2375     if(u16PortB!=0)
2376         pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15  = MOD_A_R2BYTE(REG_MOD_A_BK00_01_L);
2377 
2378     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "==========================\n\n");
2379     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG0_7       = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7);
2380     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG8_15      = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15);
2381     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG16_21     = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21);
2382 
2383 
2384     if(bPanelOn)
2385     {
2386         // The order is PanelVCC -> delay pnlGetOnTiming1() -> VOP -> MOD
2387         // VOP
2388         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_46_L, 0x4000, HBMASK);
2389 
2390         // For Napoli compatible
2391         // need to wait 1ms to wait LDO stable before MOD power on
2392         MsOS_DelayTask(1);
2393 
2394         // turn on LPLL
2395         MHal_PNL_PowerDownLPLL(pInstance, FALSE);
2396 
2397         // mod power on
2398         MHal_MOD_PowerOn(pInstance
2399                         , ENABLE
2400                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type
2401                         , pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type
2402                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7
2403                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15
2404                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21);
2405 
2406 
2407         if(bCalEn)
2408         {
2409 
2410             u8BackUSBPwrStatus = R2BYTEMSK(L_BK_UTMI1(0x04), BIT(7));
2411 
2412             W2BYTEMSK(L_BK_UTMI1(0x04), 0x00, BIT(7));
2413 
2414             u8Cab = msModCurrentCalibration(pInstance);
2415 
2416             W2BYTEMSK(L_BK_UTMI1(0x04), u8BackUSBPwrStatus, BIT(7));
2417 
2418         }
2419         else
2420         {
2421             if((pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type>=E_PNL_LPLL_VBY1_10BIT_4LANE)&&
2422                 (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type<=E_PNL_LPLL_VBY1_8BIT_8LANE) &&
2423                 ((pPNLResourcePrivate->stdrvPNL._stPnlInitData.u32PNL_MISC & (MS_U32)E_APIPNL_MISC_SKIP_ICONVALUE) == FALSE))
2424             {
2425                 HAL_MOD_CAL_DBG(printf("Use RCON value \n", __FUNCTION__, __LINE__));
2426                 msSetVBY1RconValue(pInstance);
2427             }
2428             else
2429             {
2430                 HAL_MOD_CAL_DBG(printf("User define Swing Value=%u\n", __FUNCTION__, __LINE__, pPNLResourcePrivate->sthalPNL._u16PnlDefault_SwingLevel));
2431 
2432                 if(!MHal_PNL_MOD_Control_Out_Swing(pInstance, pPNLResourcePrivate->sthalPNL._u16PnlDefault_SwingLevel))
2433                     printf(">>Swing Level setting error!!\n");
2434             }
2435         }
2436 
2437 
2438         if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.bVideo_HW_Training_En)
2439             MHal_PNL_VBY1_Hardware_TrainingMode_En(pInstance, TRUE, ENABLE);
2440     }
2441     else
2442     {
2443         // The order is LPLL -> MOD -> VOP -> delay for MOD power off -> turn off VCC
2444 
2445         // LPLL
2446         // MHal_PNL_PowerDownLPLL(TRUE); //Remove to keep op vsync if panel off
2447 
2448         MHal_MOD_PowerOn(pInstance
2449                         , DISABLE
2450                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type
2451                         , pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type
2452                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7
2453                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15
2454                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21);
2455         // VOP
2456         if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_LVDS ||
2457             pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_DAC_I ||
2458             pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_DAC_P)//(bIsLVDS)
2459             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_46_L, 0xFF, LBMASK);
2460         else
2461             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_46_L, 0x00, 0xFF);
2462     }
2463 
2464     return E_PNL_OK;
2465 }
2466 
MHal_PNL_SetOutputPattern(void * pInstance,MS_BOOL bEnable,MS_U16 u16Red,MS_U16 u16Green,MS_U16 u16Blue)2467 void MHal_PNL_SetOutputPattern(void *pInstance, MS_BOOL bEnable, MS_U16 u16Red , MS_U16 u16Green, MS_U16 u16Blue)
2468 {
2469     if (bEnable)
2470     {
2471         MOD_W2BYTEMSK(REG_MOD_BK00_02_L, u16Red , 0x03FF);
2472         MOD_W2BYTEMSK(REG_MOD_BK00_03_L, u16Green , 0x03FF);
2473         MOD_W2BYTEMSK(REG_MOD_BK00_04_L, u16Blue , 0x03FF);
2474         MsOS_DelayTask(10);
2475         MOD_W2BYTEMSK(REG_MOD_BK00_01_L, BIT(15) , BIT(15));
2476     }
2477     else
2478     {
2479         MOD_W2BYTEMSK(REG_MOD_BK00_01_L, DISABLE , BIT(15));
2480     }
2481 
2482 }
2483 
MHal_PNL_Switch_LPLL_SubBank(void * pInstance,MS_U16 u16Bank)2484 void MHal_PNL_Switch_LPLL_SubBank(void *pInstance, MS_U16 u16Bank)
2485 {
2486     UNUSED(u16Bank);
2487 }
2488 
MHal_PNL_Switch_TCON_SubBank(void * pInstance,MS_U16 u16Bank)2489 void MHal_PNL_Switch_TCON_SubBank(void *pInstance, MS_U16 u16Bank)
2490 {
2491     W2BYTEMSK(L_BK_TCON(0x00), u16Bank&0xff, 0xFF);
2492 }
2493 
MHal_PNL_Read_TCON_SubBank(void * pInstance)2494 MS_U16 MHal_PNL_Read_TCON_SubBank(void *pInstance)
2495 {
2496     return (MS_U16)R2BYTEMSK(L_BK_TCON(0x00),0xFF);
2497 }
2498 
MHal_PNL_Is_VBY1_Locked(void * pInstance)2499 MS_BOOL MHal_PNL_Is_VBY1_Locked(void *pInstance)
2500 {
2501     if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_47_L, 0x0300) == 0x00)
2502     {
2503         return TRUE;
2504     }
2505     else
2506     {
2507         return FALSE;
2508     }
2509 }
2510 
MHal_PNL_Is_VBY1_LockN_Locked(void * pInstance)2511 MS_BOOL MHal_PNL_Is_VBY1_LockN_Locked(void *pInstance)
2512 {
2513     if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_47_L, 0x0100) == 0x00)
2514     {
2515         return TRUE;
2516     }
2517     else
2518     {
2519         return FALSE;
2520     }
2521 }
2522 
MHal_PNL_VBY1_Handshake(void * pInstance)2523 MS_BOOL MHal_PNL_VBY1_Handshake(void *pInstance)
2524 {
2525     MS_BOOL bIsLock = FALSE;
2526 
2527     if (MHal_PNL_Is_VBY1_Locked(pInstance) == FALSE)
2528     {
2529         MS_U16 u16CheckTimes = 0;
2530         //MS_U16 u16DeboundTimes = 0;
2531 
2532         // need to toggle vby1 packer  process start first
2533         MOD_W2BYTEMSK(REG_MOD_BK00_62_L, 0x00, BIT(11));
2534         MOD_W2BYTEMSK(REG_MOD_BK00_62_L, BIT(11), BIT(11));
2535 
2536         MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0F56); // set reg. initial value
2537         MOD_W2BYTEMSK(REG_MOD_BK00_60_L, 0xD6, 0x00FF); // after power on go to stand-by
2538         MOD_W2BYTEMSK(REG_MOD_BK00_60_L, 0x96, 0x00FF); // connection is established, go to Acquisition
2539         MOD_W2BYTEMSK(REG_MOD_BK00_60_L, 0xB6, 0x00FF); // when internal clock is stable, got to CDR training
2540         MOD_W2BYTEMSK(REG_MOD_BK00_60_L, 0xBE, 0x00FF); // enable encoder for DC blance
2541 
2542         while(u16CheckTimes < 10)
2543         {
2544 #if 0
2545             u16DeboundTimes = 2;
2546             while ((!MHal_PNL_Is_VBY1_LockN_Locked()) && (u16DeboundTimes --))
2547             {
2548                 MsOS_DelayTask(1); // can't remove
2549             }
2550 #endif
2551             if(MHal_PNL_Is_VBY1_LockN_Locked(pInstance))
2552             {
2553                 //-------------------------------------------------------------------
2554                 // step1. Toggle clock when training
2555                 MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0FAE);
2556                 //--------------------------------------------------------------------
2557                 bIsLock = TRUE;
2558                 // pass 2 times debound to make sure VBY1 is locked
2559                 break;
2560             }
2561 
2562             u16CheckTimes++;
2563             MsOS_DelayTaskUs(40);
2564         }
2565 
2566         if(bIsLock)
2567             {
2568             // step3. Disable HW check when lock done, Enable when loss lock
2569             //MOD_W2BYTEMSK(REG_MOD_BK00_33_L, 0x00, BIT15);
2570 
2571             /// Add the delay to increase time to send
2572             //MDrv_TIMER_Delayms(10);
2573         }
2574     }
2575     else
2576     {
2577         if(MOD_R2BYTEMSK(REG_MOD_BK00_60_L, 0x0FFF) != 0x0FAE)
2578         {
2579             MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0FAE);
2580         }
2581         bIsLock = TRUE;
2582             }
2583 
2584     return bIsLock;
2585 }
2586 
MHal_PNL_Is_VBY1_OC_Locked(void * pInstance)2587 MS_BOOL MHal_PNL_Is_VBY1_OC_Locked(void *pInstance)
2588 {
2589     if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_47_L, 0x0C00) == 0x00)  // MOD_BK00_56_L[11:10]        for OSD
2590             {
2591         return TRUE;
2592     }
2593     else
2594     {
2595         return FALSE;
2596             }
2597 }
2598 
MHal_PNL_Is_VBY1_OC_LockN_Locked(void * pInstance)2599 MS_BOOL MHal_PNL_Is_VBY1_OC_LockN_Locked(void *pInstance)
2600 {
2601     if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_47_L, 0x0400) == 0x00)  // MOD_BK00_56_L[11:10]        for OSD
2602             {
2603         return TRUE;
2604     }
2605     else
2606     {
2607         return FALSE;
2608             }
2609 }
2610 
MHal_PNL_VBY1_OC_Handshake(void * pInstance)2611 MS_BOOL MHal_PNL_VBY1_OC_Handshake(void *pInstance)
2612 {
2613     MS_BOOL bIsLock = FALSE;
2614 
2615     if (MHal_PNL_Is_VBY1_OC_Locked(pInstance) == FALSE)
2616     {
2617         MS_U16 u16CheckTimes = 0;
2618 //        MS_U16 u16DeboundTimes = 0;
2619 
2620         // need to toggle vby1 packer  process start first
2621         MOD_W2BYTEMSK(REG_MOD_BK00_66_L, 0x00, BIT(11));
2622         MOD_W2BYTEMSK(REG_MOD_BK00_66_L, BIT(11), BIT(11));
2623 
2624 
2625         MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0F56); // set reg. initial value
2626         MOD_W2BYTEMSK(REG_MOD_BK00_64_L, 0xD6, 0x00FF); // after power on go to stand-by
2627         MOD_W2BYTEMSK(REG_MOD_BK00_64_L, 0x96, 0x00FF); // connection is established, go to Acquisition
2628         MOD_W2BYTEMSK(REG_MOD_BK00_64_L, 0xB6, 0x00FF); // when internal clock is stable, got to CDR training
2629         MOD_W2BYTEMSK(REG_MOD_BK00_64_L, 0xBE, 0x00FF); // enable encoder for DC blance
2630 
2631         while(u16CheckTimes < 10)
2632         {
2633         #if 0
2634             u16DeboundTimes = 2;
2635             while ((!MHal_PNL_Is_VBY1_OC_LockN_Locked()) && (u16DeboundTimes --))
2636             {
2637             MsOS_DelayTask(1);
2638             }
2639         #endif
2640             if(MHal_PNL_Is_VBY1_OC_LockN_Locked(pInstance))
2641             {
2642                 //-------------------------------------------------------------------
2643                 // step1. Toggle clock when training
2644 
2645                 MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0FAE);
2646                 bIsLock = TRUE;
2647                 // pass 2 times debound to make sure VBY1 is locked
2648                 break;
2649             }
2650 
2651             u16CheckTimes++;
2652             MsOS_DelayTaskUs(40);
2653         }
2654 
2655         if(bIsLock)
2656         {
2657             // step3. Disable HW check when lock done, Enable when loss lock
2658 //            MOD_W2BYTEMSK(REG_MOD_BK00_33_L, 0x00, BIT15);
2659         }
2660     }
2661     else
2662     {
2663         if(MOD_R2BYTEMSK(REG_MOD_BK00_64_L, 0x0FFF) != 0x0FAE)
2664         {
2665             MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0FAE);
2666         }
2667         bIsLock = TRUE;
2668     }
2669 
2670     return bIsLock;
2671 }
2672 
MHal_PNL_IsYUVOutput(void * pInstance)2673 MS_BOOL MHal_PNL_IsYUVOutput(void *pInstance)
2674 {
2675    return FALSE;
2676 }
2677 
MHal_PNL_SetOutputInterlaceTiming(void * pInstance,MS_BOOL bEnable)2678 MS_BOOL MHal_PNL_SetOutputInterlaceTiming(void *pInstance, MS_BOOL bEnable)
2679 {
2680     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2681     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2682 
2683     if (bEnable == TRUE)
2684     {
2685         //interlace output vtotal modify
2686         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_21_L, BIT(9), BIT(9));
2687 
2688         // two different interlace information through channel A reserved bit
2689         MOD_W2BYTEMSK(REG_MOD_BK00_40_L, BIT(4) | BIT(7), BIT(4) | BIT(7));
2690         // two different interlace information through channel B reserved bit
2691         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, BIT(10)|BIT(11), BIT(10)|BIT(11));
2692     }
2693     else
2694     {
2695         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_21_L  , 0, BIT(9));
2696         MOD_W2BYTEMSK(REG_MOD_BK00_40_L, 0, BIT(4) | BIT(7));
2697         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, 0, BIT(10)|BIT(11));
2698     }
2699 
2700     return TRUE;
2701 }
2702 
MHal_PNL_GetOutputInterlaceTiming(void * pInstance)2703 MS_BOOL MHal_PNL_GetOutputInterlaceTiming(void *pInstance)
2704 {
2705     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2706     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2707 
2708     MS_BOOL bIsInterlaceOutput = FALSE;
2709     //interlace output vtotal modify
2710     if (SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_21_L, BIT(9)) == BIT(9))
2711     {
2712         if ((MOD_R2BYTEMSK(REG_MOD_BK00_40_L, BIT(4) | BIT(7)) == (BIT(4) | BIT(7)))
2713             || (MOD_R2BYTEMSK(REG_MOD_BK00_42_L, BIT(10) | BIT(11)) == (BIT(10)|BIT(11))))
2714         {
2715             bIsInterlaceOutput = TRUE;
2716         }
2717     }
2718     else
2719     {
2720         bIsInterlaceOutput = FALSE;
2721     }
2722     return bIsInterlaceOutput;
2723 }
2724 
2725 // Output Dclk
MHal_PNL_CalExtLPLLSETbyDClk(void * pInstance,MS_U8 u8LPLL_Mode,MS_U8 u8LPLL_Type,MS_U64 ldHz)2726 void MHal_PNL_CalExtLPLLSETbyDClk(void *pInstance, MS_U8 u8LPLL_Mode, MS_U8 u8LPLL_Type, MS_U64 ldHz)
2727 {
2728     UNUSED(pInstance);
2729     UNUSED(u8LPLL_Mode);
2730     UNUSED(u8LPLL_Type);
2731     UNUSED(ldHz);
2732 }
2733 
MHal_PNL_SetOSDCOutputType(void * pInstance,PNL_TYPE eLPLL_Type,E_PNL_OSDC_OUTPUT_FORMAT eOC_OutputFormat)2734 void MHal_PNL_SetOSDCOutputType(void *pInstance, PNL_TYPE eLPLL_Type, E_PNL_OSDC_OUTPUT_FORMAT eOC_OutputFormat)
2735 {
2736     UNUSED(pInstance);
2737     UNUSED(eLPLL_Type);
2738     UNUSED(eOC_OutputFormat);
2739 }
2740 
MHal_PNL_SetOSDSSC(void * pInstance,MS_U16 u16Fmodulation,MS_U16 u16Rdeviation,MS_BOOL bEnable)2741 MS_BOOL MHal_PNL_SetOSDSSC(void *pInstance, MS_U16 u16Fmodulation, MS_U16 u16Rdeviation, MS_BOOL bEnable)
2742 {
2743     MS_U16 u16Span;
2744     MS_U16 u16Step;
2745     MS_U32 u32PLL_SET;/// = MDrv_Read3Byte(L_BK_LPLL(0x0F));
2746 
2747     MHal_PNL_Switch_LPLL_SubBank(pInstance, 0x00);
2748     u32PLL_SET = R4BYTE(L_BK_LPLL(0x48));
2749     // Set SPAN
2750     if(u16Fmodulation < 200 || u16Fmodulation > 400)
2751         u16Fmodulation = 300;
2752     u16Span =( ( (((MS_U32)LVDS_MPLL_CLOCK_MHZ*LVDS_SPAN_FACTOR ) / (u16Fmodulation) ) * 10000) / ((MS_U32)u32PLL_SET) ) ;
2753 
2754     // Set STEP
2755     if(u16Rdeviation > 300)
2756         u16Rdeviation = 300;
2757     u16Step = ((MS_U32)u32PLL_SET*u16Rdeviation) / ((MS_U32)u16Span*10000);
2758 
2759     W2BYTE(L_BK_LPLL(0x4E), u16Step & 0x0FFF);// LPLL_STEP
2760     W2BYTE(L_BK_LPLL(0x4F), u16Span & 0x3FFF);// LPLL_SPAN
2761     W2BYTEMSK((L_BK_LPLL(0x4E)), (bEnable << 15), BIT(15)); // Enable ssc
2762 
2763 
2764     return TRUE;
2765 }
2766 
MHal_PNL_SetOSDSSC_En(void * pInstance,MS_BOOL bEnable)2767 void MHal_PNL_SetOSDSSC_En(void *pInstance, MS_BOOL bEnable)
2768 {
2769     //printf("bEnable = %d\n", bEnable);
2770     MHal_PNL_Switch_LPLL_SubBank(pInstance, 0x00);
2771     W2BYTEMSK((L_BK_LPLL(0x4E)), (bEnable << 15), BIT(15)); // Enable ssc
2772 }
2773 
MHal_PNL_Set_T3D_Setting(void * pInstance)2774 void MHal_PNL_Set_T3D_Setting(void *pInstance)
2775 {
2776     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2777     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2778 
2779     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK62_63_L, 0x00, BIT(0)); // default disable T3D SRAM
2780 }
2781 
MHal_PNL_Set_Device_Bank_Offset(void * pInstance)2782 void MHal_PNL_Set_Device_Bank_Offset(void *pInstance)
2783 {
2784     UNUSED(pInstance);
2785     memset(u32PNL_XCDeviceBankOffset, 0, sizeof(MS_U32)*E_PNL_DEVICE_ID_NUM);
2786     u32PNL_XCDeviceBankOffset[E_PNL_DEVICE_ID_0] = E_HALPNL_DEVICE0_XC_BANK_OFFSET; // Set SC0 reg bank offset
2787     u32PNL_XCDeviceBankOffset[E_PNL_DEVICE_ID_1] = E_HALPNL_DEVICE1_XC_BANK_OFFSET; // Set SC2 reg bank offset
2788 }
2789 
MHal_PNL_Init(void * pInstance)2790 void MHal_PNL_Init(void *pInstance)
2791 {
2792     // Do nothing
2793     UNUSED(pInstance);
2794 }
2795 
MHal_PNL_Bringup(void * pInstance)2796 void MHal_PNL_Bringup(void *pInstance)
2797 {
2798     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2799     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2800     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2801     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2802 
2803     ///patch for bring up
2804     if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_LVDS)
2805     {
2806         //==================== MPLL ====================
2807         //swch 4
2808         W2BYTEMSK(0x00101e38, 0x00, 0xFF);
2809         W2BYTEMSK(0x00110c03, 0x00, 0xFF);
2810         W2BYTE(0x00111e74, 0x0100);
2811         //===== Setting LPLL (LVDS_2ch_150M) ======//
2812         W2BYTEMSK(0x0010311e, 0x440, 0xFF);
2813         W2BYTEMSK(0x0010311f, 0x7f, 0xFF);
2814         W2BYTEMSK(0x00103120, 0x27, 0xFF);
2815         W2BYTEMSK(0x00103121, 0x00, 0xFF);
2816         W2BYTEMSK(0x0010312a, 0x00, 0xFF);
2817         W2BYTEMSK(0x0010312b, 0x00, 0xFF);
2818         W2BYTEMSK(0x00103102, 0x02, 0xFF);
2819         W2BYTEMSK(0x00103103, 0x03, 0xFF);
2820         W2BYTEMSK(0x00103104, 0x00, 0xFF);
2821         W2BYTEMSK(0x00103105, 0x07, 0xFF);
2822         W2BYTEMSK(0x00103106, 0x04, 0xFF);
2823         W2BYTEMSK(0x00103107, 0x00, 0xFF);
2824         W2BYTEMSK(0x00103108, 0x00, 0xFF);
2825         W2BYTEMSK(0x00103109, 0x00, 0xFF);
2826         W2BYTEMSK(0x0010315c, 0x90, 0xFF);
2827         W2BYTEMSK(0x0010315d, 0x57, 0xFF);
2828         W2BYTEMSK(0x00103160, 0x00, 0xFF);
2829         W2BYTEMSK(0x00103161, 0x00, 0xFF);
2830         W2BYTEMSK(0x00103162, 0x00, 0xFF);
2831         W2BYTEMSK(0x00103163, 0x00, 0xFF);
2832         W2BYTEMSK(0x00103164, 0x00, 0xFF);
2833         W2BYTEMSK(0x00103165, 0x00, 0xFF);
2834         W2BYTEMSK(0x00103166, 0x20, 0xFF);
2835         W2BYTEMSK(0x00103167, 0x00, 0xFF);
2836         W2BYTEMSK(0x00103168, 0x00, 0xFF);
2837         W2BYTEMSK(0x00103169, 0x00, 0xFF);
2838         W2BYTEMSK(0x0010316a, 0x00, 0xFF);
2839         W2BYTEMSK(0x0010316b, 0x1f, 0xFF);
2840         W2BYTEMSK(0x0010316c, 0x00, 0xFF);
2841         W2BYTEMSK(0x0010316d, 0x00, 0xFF);
2842         W2BYTEMSK(0x0010316e, 0x00, 0xFF);
2843         W2BYTEMSK(0x0010316f, 0x00, 0xFF);
2844         W2BYTEMSK(0x00103172, 0x00, 0xFF);
2845         W2BYTEMSK(0x00103173, 0x00, 0xFF);
2846         W2BYTEMSK(0x001031c0, 0xf0, 0xFF);
2847         W2BYTEMSK(0x001031c1, 0x00, 0xFF);
2848         W2BYTEMSK(0x001031c2, 0x00, 0xFF);
2849         W2BYTEMSK(0x001031c3, 0x00, 0xFF);
2850         W2BYTEMSK(0x001031c4, 0xf0, 0xFF);
2851         W2BYTEMSK(0x001031c5, 0x00, 0xFF);
2852         W2BYTEMSK(0x001031c6, 0x00, 0xFF);
2853         W2BYTEMSK(0x001031c7, 0x00, 0xFF);
2854         W2BYTEMSK(0x001031c8, 0x00, 0xFF);
2855         W2BYTEMSK(0x001031c9, 0x00, 0xFF);
2856         W2BYTEMSK(0x001031ca, 0x00, 0xFF);
2857         W2BYTEMSK(0x001031cb, 0x00, 0xFF);
2858         W2BYTEMSK(0x001031cc, 0x00, 0xFF);
2859         W2BYTEMSK(0x001031cd, 0x00, 0xFF);
2860         W2BYTEMSK(0x001031e2, 0x00, 0xFF);
2861         W2BYTEMSK(0x001031e3, 0x00, 0xFF);
2862         //==================== CLKGEN ====================
2863         W2BYTEMSK(0x00100bb0, 0x00, 0xFF);
2864         W2BYTEMSK(0x00100bb1, 0x00, 0xFF);
2865         W2BYTEMSK(0x00100bae, 0x00, 0xFF);
2866         W2BYTEMSK(0x00100baf, 0x01, 0xFF);
2867         W2BYTEMSK(0x00100ba6, 0x0c, 0xFF);
2868         W2BYTEMSK(0x00100ba7, 0x00, 0xFF);
2869         W2BYTEMSK(0x00100bc6, 0x01, 0xFF);
2870         W2BYTEMSK(0x00100bc7, 0x00, 0xFF);
2871         //==================== disp_misc_a ====================
2872         W2BYTEMSK(0x00111e70, 0x1f, 0xFF);
2873         W2BYTEMSK(0x00111e71, 0x00, 0xFF);
2874         W2BYTEMSK(0x00111e00, 0x55, 0xFF);
2875         W2BYTEMSK(0x00111e01, 0x55, 0xFF);
2876         W2BYTEMSK(0x00111e02, 0x55, 0xFF);
2877         W2BYTEMSK(0x00111e03, 0x00, 0xFF);
2878         W2BYTEMSK(0x00111ed0, 0x3f, 0xFF);
2879         W2BYTEMSK(0x00111ed1, 0x00, 0xFF);
2880         W2BYTEMSK(0x00111eb2, 0x00, 0xFF);
2881         W2BYTEMSK(0x00111eb3, 0x00, 0xFF);
2882         W2BYTEMSK(0x00111eb0, 0x00, 0xFF);
2883         W2BYTEMSK(0x00111eb1, 0x00, 0xFF);
2884         //==================== disp_misc_a ====================
2885         //==================== disp_misc_d ====================
2886         W2BYTEMSK(0x00103294, 0x02, 0xFF);
2887         W2BYTEMSK(0x00103295, 0x00, 0xFF);
2888         W2BYTEMSK(0x00103266, 0x00, 0xFF);
2889         W2BYTEMSK(0x00103267, 0x80, 0xFF);
2890         //==================== disp_misc_d ====================
2891         //==========================//
2892         //=  DISP_TGEN GREY BOX    =//
2893         //==========================//
2894         W2BYTE(0x102f00, 0x0010);
2895         W2BYTE(0x102f02, 0x0002);
2896         W2BYTE(0x102f08, 0x0070);
2897         W2BYTE(0x102f0a, 0x07ef);
2898         W2BYTE(0x102f0c, 0x0014);
2899         W2BYTE(0x102f0e, 0x044b);
2900         W2BYTE(0x102f10, 0x0071);
2901         W2BYTE(0x102f12, 0x07ee);
2902         W2BYTE(0x102f14, 0x0015);
2903         W2BYTE(0x102f16, 0x044a);
2904         W2BYTE(0x102f18, 0x0897);
2905         W2BYTE(0x102f1a, 0x0464);
2906         W2BYTE(0x102f32, 0xff03);
2907         W2BYTE(0x102f34, 0x0000);
2908 
2909         //*********** bring up for different setting *********//
2910         W2BYTE(0x111e62, 0x3fff);
2911         W2BYTEMSK(0x103280, 0x0C, 0xFF);
2912         W2BYTEMSK(0x103296, 0x00, 0xFF);
2913     }
2914 
2915 }
2916 
MHal_PNL_GetPanelVStart(void)2917 MS_U16 MHal_PNL_GetPanelVStart(void)
2918 {
2919     return 6;
2920 }
2921 
MHal_PNL_Check_VBY1_Handshake_Status(void * pInstance)2922 MS_BOOL MHal_PNL_Check_VBY1_Handshake_Status(void *pInstance)
2923 {
2924     if(MOD_R2BYTEMSK(REG_MOD_BK00_60_L, 0x0FFF) != 0xFAE)
2925     {
2926         //printf("VBY1 handshake return because the reg value is 0x%u, not 0xFAE.\n", MOD_R2BYTEMSK(REG_MOD_BK00_60_L, 0x0FFF));
2927         return FALSE;
2928     }
2929     else
2930     {
2931         //printf("VBY handshake check success.\n");
2932         return TRUE;
2933     }
2934 }
2935 
MHal_PNL_ChannelFIFOPointerADjust(void * pInstance)2936 void MHal_PNL_ChannelFIFOPointerADjust(void *pInstance)
2937 {
2938     // 0 to 1 then will do write and read point capture to
2939     // Read  : REG_MOD_BK00_5F_L[14:12]
2940     // write : REG_MOD_BK00_5F_L[10:8]
2941     // it takes 3 ticks to capture and riu takes 5 ticks to write
2942     // so we don't have to do any delay between rising capture and
2943     // read/write pointer recognition
2944     MsOS_DelayTaskUs(500);
2945     MOD_A_W2BYTE(REG_MOD_A_BK00_5C_L, 0x3300);
2946 
2947     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L,      0, BIT(0));
2948     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(0), BIT(0));
2949 
2950     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, 0 , BIT(1));
2951     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(1), BIT(1));
2952 
2953     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, 0, BIT(2)|BIT(3));
2954     MS_U16 u16name = MOD_A_R2BYTE(REG_MOD_A_BK00_5D_L);
2955     MS_S8 u8WritePointer = (u16name & 0x0700) >> 8; // REG_MOD_BK00_5F_L[10:8]
2956     MS_S8 u8ReadPointer = (u16name & 0x7000) >> 12; // REG_MOD_BK00_5F_L[14:12]
2957 
2958     //OSD part
2959         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(2)|BIT(3), BIT(2)|BIT(3));
2960         MS_U16 OSDu16name = MOD_A_R2BYTE(REG_MOD_A_BK00_5D_L);
2961     MS_S8 OSDu8WritePointer = (OSDu16name & 0x0700) >> 8; // REG_MOD_BK00_5F_L[10:8]
2962     MS_S8 OSDu8ReadPointer = (OSDu16name & 0x7000) >> 12; // REG_MOD_BK00_5F_L[14:12]
2963 
2964     MS_BOOL bOSDC = ((MOD_A_R2BYTE(REG_MOD_A_BK00_58_L)&0x00F0) == 0x0040)?TRUE:FALSE;
2965     while (((abs(u8WritePointer-u8ReadPointer) >4) && (abs(u8WritePointer-u8ReadPointer)<2))
2966         ||(((abs(OSDu8WritePointer-OSDu8ReadPointer) >4) && (abs(OSDu8WritePointer-OSDu8ReadPointer)<2))&&bOSDC))
2967     {
2968         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L,      0, BIT(0));
2969         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(0), BIT(0));
2970 
2971         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, 0 , BIT(1));
2972         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(1), BIT(1));
2973 
2974         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, 0, BIT(2)|BIT(3));
2975                 u16name = MOD_A_R2BYTE(REG_MOD_A_BK00_5D_L);
2976         u8WritePointer = (u16name & 0x0700) >> 8; // REG_MOD_BK00_5F_L[10:8]
2977         u8ReadPointer = (u16name & 0x7000) >> 12; // REG_MOD_BK00_5F_L[14:12]
2978 
2979         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(2)|BIT(3), BIT(2)|BIT(3));
2980         OSDu16name = MOD_A_R2BYTE(REG_MOD_A_BK00_5D_L);
2981         OSDu8WritePointer = (OSDu16name & 0x0700) >> 8; // REG_MOD_BK00_5F_L[10:8]
2982         OSDu8ReadPointer = (OSDu16name & 0x7000) >> 12; // REG_MOD_BK00_5F_L[14:12]
2983         printf("bOSDC [%d]\n",bOSDC);
2984 
2985     }
2986 
2987 }
2988 
MHal_PNL_VBY1_Hardware_TrainingMode_En(void * pInstance,MS_BOOL bIsVideoMode,MS_BOOL bEnable)2989 void MHal_PNL_VBY1_Hardware_TrainingMode_En(void *pInstance, MS_BOOL bIsVideoMode ,MS_BOOL bEnable)
2990 {
2991     if(bIsVideoMode)
2992     {
2993         if(bEnable)
2994         {
2995             MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0AAE);
2996         }
2997         else
2998         {
2999             MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0AA6);
3000         }
3001     }
3002     else
3003     {
3004         if(bEnable)
3005         {
3006             MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0AAE);
3007         }
3008         else
3009         {
3010             MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0AA6);
3011         }
3012     }
3013 }
3014 
MHal_PNL_VBY1_IsSupport_Hardware_TrainingMode(void * pInstance)3015 MS_BOOL MHal_PNL_VBY1_IsSupport_Hardware_TrainingMode(void *pInstance)
3016 {
3017     #ifdef SUPPORT_VBY1_HWTRAINING_MODE
3018         return TRUE;
3019     #else
3020         return FALSE;
3021     #endif
3022 }
3023 
MHal_PNL_TCON_Patch(void)3024 void MHal_PNL_TCON_Patch(void)
3025 {
3026 
3027 }
3028 
3029 #endif
3030 
3031