xref: /utopia/UTPA2-700.0.x/modules/xc/hal/manhattan/pnl/halPNL.c (revision 53ee8cc121a030b8d368113ac3e966b4705770ef)
1 //<MStar Software>
2 //******************************************************************************
3 // MStar Software
4 // Copyright (c) 2010 - 2012 MStar Semiconductor, Inc. All rights reserved.
5 // All software, firmware and related documentation herein ("MStar Software") are
6 // intellectual property of MStar Semiconductor, Inc. ("MStar") and protected by
7 // law, including, but not limited to, copyright law and international treaties.
8 // Any use, modification, reproduction, retransmission, or republication of all
9 // or part of MStar Software is expressly prohibited, unless prior written
10 // permission has been granted by MStar.
11 //
12 // By accessing, browsing and/or using MStar Software, you acknowledge that you
13 // have read, understood, and agree, to be bound by below terms ("Terms") and to
14 // comply with all applicable laws and regulations:
15 //
16 // 1. MStar shall retain any and all right, ownership and interest to MStar
17 //    Software and any modification/derivatives thereof.
18 //    No right, ownership, or interest to MStar Software and any
19 //    modification/derivatives thereof is transferred to you under Terms.
20 //
21 // 2. You understand that MStar Software might include, incorporate or be
22 //    supplied together with third party`s software and the use of MStar
23 //    Software may require additional licenses from third parties.
24 //    Therefore, you hereby agree it is your sole responsibility to separately
25 //    obtain any and all third party right and license necessary for your use of
26 //    such third party`s software.
27 //
28 // 3. MStar Software and any modification/derivatives thereof shall be deemed as
29 //    MStar`s confidential information and you agree to keep MStar`s
30 //    confidential information in strictest confidence and not disclose to any
31 //    third party.
32 //
33 // 4. MStar Software is provided on an "AS IS" basis without warranties of any
34 //    kind. Any warranties are hereby expressly disclaimed by MStar, including
35 //    without limitation, any warranties of merchantability, non-infringement of
36 //    intellectual property rights, fitness for a particular purpose, error free
37 //    and in conformity with any international standard.  You agree to waive any
38 //    claim against MStar for any loss, damage, cost or expense that you may
39 //    incur related to your use of MStar Software.
40 //    In no event shall MStar be liable for any direct, indirect, incidental or
41 //    consequential damages, including without limitation, lost of profit or
42 //    revenues, lost or damage of data, and unauthorized system use.
43 //    You agree that this Section 4 shall still apply without being affected
44 //    even if MStar Software has been modified by MStar in accordance with your
45 //    request or instruction for your use, except otherwise agreed by both
46 //    parties in writing.
47 //
48 // 5. If requested, MStar may from time to time provide technical supports or
49 //    services in relation with MStar Software to you for your use of
50 //    MStar Software in conjunction with your or your customer`s product
51 //    ("Services").
52 //    You understand and agree that, except otherwise agreed by both parties in
53 //    writing, Services are provided on an "AS IS" basis and the warranty
54 //    disclaimer set forth in Section 4 above shall apply.
55 //
56 // 6. Nothing contained herein shall be construed as by implication, estoppels
57 //    or otherwise:
58 //    (a) conferring any license or right to use MStar name, trademark, service
59 //        mark, symbol or any other identification;
60 //    (b) obligating MStar or any of its affiliates to furnish any person,
61 //        including without limitation, you and your customers, any assistance
62 //        of any kind whatsoever, or any information; or
63 //    (c) conferring any license or right under any intellectual property right.
64 //
65 // 7. These terms shall be governed by and construed in accordance with the laws
66 //    of Taiwan, R.O.C., excluding its conflict of law rules.
67 //    Any and all dispute arising out hereof or related hereto shall be finally
68 //    settled by arbitration referred to the Chinese Arbitration Association,
69 //    Taipei in accordance with the ROC Arbitration Law and the Arbitration
70 //    Rules of the Association by three (3) arbitrators appointed in accordance
71 //    with the said Rules.
72 //    The place of arbitration shall be in Taipei, Taiwan and the language shall
73 //    be English.
74 //    The arbitration award shall be final and binding to both parties.
75 //
76 //******************************************************************************
77 //<MStar Software>
78 #ifndef _HAL_PNL_C_
79 #define _HAL_PNL_C_
80 
81 //-------------------------------------------------------------------------------------------------
82 //  Include Files
83 //-------------------------------------------------------------------------------------------------
84 
85 #include "MsCommon.h"
86 #include "MsTypes.h"
87 #include "utopia.h"
88 #include "utopia_dapi.h"
89 #include "apiPNL.h"
90 #include "apiPNL_v2.h"
91 #include "drvPNL.h"
92 #include "halPNL.h"
93 #include "PNL_private.h"
94 #include "pnl_hwreg_utility2.h"
95 #include "Manhattan_pnl_lpll_tbl.h"
96 #include "Manhattan_pnl_lpll_ext_tbl.h"
97 
98 #ifdef MSOS_TYPE_LINUX_KERNEL
99 #include <linux/string.h>
100 #include <linux/delay.h>
101 #include <asm/div64.h>
102 #else
103 #include "string.h"
104 #define do_div(x,y) ((x)/=(y))
105 #endif
106 
107 //-------------------------------------------------------------------------------------------------
108 //  Driver Compiler Options
109 //-------------------------------------------------------------------------------------------------
110 
111 //-------------------------------------------------------------------------------------------------
112 //  Local Defines
113 //-------------------------------------------------------------------------------------------------
114 
115 #define UNUSED(x)       (x=x)
116 #if 1
117 #define HAL_PNL_DBG(_dbgSwitch_, _fmt, _args...)      { if((_dbgSwitch_ & _u16PnlDbgSwitch) != 0) printf("PNL:"_fmt, ##_args); }
118 #define HAL_MOD_CAL_DBG(x)    //x
119 #else
120 #define HAL_PNL_DBG(_dbgSwitch_, _fmt, _args...)      { }
121 #endif
122 
123 #define DAC_LPLL_ICTRL     0x0002
124 #define LVDS_LPLL_ICTRL    0x0001
125 
126 //Get MOD calibration time
127 #define MOD_CAL_TIMER   FALSE
128 
129 //-------------------------------------------------------------------------------------------------
130 //  Local Structurs
131 //-------------------------------------------------------------------------------------------------
132 
133 //-------------------------------------------------------------------------------------------------
134 //  Global Variables
135 //-------------------------------------------------------------------------------------------------
136 
137 //-------------------------------------------------------------------------------------------------
138 //  Local Variables
139 //-------------------------------------------------------------------------------------------------
140 
141 //-------------------------------------------------------------------------------------------------
142 //  Debug Functions
143 //-------------------------------------------------------------------------------------------------
144 
145 //-------------------------------------------------------------------------------------------------
146 //  Local Functions
147 //-------------------------------------------------------------------------------------------------
148 
149 //-------------------------------------------------------------------------------------------------
150 //  Global Function
151 //-------------------------------------------------------------------------------------------------
152 /**
153 *   @brief: Power On MOD. but not mutex protected
154 *
155 */
MHal_MOD_PowerOn(void * pInstance,MS_BOOL bEn,MS_U8 u8LPLL_Type,MS_U8 DualModeType,MS_U16 u16OutputCFG0_7,MS_U16 u16OutputCFG8_15,MS_U16 u16OutputCFG16_21)156 MS_U8 MHal_MOD_PowerOn(void *pInstance, MS_BOOL bEn, MS_U8 u8LPLL_Type,MS_U8 DualModeType, MS_U16 u16OutputCFG0_7, MS_U16 u16OutputCFG8_15, MS_U16 u16OutputCFG16_21)
157 {
158     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
159     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
160     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
161     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
162 
163     if( bEn )
164     {
165         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, 0x00, BIT(8));
166 
167         //analog MOD power down. 1: power down, 0: power up
168         // For Mod2 no output signel
169         ///////////////////////////////////////////////////
170 
171         //2. Power on MOD (current and regulator)
172         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0x00 , BIT(0));
173         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, BIT(8) , BIT(8));
174 
175 
176         // 3. 4. 5.
177         MHal_Output_LVDS_Pair_Setting(pInstance, DualModeType, u16OutputCFG0_7, u16OutputCFG8_15, u16OutputCFG16_21);
178 
179 
180         //enable ib, enable ck
181         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, (BIT(1) | BIT(0)), (BIT(1) | BIT(0)));
182 
183         // clock gen of dot-mini
184         if(u8LPLL_Type == E_PNL_TYPE_MINILVDS)
185         {
186             MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x4400);
187             MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x4400);
188         }
189         else if((u8LPLL_Type == E_PNL_LPLL_VBY1_10BIT_4LANE)||
190                 (u8LPLL_Type == E_PNL_LPLL_VBY1_10BIT_2LANE)||
191                 (u8LPLL_Type == E_PNL_LPLL_VBY1_8BIT_4LANE) ||
192                 (u8LPLL_Type == E_PNL_LPLL_VBY1_8BIT_2LANE))
193 
194         {
195             MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x0400);  // [11:8]reg_ckg_dot_mini_pre2_osd
196             MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x0044);  // [3:0]reg_ckg_dot_mini_osd
197                                                     // [7:4]reg_ckg_dot_mini_pre_osd
198         }
199         //// for osd dedicated output port, 1 port for video and 1 port for osd
200         else if((u8LPLL_Type == E_PNL_TYPE_HS_LVDS)&&
201                 (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Mode == E_PNL_MODE_SINGLE))
202         {
203             MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x0400);  // [11:8]reg_ckg_dot_mini_pre2_osd
204             MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x0044);  // [3:0]reg_ckg_dot_mini_osd
205                                                     // [7:4]reg_ckg_dot_mini_pre_osd
206         }
207         else if(u8LPLL_Type == E_PNL_LPLL_VBY1_10BIT_8LANE)
208         {
209             MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x0440);  // [11:8]reg_ckg_dot_mini_pre2_osd
210             MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x0044);  // [3:0]reg_ckg_dot_mini_osd
211         }
212         else
213         {
214             MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x0000);
215             MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x0000);
216         }
217     }
218     else
219     {
220         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, BIT(8), BIT(8));
221         if(u8LPLL_Type !=E_PNL_TYPE_MINILVDS)
222         {
223             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, BIT(0), BIT(0));                              //analog MOD power down. 1: power down, 0: power up
224             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0x00, BIT(8));
225         }
226 
227         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0, (BIT(1) | BIT(0) ));                           //enable ib, enable ck
228 
229         // clock gen of dot-mini
230         MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x1100);
231         MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x1100);
232 
233         if((u8LPLL_Type>=E_PNL_LPLL_VBY1_10BIT_4LANE)&&(u8LPLL_Type<=E_PNL_LPLL_VBY1_8BIT_8LANE))
234         {
235             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0020,0x0020);
236             MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x0000);
237             MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0000);
238             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0000,0x0020);
239         }
240     }
241     return 1;
242 }
243 
244 /**
245 *   @brief: Setup the PVDD power 1:2.5V, 0:3.3V
246 *
247 */
MHal_MOD_PVDD_Power_Setting(void * pInstance,MS_BOOL bIs2p5)248 void MHal_MOD_PVDD_Power_Setting(void *pInstance, MS_BOOL bIs2p5)
249 {
250     //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, ((bIs2p5)? BIT(6):0), BIT(6));    //MOD PVDD=1: 0.9
251 }
252 
MHal_PNL_TCON_Init(void * pInstance)253 void MHal_PNL_TCON_Init(void *pInstance)
254 {
255 
256 }
257 
MHal_Shift_LVDS_Pair(void * pInstance,MS_U8 Type)258 void MHal_Shift_LVDS_Pair(void *pInstance, MS_U8 Type)
259 {
260     if(Type == 1)
261         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, (BIT(7) | BIT(6)), (BIT(7) | BIT(6))); // shift_lvds_pair, set LVDS Mode3
262     else
263         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, 0x0000, (BIT(7) | BIT(6)));
264 
265 }
266 
MHal_Output_LVDS_Pair_Setting(void * pInstance,MS_U8 Type,MS_U16 u16OutputCFG0_7,MS_U16 u16OutputCFG8_15,MS_U16 u16OutputCFG16_21)267 void MHal_Output_LVDS_Pair_Setting(void *pInstance, MS_U8 Type, MS_U16 u16OutputCFG0_7, MS_U16 u16OutputCFG8_15, MS_U16 u16OutputCFG16_21)
268 {
269 
270     if(Type == LVDS_DUAL_OUTPUT_SPECIAL )
271     {
272         MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x0555);
273         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x1554);
274     }
275     else if(Type == LVDS_SINGLE_OUTPUT_A)
276     {
277         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_00_L, 0x5550, 0xFFF0);
278         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0555);
279     }
280     else if( Type == LVDS_SINGLE_OUTPUT_B)
281     {
282         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_00_L, 0x5550, 0xFFF0);
283         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0555);
284     }
285     else if( Type == LVDS_OUTPUT_User)
286     {
287         MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, u16OutputCFG0_7);
288         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, u16OutputCFG8_15);
289     }
290     else
291     {
292         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_00_L, 0x5550, 0xFFF0);
293         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0555);
294     }
295 
296     MsOS_DelayTask(2);
297 
298 
299 }
300 
MHal_Output_Channel_Order(void * pInstance,MS_U8 Type,MS_U16 u16OutputOrder0_3,MS_U16 u16OutputOrder4_7,MS_U16 u16OutputOrder8_11,MS_U16 u16OutputOrder12_13)301 void MHal_Output_Channel_Order(void *pInstance,
302                                MS_U8 Type,
303                                MS_U16 u16OutputOrder0_3,
304                                MS_U16 u16OutputOrder4_7,
305                                MS_U16 u16OutputOrder8_11,
306                                MS_U16 u16OutputOrder12_13)
307 {
308     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
309     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
310     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
311     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
312 
313     if(Type == APIPNL_OUTPUT_CHANNEL_ORDER_USER )
314     {
315         MOD_W2BYTE(REG_MOD_BK00_08_L, u16OutputOrder0_3);
316         MOD_W2BYTE(REG_MOD_BK00_09_L, u16OutputOrder4_7);
317         MOD_W2BYTE(REG_MOD_BK00_0A_L, u16OutputOrder8_11);
318         MOD_W2BYTE(REG_MOD_BK00_0B_L, u16OutputOrder12_13);
319     }
320     else
321     {
322         if(   (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_8LANE)
323             ||(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_8BIT_8LANE))
324         {
325             if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16MOD_CTRLA & BIT(1)) // 2 Divisoin
326             {
327                 MOD_W2BYTE(REG_MOD_BK00_08_L, 0x6420);
328                 MOD_W2BYTE(REG_MOD_BK00_09_L, 0x7531);
329                 MOD_W2BYTE(REG_MOD_BK00_0A_L, 0xBA98);
330                 MOD_W2BYTE(REG_MOD_BK00_0B_L, 0x0000);
331             }
332             else
333             {
334                 MOD_W2BYTE(REG_MOD_BK00_08_L, 0x3210);
335                 MOD_W2BYTE(REG_MOD_BK00_09_L, 0x7654);
336                 MOD_W2BYTE(REG_MOD_BK00_0A_L, 0xBA98);
337                 MOD_W2BYTE(REG_MOD_BK00_0B_L, 0x0000);
338             }
339         }
340         else if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_LVDS)
341         {//LVDS
342             MOD_W2BYTE(REG_MOD_BK00_08_L, 0x10DC);
343             MOD_W2BYTE(REG_MOD_BK00_09_L, 0x5432);
344             MOD_W2BYTE(REG_MOD_BK00_0A_L, 0x9876);
345             MOD_W2BYTE(REG_MOD_BK00_0B_L, 0x00BA);
346         }
347         else
348         {
349             MOD_W2BYTE(REG_MOD_BK00_08_L, 0x76DC);
350             MOD_W2BYTE(REG_MOD_BK00_09_L, 0xBA98);
351             MOD_W2BYTE(REG_MOD_BK00_0A_L, 0x3210);
352             MOD_W2BYTE(REG_MOD_BK00_0B_L, 0x0054);
353         }
354     }
355 
356 }
357 
MHal_PQ_Clock_Gen_For_Gamma(void * pInstance)358 void MHal_PQ_Clock_Gen_For_Gamma(void *pInstance)
359 {
360     W2BYTEMSK(REG_CLKGEN0_52_L, 0x00, 0x07);
361 }
362 
MHal_VOP_SetGammaMappingMode(void * pInstance,MS_U8 u8Mapping)363 void MHal_VOP_SetGammaMappingMode(void *pInstance, MS_U8 u8Mapping)
364 {
365     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
366     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
367 
368     if(u8Mapping & GAMMA_MAPPING)
369     {
370         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_74_L, (u8Mapping & GAMMA_10BIT_MAPPING)? BIT(15):0, BIT(15));
371     }
372     else
373     {
374         PNL_ASSERT(0, "Invalid eSupportGammaMapMode [%d] Passed to [%s], please make sure the u8Mapping[%d] is valid\n.",
375                        u8Mapping, __FUNCTION__, u8Mapping);
376     }
377 }
378 
Hal_VOP_Is_GammaMappingMode_enable(void * pInstance)379 MS_BOOL Hal_VOP_Is_GammaMappingMode_enable(void *pInstance)
380 {
381     // Only support 1024 entry
382     return TRUE;
383 }
384 
385 // After A5, 8 bit mode only support burst write!!!
Hal_VOP_Is_GammaSupportSignalWrite(void * pInstance,DRVPNL_GAMMA_MAPPEING_MODE u8Mapping)386 MS_BOOL Hal_VOP_Is_GammaSupportSignalWrite(void *pInstance, DRVPNL_GAMMA_MAPPEING_MODE u8Mapping)
387 {
388     if( u8Mapping == E_DRVPNL_GAMMA_10BIT_MAPPING )
389         return TRUE;
390     else
391         return FALSE;
392 }
393 
394 
hal_PNL_WriteGamma12Bit(void * pInstance,MS_U8 u8Channel,MS_BOOL bBurstWrite,MS_U16 u16Addr,MS_U16 u16GammaValue)395 void hal_PNL_WriteGamma12Bit(void *pInstance, MS_U8 u8Channel, MS_BOOL bBurstWrite, MS_U16 u16Addr, MS_U16 u16GammaValue)
396 {
397     MS_U16 u16Delay = 0xFFFF;
398     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
399     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
400 
401     PNL_DBG(PNL_DBGLEVEL_GAMMA, "Write SC%tu [ch %d][addr 0x%x]: 0x%x \n", (ptrdiff_t)pPNLInstancePrivate->u32DeviceID, u8Channel, u16Addr, u16GammaValue);
402 
403     if (!bBurstWrite )
404     {
405         while (SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6D_L, 0xE0) && (--u16Delay));          // Check whether the Write chanel is ready
406         PNL_ASSERT(u16Delay > 0, "%s\n", "WriteGamma timeout");
407 
408         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6C_L, u16Addr, 0x3FF);                          // set address port
409         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, (REG_SC_BK10_6E_L + u8Channel *2), u16GammaValue, 0xFFF);      // Set channel data
410 
411         // kick off write
412         switch(u8Channel)
413         {
414             case 0:  // Red
415                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6D_L, BIT(5), BIT(5));
416                 break;
417 
418             case 1:  // Green
419                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6D_L, BIT(6), BIT(6));
420                 break;
421 
422             case 2:  // Blue
423                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6D_L, BIT(7), BIT(7));
424                 break;
425         }
426 
427         while (SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6D_L, 0xE0) && (--u16Delay));          // Check whether the Write chanel is ready
428     }
429     else
430     {
431         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6E_L, u16GammaValue, 0xFFF);
432     }
433 
434 
435     PNL_ASSERT(u16Delay > 0, "%s\n", "WriteGamma timeout");
436 
437 }
438 
439 
hal_PNL_SetMaxGammaValue(void * pInstance,MS_U8 u8Channel,MS_U16 u16MaxGammaValue)440 void hal_PNL_SetMaxGammaValue(void *pInstance, MS_U8 u8Channel, MS_U16 u16MaxGammaValue)
441 {
442     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
443     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
444 
445     PNL_DBG(PNL_DBGLEVEL_GAMMA, "Max gamma of SC%tu %d is 0x%x\n", (ptrdiff_t)pPNLInstancePrivate->u32DeviceID, u8Channel, u16MaxGammaValue);
446 #ifdef MONACO_SC2
447 	if(pPNLInstancePrivate->u32DeviceID == 0)
448 	{
449 #endif
450    		switch(u8Channel)
451     	{
452     	    case 0:  // max. Red
453     	        SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_7D_L , u16MaxGammaValue, 0xFFF);           // max. base 0
454     	        break;
455 
456     	    case 1:  // max. Green
457     	        SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_7E_L , u16MaxGammaValue, 0xFFF);           // max. base 1
458     	        break;
459 
460     	    case 2:  //max.  Blue
461     	        SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_7F_L , u16MaxGammaValue, 0xFFF);           // max. base 1
462     	        break;
463    		}
464 #ifdef MONACO_SC2
465 	}else	//Nike
466 	{
467     switch(u8Channel)
468     {
469         case 0:  // max. Red
470     	        SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7A_L , u16MaxGammaValue, 0xFFF);           // max. base 0
471     	        SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7B_L , u16MaxGammaValue, 0xFFF);           // max. base 1
472             break;
473 
474         case 1:  // max. Green
475     	        SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7C_L , u16MaxGammaValue, 0xFFF);           // max. base 0
476     	        SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7D_L , u16MaxGammaValue, 0xFFF);           // max. base 1
477             break;
478 
479         case 2:  //max.  Blue
480     	        SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7E_L , u16MaxGammaValue, 0xFFF);           // max. base 0
481     	        SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7F_L , u16MaxGammaValue, 0xFFF);           // max. base 1
482             break;
483      }
484 
485 	}
486 #endif
487 }
488 
489 /////////////////////////////////////////////////////////////////////////////
490 // Gamma format (12 bit LUT)
491 //      0, 1, 2, 3, ..., NumOfLevel, totally N Sets of tNormalGammaR/G/B[],
492 //      1 set uses 2 bytes of memory.
493 //
494 // [T2 and before ] N = 256
495 // [T3]             N = 256 or 1024
496 // ______________________________________________________________________________
497 //  Byte | 0         1           2               n-1        n
498 //    [G1|G0]       [G0]       [G1] . ...... .  [Gmax]    [Gmax]
499 //    3:0  3:0      11:4       11:4              3:0       11:4
500 //
501 
Hal_PNL_Set12BitGammaPerChannel(void * pInstance,MS_U8 u8Channel,MS_U8 * u8Tab,DRVPNL_GAMMA_MAPPEING_MODE GammaMapMode)502 void Hal_PNL_Set12BitGammaPerChannel(void *pInstance, MS_U8 u8Channel, MS_U8 * u8Tab, DRVPNL_GAMMA_MAPPEING_MODE GammaMapMode)
503 {
504     MS_U16 i , j ;
505     MS_U16 u16Addr             = 0;
506     MS_U16 u16GammaValueR[4]  = {0, 0, 0, 0};
507     MS_U16 u16GammaDeltaR[3]  = {0, 0, 0};
508     MS_U16 u16MaxGammaValue1  = 0;
509     MS_U16 u16MaxGammaValue   = 0;
510     MS_U16 u16NumOfLevel = GammaMapMode == E_DRVPNL_GAMMA_8BIT_MAPPING ? 256 : 1024;
511     MS_BOOL bUsingBurstWrite = !Hal_VOP_Is_GammaSupportSignalWrite(pInstance, GammaMapMode);
512     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
513     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
514 
515     bUsingBurstWrite = bUsingBurstWrite;
516 
517     if (u8Channel >= 3 )
518         return;
519 
520     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_71_L, 0x00 , 0x00FF);  //Initial  write address, GAMMA_ADR[7:0]
521     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_72_L, 0x00, 0xFFFF);   // Initial GAMMA_DATA[26:0]
522     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_73_L, 0x00, 0x07FF);   // Initial GAMMA_DATA[26:0]
523 
524     //Select write channel, GAMMA_CH_SEL[1:0] .
525     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_70_L, u8Channel<<5 , BIT(5)| BIT(6));
526 
527     if(bUsingBurstWrite)
528     {
529         //Enable burst write mode, GAMMA_BW_EN .
530         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_70_L, BIT(7) , BIT(7));
531     }
532 
533     if (( GammaMapMode ==E_DRVPNL_GAMMA_10BIT_MAPPING))//For 1024 Entry Mode
534     {
535         //  write ref of one entry of gamma table, WR_R[11:0]
536         for (i = 0; u16Addr < u16NumOfLevel/4; i += 6)
537         {
538             // gamma x   of R
539             u16GammaValueR[0]  = u8Tab[i] & 0x0F;
540             u16GammaValueR[0] |= (MS_U16)u8Tab[i+1] << 4;
541 
542             // gamma x+1 of R
543             u16GammaValueR[1]  = (u8Tab[i] & 0xF0) >>  4;
544             u16GammaValueR[1] |= (MS_U16)u8Tab[i+2] << 4;
545 
546             // gamma x+2 of R
547             u16GammaValueR[2]  = u8Tab[i+3] & 0x0F;
548             u16GammaValueR[2] |= (MS_U16)u8Tab[i+4] << 4;
549 
550             // gamma x+3 of R
551             u16GammaValueR[3]  = (u8Tab[i+3] & 0xF0) >> 4;
552             u16GammaValueR[3] |=  (MS_U16)u8Tab[i+5] << 4;
553 
554             for (j = 0; j < 3; j ++)
555             {
556                 u16GammaDeltaR[j] = abs(u16GammaValueR[j+1] - u16GammaValueR[j]);
557             }
558 
559             u16MaxGammaValue1 = MAX(MAX(u16GammaValueR[0],u16GammaValueR[1]),MAX(u16GammaValueR[2],u16GammaValueR[3]));
560 
561             if(u16MaxGammaValue < u16MaxGammaValue1)
562             {
563                 u16MaxGammaValue = u16MaxGammaValue1;
564             }
565 
566             if(!bUsingBurstWrite)  //Normal write mode
567             {
568                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_71_L, u16Addr, 0x00FF);  // Set write address, GAMMA_ADR[7:0] .
569             }
570 
571             u16GammaDeltaR[0]=(((u16GammaValueR[0]<<15)&0x8000)|((u16GammaDeltaR[0]<<10)&0x7C00)|
572                                ((u16GammaDeltaR[1]<<5)&0x03E0)|((u16GammaDeltaR[2]<<0)&0x001F));
573             //write ref of one entry of gamma table, GAMMA_DATA[26:0]
574             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_73_L, u16GammaValueR[0]>>1, 0x07FF);
575             SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_72_L, u16GammaDeltaR[0]);
576 
577             if(!bUsingBurstWrite)  //Normal write mode
578             {
579                 //After finish normal write mode,toggle write pulse, GAMMA_WR_EN.
580                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_70_L,BIT(3),BIT(3));
581                 while ( SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_70_L,BIT(3)));
582             }
583             u16Addr ++ ;   // Continue to write next entry of gamma table .
584         }
585     }
586     else  //For 256 Entry Mode
587     {
588         //  write ref of one entry of gamma table, WR_R[11:0]
589         for(i = 0; u16Addr < u16NumOfLevel; i += 3)
590         {
591             // gamma x
592             u16GammaValueR[0] = u8Tab[i] & 0x0F;
593             u16GammaValueR[0] |= u8Tab[i+1] << 4;
594 
595             // gamma x+1
596             u16GammaValueR[1] = (u8Tab[i] & 0xF0) >> 4;
597             u16GammaValueR[1] |= u8Tab[i+2] << 4;
598 
599             // gamma x+2
600             u16GammaValueR[2] = u8Tab[i+3] & 0x0F;
601             u16GammaValueR[2] |= u8Tab[i+4] << 4;
602 
603             u16MaxGammaValue1 = MAX(u16GammaValueR[0],u16GammaValueR[1]);
604 
605             if(u16MaxGammaValue < u16MaxGammaValue1)
606             {
607                 u16MaxGammaValue = u16MaxGammaValue1;
608             }
609 
610             if(!bUsingBurstWrite)  //Normal write mode
611             {
612                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_71_L, u16Addr,0x00FF);  // set write address, GAMMA_ADR[7:0]
613             }
614 
615             u16GammaDeltaR[0] = ( u16GammaValueR[1] - u16GammaValueR[0] ) / 4;
616             u16GammaDeltaR[0]  =     ((u16GammaValueR[0]<<15)&0x8000)  | ((u16GammaDeltaR[0]<<10)&0x7C00)
617                                     |((u16GammaDeltaR[0]<<5)&0x03E0)   | ((u16GammaDeltaR[0]&0x001F));
618             //write ref of one entry of gamma table, GAMMA_DATA[26:0]
619             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_73_L, u16GammaValueR[0]>>1, 0x07FF);
620             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_72_L, u16GammaDeltaR[0] ,   0xFFFF);
621 
622             if(!bUsingBurstWrite)  //Normal write mode
623             {
624                 //After finish normal write mode,toggle write pulse, GAMMA_WR_EN.
625                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_70_L,BIT(3),BIT(3));
626                 while ( SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_70_L,BIT(3)));
627             }
628             u16Addr ++ ;   // continue to write next entry of gamma table
629 
630 
631             if(!bUsingBurstWrite)  //Normal write mode
632             {
633                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_71_L, u16Addr,0x00FF);  // set write address, GAMMA_ADR[7:0]
634             }
635 
636             u16GammaDeltaR[1] = ( u16GammaValueR[2] - u16GammaValueR[1] ) / 4;
637             u16GammaDeltaR[1]  =     ((u16GammaValueR[1]<<15)&0x8000)  | ((u16GammaDeltaR[1]<<10)&0x7C00)
638                                     |((u16GammaDeltaR[1]<<5)&0x03E0)   | ((u16GammaDeltaR[1]&0x001F));
639             //write ref of one entry of gamma table, GAMMA_DATA[26:0]
640             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_73_L, u16GammaValueR[1]>>1,   0x07FF);
641             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_72_L, u16GammaDeltaR[1],   0xFFFF);
642 
643             if(!bUsingBurstWrite)  //Normal write mode
644             {
645                 //After finish normal write mode,toggle write pulse, GAMMA_WR_EN.
646                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_70_L,BIT(3),BIT(3));
647                 while ( SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_70_L,BIT(3)));
648             }
649             u16Addr ++ ;   // continue to write next entry of gamma table
650         }
651     }
652 
653     if(bUsingBurstWrite)
654     {
655         //After finish burst write data of one channel, disable burst write mode .
656         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_70_L, 0x00 , BIT(7));
657     }
658     hal_PNL_SetMaxGammaValue(pInstance, u8Channel, u16MaxGammaValue);
659 
660 }
661 /////////////////////////////////////////////////////////////////////////////
662 // Gamma format (12 bit LUT)
663 //      0, 1, 2, 3, ..., NumOfLevel, totally N Sets of tNormalGammaR/G/B[],
664 //      1 set uses 2 bytes of memory.
665 //
666 // [T2 and before ] N = 256
667 // [T3]             N = 256 or 1024
668 // ______________________________________________________________________________
669 //  Byte | 0         1           2               n-1        n
670 //    [G1|G0]       [G0]       [G1] . ...... .  [Gmax]    [Gmax]
671 //    3:0  3:0      11:4       11:4              3:0       11:4
672 //
673 #ifdef MONACO_SC2
Hal_PNL_Set12BitGammaPerChannel_SC2(void * pInstance,MS_U8 u8Channel,MS_U8 * u8Tab,DRVPNL_GAMMA_MAPPEING_MODE GammaMapMode)674 void Hal_PNL_Set12BitGammaPerChannel_SC2(void *pInstance, MS_U8 u8Channel, MS_U8 * u8Tab, DRVPNL_GAMMA_MAPPEING_MODE GammaMapMode )
675 {
676     MS_U16 u16Addr             = 0;
677     MS_U16 u16CodeTableIndex  = u16Addr/2*3;
678     MS_U16 u16GammaValue      = 0;
679     MS_U16 u16MaxGammaValue   = 0;
680     MS_U16 u16NumOfLevel = GammaMapMode == E_DRVPNL_GAMMA_8BIT_MAPPING ? 256 : 1024;
681     MS_BOOL bUsingBurstWrite = !Hal_VOP_Is_GammaSupportSignalWrite(pInstance,GammaMapMode);
682     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
683     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
684 
685     // Go to burst write if not support
686     if ( bUsingBurstWrite )
687     {
688         // 1.   initial burst write address, LUT_ADDR[7:0]
689         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6C_L, 0x00 , 0x3FF);
690 
691         // 2.   select burst write channel, REG_LUT_BW_CH_SEL[1:0]
692         switch(u8Channel)
693         {
694             case 0:  // Red
695                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, 0x00 , BIT(3) | BIT(2) );
696                 break;
697 
698             case 1:  // Green
699                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, BIT(2) , BIT(3) | BIT(2) );
700                 break;
701 
702             case 2:  // Blue
703                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, BIT(3) , BIT(3) | BIT(2) );
704                 break;
705         }
706 
707         // 3.   enable burst write mode, REG_LUT_BW_MAIN_EN
708         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, BIT(0) , BIT(0)); // Burst write enable
709 
710     }
711 
712     //printf("\33[0;31m Gamma Mapping mode %d \n \33[m",GammaMapMode );
713     // write gamma table per one channel
714     for(; u16Addr < u16NumOfLevel; u16CodeTableIndex += 3)
715     {
716         // gamma x
717         u16GammaValue = u8Tab[u16CodeTableIndex] & 0x0F;
718         u16GammaValue |= u8Tab[u16CodeTableIndex+1] << 4;
719 
720         PNL_DBG(PNL_DBGLEVEL_GAMMA,"Gamma x: SrcGTbl[%d] = 0x%x, [%d] = 0x%x, Gamma = 0x%x, GammaLvl=%d\n",
721                                     u16CodeTableIndex, u8Tab[u16CodeTableIndex], u16CodeTableIndex+1, u8Tab[u16CodeTableIndex+1], u16GammaValue, u16NumOfLevel);
722 
723         if(u16MaxGammaValue < u16GammaValue)
724         {
725             u16MaxGammaValue = u16GammaValue;
726         }
727 
728         // write gamma value
729         hal_PNL_WriteGamma12Bit(pInstance,u8Channel,bUsingBurstWrite, u16Addr, u16GammaValue);
730         u16Addr++;
731 
732         // gamma x+1
733         u16GammaValue = (u8Tab[u16CodeTableIndex] & 0xF0) >> 4;
734         u16GammaValue |= u8Tab[u16CodeTableIndex+2] << 4;
735 
736         PNL_DBG(PNL_DBGLEVEL_GAMMA, "Gamma x+1: SrcGTbl[%d] = 0x%x, [%d] = 0x%x, Gamma = 0x%x\n", u16CodeTableIndex, u8Tab[u16CodeTableIndex], u16CodeTableIndex+2, u8Tab[u16CodeTableIndex+2], u16GammaValue);
737 
738         if(u16MaxGammaValue < u16GammaValue)
739             {
740             u16MaxGammaValue = u16GammaValue;
741             }
742 
743         // write gamma value
744         hal_PNL_WriteGamma12Bit(pInstance,u8Channel,bUsingBurstWrite, u16Addr, u16GammaValue);
745         u16Addr++;
746     }
747 
748     if ( bUsingBurstWrite )
749     {
750         // 5.   after finish burst write data of one channel, disable burst write mode
751         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, 0x00 , BIT(0));
752     }
753 
754     hal_PNL_SetMaxGammaValue(pInstance,u8Channel, u16MaxGammaValue);
755 }
756 #endif
757 // src : 1 (scaler lpll)
758 // src : 0 (frc lpll)
MHal_PNL_FRC_lpll_src_sel(void * pInstance,MS_U8 u8src)759 MS_U8 MHal_PNL_FRC_lpll_src_sel(void *pInstance, MS_U8 u8src)
760 {
761     if (u8src > 1)
762     {
763         return FALSE;
764     }
765     else
766     {
767 //Not support two LPLL (frc lpll) for Manhattan
768 #if 0
769         W2BYTEMSK(L_BK_LPLL(0x00), 0x00, 0x0F);
770         W2BYTEMSK(L_BK_LPLL(0x7F), u8src?BIT(8):0, BIT(8));
771 
772         if(u8src==0)
773         {
774             W2BYTEMSK(L_BK_LPLL(0x00), 0x01, 0x0F);
775             W2BYTEMSK(L_BK_LPLL(0x7F), BIT(8), BIT(8));
776             W2BYTEMSK(L_BK_LPLL(0x00), 0x00, 0x0F); // restore to sub bnak 0
777         }
778 #endif
779         return TRUE;
780     }
781 
782 }
783 
_MHal_PNL_GetSupportedLPLLIndex(void * pInstance,PNL_TYPE eLPLL_Type,PNL_MODE eLPLL_Mode,MS_U64 ldHz,PNL_LPLL_TYPE_SEL lpll_type_sel)784 static MS_U8 _MHal_PNL_GetSupportedLPLLIndex(void *pInstance,
785                                                                  PNL_TYPE eLPLL_Type,
786                                                                  PNL_MODE eLPLL_Mode,
787                                                                  MS_U64 ldHz, PNL_LPLL_TYPE_SEL lpll_type_sel)
788 {
789     MS_U8 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MAX;
790 #if defined (__aarch64__)
791     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]eLPLL_Type=%u, eLPLL_Mode=%u, ldHz=%lu, lpll_type_sel=%u\n", __FUNCTION__, __LINE__, eLPLL_Type, eLPLL_Mode, ldHz, lpll_type_sel);
792 #else
793     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]eLPLL_Type=%u, eLPLL_Mode=%u, ldHz=%llu, lpll_type_sel=%u\n", __FUNCTION__, __LINE__, eLPLL_Type, eLPLL_Mode, ldHz, lpll_type_sel);
794 #endif
795 
796     /// Mini LVDS, EPI34/28, LVDS_1CH, Vx1_1P are 1P structure
797     if(!((eLPLL_Type == E_PNL_TYPE_TTL)||
798         ((eLPLL_Type == E_PNL_TYPE_LVDS)&&(eLPLL_Mode==E_PNL_MODE_SINGLE))||
799         ((eLPLL_Type == E_PNL_TYPE_HS_LVDS)&&(eLPLL_Mode==E_PNL_MODE_SINGLE))||
800         (eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_1LANE)||(eLPLL_Type == E_PNL_LPLL_VBY1_8BIT_1LANE)||
801         ((eLPLL_Type >= E_PNL_LPLL_MINILVDS_2CH_3P_8BIT)&&(eLPLL_Type <= E_PNL_LPLL_MINILVDS_1CH_6P_6BIT))||
802         ((eLPLL_Type >= E_PNL_LPLL_EPI34_2P)&&(eLPLL_Type <= E_PNL_LPLL_EPI28_4P))))
803     {
804         ldHz/=2;
805     }
806 
807     switch(lpll_type_sel)
808     {
809         default:
810         case E_PNL_LPLL_VIDEO:
811         {
812             switch (eLPLL_Type)
813             {
814                 case E_PNL_TYPE_TTL:
815                     if (ldHz < 250000000)
816                     {
817                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_TTL_25to25MHz;
818                     }
819                     else if ((ldHz >= 250000000) && (ldHz < 500000000))
820                     {
821                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_TTL_25to50MHz;
822                     }
823                     else if((ldHz >= 500000000) && (ldHz < 1000000000))
824                     {
825                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_TTL_50to100MHz;
826                     }
827                     else
828                     {
829                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_TTL_100to150MHz;
830                     }
831                 break;
832 
833                 case E_PNL_TYPE_LVDS:
834                     switch (eLPLL_Mode)
835                     {
836                         case E_PNL_MODE_SINGLE:
837                             if (ldHz < 500000000)
838                             {
839                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_LVDS_1CH_50to50MHz;
840                             }
841                             else
842                             {
843                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_LVDS_1CH_50to80MHz;
844                             }
845                         break;
846 
847                         default:
848                         case E_PNL_MODE_DUAL:
849                             if (ldHz < 250000000)
850                             {
851                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_LVDS_2CH_25to25MHz;
852                             }
853                             else if ((ldHz >= 250000000) && (ldHz < 500000000))
854                             {
855                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_LVDS_2CH_25to50MHz;
856                             }
857                             else
858                             {
859                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_LVDS_2CH_50to80MHz;
860                             }
861                         break;
862                     }
863                 break;
864 
865                 case E_PNL_TYPE_HS_LVDS:
866 
867                     switch (eLPLL_Mode)
868                     {
869                         case E_PNL_MODE_SINGLE:
870                             if(ldHz < 500000000)
871                             {
872                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_HS_LVDS_1CH_50to50MHz;
873                             }
874                             else if((ldHz >= 500000000) && (ldHz < 1150000000))
875                             {
876                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_HS_LVDS_1CH_50to115MHz;
877                             }
878                             else
879                             {
880                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_HS_LVDS_1CH_115to150MHz;
881                             }
882                         break;
883 
884                         default:
885                         case E_PNL_MODE_DUAL:
886                             if(ldHz < 250000000)
887                             {
888                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_HS_LVDS_2CH_25to25MHz;
889                             }
890                             else if((ldHz >= 250000000) && (ldHz < 570000000))
891                             {
892                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_HS_LVDS_2CH_25to57MHz;
893                             }
894                             else if((ldHz >= 570000000) && (ldHz < 1150000000UL))
895                             {
896                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_HS_LVDS_2CH_57to115MHz;
897                             }
898                             else
899                             {
900                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_HS_LVDS_2CH_115to150MHz;
901                             }
902                         break;
903                     }
904                 break;
905 ///Not Support
906 #if 0
907                 case E_PNL_LPLL_MINILVDS_1CH_3P_8BIT:
908                     u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_1CH_3PAIR_8BIT_50to80MHz;
909                 break;
910 
911                 case E_PNL_LPLL_MINILVDS_2CH_3P_8BIT:
912                     if((ldHz >= 500000000) && (ldHz < 1000000000))
913                     {
914                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_8BIT_50to100MHz;
915                     }
916                     else
917                     {
918                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_8BIT_100to150MHz;
919                     }
920                 break;
921 
922                 case E_PNL_LPLL_MINILVDS_2CH_6P_8BIT:
923                     if((ldHz >= 500000000) && (ldHz < 1000000000))
924                     {
925                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_6PAIR_8BIT_50to100MHz;
926                     }
927                     else
928                     {
929                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_6PAIR_8BIT_100to150MHz;
930                     }
931                 break;
932 
933                 case E_PNL_LPLL_MINILVDS_1CH_3P_6BIT:
934                     if((ldHz >= 500000000) && (ldHz < 666700000))
935                     {
936                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_1CH_3PAIR_6BIT_50to66_67MHz;
937                     }
938                     else
939                     {
940                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_1CH_3PAIR_6BIT_66_67to80MHz;
941                     }
942                 break;
943 
944                 case E_PNL_LPLL_MINILVDS_2CH_3P_6BIT:
945                     if ((ldHz <= 500000000) && (ldHz < 666700000))
946                     {
947                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_6BIT_50to66_67MHz;
948                     }
949                     else if((ldHz >= 666700000) && (ldHz < 1333300000))
950                     {
951                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_6BIT_66_67to133_33MHz;
952                     }
953                     else
954                     {
955                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_6BIT_133_33to150MHz;
956                     }
957                 break;
958 
959                 case E_PNL_LPLL_MINILVDS_2CH_6P_6BIT:
960                     if ((ldHz <= 500000000) && (ldHz < 670000000))
961                     {
962                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_6PAIR_6BIT_50to67MHz;
963                     }
964                     else if((ldHz >= 670000000) && (ldHz < 1330000000))
965                     {
966                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_6PAIR_6BIT_67to133MHz;
967                     }
968                     else
969                     {
970                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_6PAIR_6BIT_133to150MHz;
971                     }
972                 break;
973 
974                 case E_PNL_LPLL_EPI34_4P:
975                     u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI34_10BIT_4PAIR_95to150MHz;
976                 break;
977 
978                 case E_PNL_LPLL_EPI34_6P:
979                     u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI34_10BIT_6PAIR_80to150MHz;
980                 break;
981 
982                 case E_PNL_LPLL_EPI34_8P:
983                     if((ldHz >= 800000000) && (ldHz < 940000000))
984                     {
985                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI34_10BIT_8PAIR_80to94MHz;
986                     }
987                     else if((ldHz >= 940000000) && (ldHz < 1880000000))
988                     {
989                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI34_10BIT_8PAIR_94to188MHz;
990                     }
991                     else
992                     {
993                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI34_10BIT_8PAIR_188to300MHz;
994                     }
995                 break;
996 
997                 case E_PNL_LPLL_EPI28_4P:
998                     if((ldHz >= 800000000) && (ldHz < 1140000000))
999                     {
1000                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI28_8BIT_4PAIR_80to114MHz;
1001                     }
1002                     else
1003                     {
1004                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI28_8BIT_4PAIR_114to150MHz;
1005                     }
1006                 break;
1007 
1008                 case E_PNL_LPLL_EPI28_6P:
1009                     if((ldHz >= 800000000) && (ldHz < 1720000000))
1010                     {
1011                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI28_8BIT_6PAIR_80to172MHz;
1012                     }
1013                     else
1014                     {
1015                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI28_8BIT_6PAIR_172to300MHz;
1016                     }
1017                 break;
1018 
1019                 case E_PNL_LPLL_EPI28_8P:
1020                     if((ldHz >= 800000000) && (ldHz < 1140000000))
1021                     {
1022                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI28_8BIT_8PAIR_80to114MHz;
1023                     }
1024                     else if((ldHz >= 1140000000UL) && (ldHz < 2280000000UL))
1025                     {
1026                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI28_8BIT_8PAIR_114to228MHz;
1027                     }
1028                     else
1029                     {
1030                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI28_8BIT_8PAIR_228to300MHz;
1031                     }
1032                 break;
1033 #endif
1034                 case E_PNL_LPLL_EPI28_12P:
1035                     u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_12PAIR_4K_V15_330to330MHz;
1036                 break;
1037 /*
1038                 case E_PNL_LPLL_EPI34_12P:
1039                 case E_PNL_LPLL_EPI24_12P:
1040                 break;
1041 */
1042 
1043                 case E_PNL_LPLL_VBY1_10BIT_8LANE:
1044                     if(ldHz < 1500000000)
1045                     {
1046                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_8CH_10BIT_4K_150to150MHz;
1047                     }
1048                     else
1049                     {
1050                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_8CH_10BIT_4K_150to340MHz;
1051                     }
1052                     printf("@@11=%u\n",u8SupportedLPLLIndex);
1053                 break;
1054 
1055                 case E_PNL_LPLL_VBY1_10BIT_4LANE:
1056                     if(ldHz < 750000000)
1057                     {
1058                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_4CH_10BIT_75to75MHz;
1059                     }
1060                     else
1061                     {
1062                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_4CH_10BIT_75to150MHz;
1063                     }
1064                 break;
1065 
1066                 case E_PNL_LPLL_VBY1_10BIT_2LANE:
1067                     if(ldHz < 380000000)
1068                     {
1069                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_2CH_10BIT_38to38MHz;
1070                     }
1071                     else
1072                     {
1073                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_2CH_10BIT_38to75MHz;
1074                     }
1075                 break;
1076 
1077                 case E_PNL_LPLL_VBY1_8BIT_8LANE:
1078                     if(ldHz < 1500000000UL)
1079                     {
1080                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_8CH_8BIT_4K_150to150MHz;
1081                     }
1082                     else if((ldHz >= 1500000000UL) && (ldHz < 2200000000UL))
1083                     {
1084                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_8CH_8BIT_4K_150to200MHz;
1085                     }
1086                     else
1087                     {
1088                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_8CH_8BIT_4K_200to340MHz;
1089                     }
1090                 break;
1091 
1092                 case E_PNL_LPLL_VBY1_8BIT_4LANE:
1093                     if(ldHz < 750000000)
1094                     {
1095                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_4CH_8BIT_75to75MHz;
1096                     }
1097                     else if((ldHz >= 750000000) && (ldHz < 1100000000))
1098                     {
1099                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_4CH_8BIT_75to110MHz;
1100                     }
1101                     else
1102                     {
1103                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_4CH_8BIT_110to150MHz;
1104                     }
1105                 break;
1106 
1107                 case E_PNL_LPLL_VBY1_8BIT_2LANE:
1108                     if(ldHz < 380000000)
1109                     {
1110                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_2CH_8BIT_38to55MHz;
1111                     }
1112                     else if((ldHz >= 380000000) && (ldHz < 550000000))
1113                     {
1114                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_2CH_8BIT_38to55MHz;
1115                     }
1116                     else
1117                     {
1118                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_2CH_8BIT_55to75MHz;
1119                     }
1120                 break;
1121 
1122                 default:
1123                     u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MAX;
1124                 break;
1125             }
1126         }
1127         break;
1128         case E_PNL_LPLL_OSD:
1129         {
1130             switch (eLPLL_Type)
1131             {
1132                 case E_PNL_TYPE_HS_LVDS:
1133                 {
1134                     if(ldHz < 250000000)
1135                     {
1136                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_HS_LVDS_1CH_25to25MHz;
1137                     }
1138                     else if((ldHz >= 250000000) && (ldHz < 570000000))
1139                     {
1140                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_HS_LVDS_1CH_25to57MHz;
1141                     }
1142                     else if((ldHz >= 570000000) && (ldHz < 1150000000))
1143                     {
1144                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_HS_LVDS_1CH_57to115MHz;
1145                     }
1146                     else
1147                     {
1148                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_HS_LVDS_1CH_115to150MHz;
1149                     }
1150                 }
1151                 break;
1152 
1153                 case E_PNL_LPLL_VBY1_10BIT_4LANE:
1154                     if(ldHz < 1500000000)
1155                     {
1156                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_4CH_10BIT_150to150MHz;
1157                     }
1158                     else
1159                     {
1160                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_4CH_10BIT_150to340MHz;
1161                     }
1162                 break;
1163 
1164                 case E_PNL_LPLL_VBY1_10BIT_2LANE:
1165                     if(ldHz < 750000000)
1166                     {
1167                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_2CH_10BIT_75to75MHz;
1168                     }
1169                     else
1170                     {
1171                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_2CH_10BIT_75to150MHz;
1172                     }
1173                 break;
1174 
1175                 case E_PNL_LPLL_VBY1_10BIT_1LANE:
1176                     if(ldHz < 380000000)
1177                     {
1178                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_1CH_10BIT_38to38MHz;
1179                     }
1180                     else
1181                     {
1182                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_1CH_10BIT_38to75MHz;
1183                     }
1184                 break;
1185 
1186                 case E_PNL_LPLL_VBY1_8BIT_4LANE:
1187                     if(ldHz < 1500000000UL)
1188                     {
1189                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_4CH_8BIT_150to150MHz;
1190                     }
1191                     else if((ldHz >= 1500000000UL) && (ldHz < 2200000000UL))
1192                     {
1193                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_4CH_8BIT_150to220MHz;
1194                     }
1195                     else
1196                     {
1197                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_4CH_8BIT_220to340MHz;
1198                     }
1199                 break;
1200 
1201                 case E_PNL_LPLL_VBY1_8BIT_2LANE:
1202                     if(ldHz < 750000000)
1203                     {
1204                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_2CH_8BIT_75to75MHz;
1205                     }
1206                     else if((ldHz >= 750000000) && (ldHz < 1100000000))
1207                     {
1208                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_2CH_8BIT_75to110MHz;
1209                     }
1210                     else
1211                     {
1212                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_2CH_8BIT_110to150MHz;
1213                     }
1214                 break;
1215 
1216                 case E_PNL_LPLL_VBY1_8BIT_1LANE:
1217                     if(ldHz < 380000000)
1218                     {
1219                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_1CH_8BIT_38to38MHz;
1220                     }
1221                     else if((ldHz >= 380000000) && (ldHz < 550000000))
1222                     {
1223                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_1CH_8BIT_38to55MHz;
1224                     }
1225                     else
1226                     {
1227                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_1CH_8BIT_55to75MHz;
1228                     }
1229                 break;
1230 
1231                 default:
1232                     u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_MAX;
1233                 break;
1234             }
1235         }
1236         break;
1237     }
1238     return u8SupportedLPLLIndex;
1239 }
1240 
_MHal_PNL_DumpLPLLTable(void * pInstance,MS_U8 LPLLTblIndex,PNL_LPLL_TYPE_SEL lpll_type_sel)1241 static void _MHal_PNL_DumpLPLLTable(void *pInstance, MS_U8 LPLLTblIndex, PNL_LPLL_TYPE_SEL lpll_type_sel)
1242 {
1243     if(lpll_type_sel == E_PNL_LPLL_VIDEO)
1244     {
1245         if (LPLLTblIndex == E_PNL_SUPPORTED_LPLL_MAX)
1246         {
1247             printf("[%s,%5d] Unspported LPLL Type, skip LPLL setting\n",__FUNCTION__,__LINE__);
1248             return;
1249         }
1250 
1251         int indexCounter = 0;
1252 
1253         for(indexCounter = 0 ; indexCounter<LPLL_REG_NUM; indexCounter++)
1254         {
1255             if (LPLLSettingTBL[LPLLTblIndex][indexCounter].address == 0xFF) //delay in micro second
1256             {
1257                 MsOS_DelayTaskUs(LPLLSettingTBL[LPLLTblIndex][indexCounter].value);
1258                 continue; // step forward to next register setting.
1259             }
1260 
1261             W2BYTEMSK(L_BK_LPLL(LPLLSettingTBL[LPLLTblIndex][indexCounter].address),
1262                       LPLLSettingTBL[LPLLTblIndex][indexCounter].value,
1263                       LPLLSettingTBL[LPLLTblIndex][indexCounter].mask);
1264         }
1265         PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]LPLLTblIndex=%u\n", __FUNCTION__, __LINE__, LPLLTblIndex);
1266     }
1267     else
1268     {
1269         if (LPLLTblIndex == E_PNL_SUPPORTED_LPLL_EXT_MAX)
1270         {
1271             printf("[%s,%5d] Unspported LPLL Type, skip LPLL setting\n",__FUNCTION__,__LINE__);
1272             return;
1273         }
1274 
1275         int indexCounter = 0;
1276 
1277         for(indexCounter = 0 ; indexCounter<LPLL_EXT_REG_NUM; indexCounter++)
1278         {
1279             if (LPLLSettingTBL_Ext[LPLLTblIndex][indexCounter].address == 0xFF) //delay in micro second
1280             {
1281                 MsOS_DelayTaskUs(LPLLSettingTBL_Ext[LPLLTblIndex][indexCounter].value);
1282                 continue; // step forward to next register setting.
1283             }
1284 
1285             W2BYTEMSK(L_BK_LPLL(LPLLSettingTBL_Ext[LPLLTblIndex][indexCounter].address),
1286                       LPLLSettingTBL_Ext[LPLLTblIndex][indexCounter].value,
1287                       LPLLSettingTBL_Ext[LPLLTblIndex][indexCounter].mask);
1288         }
1289         PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]LPLLTblIndex=%u\n", __FUNCTION__, __LINE__, LPLLTblIndex);
1290     }
1291 }
1292 
MHal_PNL_Init_LPLL(void * pInstance,PNL_TYPE eLPLL_Type,PNL_MODE eLPLL_Mode,MS_U64 ldHz)1293 void MHal_PNL_Init_LPLL(void *pInstance, PNL_TYPE eLPLL_Type,PNL_MODE eLPLL_Mode,MS_U64 ldHz)
1294 {
1295     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1296     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1297     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1298     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1299     E_PNL_SUPPORTED_LPLL_TYPE u8SupportedLPLLLIndex = E_PNL_SUPPORTED_LPLL_MAX;
1300     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__);
1301 
1302     u8SupportedLPLLLIndex = _MHal_PNL_GetSupportedLPLLIndex(pInstance, eLPLL_Type,eLPLL_Mode,ldHz, E_PNL_LPLL_VIDEO);
1303 
1304     if (u8SupportedLPLLLIndex == E_PNL_SUPPORTED_LPLL_MAX)
1305     {
1306         printf("Not Supported LPLL Type, skip LPLL Init\n");
1307         return;
1308     }
1309 
1310     _MHal_PNL_DumpLPLLTable(pInstance, u8SupportedLPLLLIndex, E_PNL_LPLL_VIDEO);
1311 
1312 
1313     MHal_MOD_PVDD_Power_Setting(pInstance, pPNLResourcePrivate->sthalPNL._bPVDD_2V5); // Einstein is always use 3.3V PVDD Power.
1314 }
1315 
MHal_PNL_Get_Loop_DIV(void * pInstance,MS_U8 u8LPLL_Mode,MS_U8 eLPLL_Type,MS_U64 ldHz)1316 MS_U8 MHal_PNL_Get_Loop_DIV(void *pInstance, MS_U8 u8LPLL_Mode, MS_U8 eLPLL_Type, MS_U64 ldHz)
1317 {
1318     MS_U16 u16loop_div = 0;
1319     E_PNL_SUPPORTED_LPLL_TYPE u8SupportedLPLLLIndex = E_PNL_SUPPORTED_LPLL_MAX;
1320 #if defined (__aarch64__)
1321     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]E_PNL_LPLL_VIDEO : eLPLL_Type=%u, u8LPLL_Mode=%u, ldHz=%lu\n", __FUNCTION__, __LINE__, eLPLL_Type, u8LPLL_Mode, ldHz);
1322 #else
1323     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]E_PNL_LPLL_VIDEO : eLPLL_Type=%u, u8LPLL_Mode=%u, ldHz=%llu\n", __FUNCTION__, __LINE__, eLPLL_Type, u8LPLL_Mode, ldHz);
1324 #endif
1325     u8SupportedLPLLLIndex = _MHal_PNL_GetSupportedLPLLIndex(pInstance, eLPLL_Type,u8LPLL_Mode,ldHz,E_PNL_LPLL_VIDEO);
1326 
1327     if (u8SupportedLPLLLIndex == E_PNL_SUPPORTED_LPLL_MAX)
1328     {
1329         printf("[%s,%5d] Error LPLL type\n",__FUNCTION__,__LINE__);
1330         u16loop_div = 0 ;
1331     }
1332     else
1333     {
1334         u16loop_div = u16LoopDiv[u8SupportedLPLLLIndex];
1335     }
1336     PNL_DBG(PNL_DBGLEVEL_INIT, "E_PNL_LPLL_VIDEO : u16loop_div=%u\n", u16loop_div);
1337 
1338     u16loop_div *= 2;
1339     return u16loop_div;
1340 }
1341 
MHal_PNL_Get_LPLL_LoopGain(void * pInstance,MS_U8 eLPLL_Mode,MS_U8 eLPLL_Type,MS_U64 ldHz)1342 MS_U16 MHal_PNL_Get_LPLL_LoopGain(void *pInstance, MS_U8 eLPLL_Mode, MS_U8 eLPLL_Type, MS_U64 ldHz)
1343 {
1344     MS_U16 u16loop_gain = 0;
1345     E_PNL_SUPPORTED_LPLL_TYPE u8SupportedLPLLLIndex = E_PNL_SUPPORTED_LPLL_MAX;
1346 #if defined (__aarch64__)
1347     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]E_PNL_LPLL_VIDEO : eLPLL_Type=%u, eLPLL_Mode=%u, ldHz=%lu\n", __FUNCTION__, __LINE__, eLPLL_Type, eLPLL_Mode, ldHz);
1348 #else
1349     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]E_PNL_LPLL_VIDEO : eLPLL_Type=%u, eLPLL_Mode=%u, ldHz=%llu\n", __FUNCTION__, __LINE__, eLPLL_Type, eLPLL_Mode, ldHz);
1350 #endif
1351     u8SupportedLPLLLIndex = _MHal_PNL_GetSupportedLPLLIndex(pInstance, eLPLL_Type,eLPLL_Mode,ldHz,E_PNL_LPLL_VIDEO);
1352 
1353     if (u8SupportedLPLLLIndex == E_PNL_SUPPORTED_LPLL_MAX)
1354     {
1355         printf("[%s,%5d] Error LPLL type\n",__FUNCTION__,__LINE__);
1356         u16loop_gain = 0 ;
1357     }
1358     else
1359     {
1360         u16loop_gain = u16LoopGain[u8SupportedLPLLLIndex];
1361     }
1362     PNL_DBG(PNL_DBGLEVEL_INIT, "E_PNL_LPLL_VIDEO : u16loop_gain=%u\n", u16loop_gain);
1363     return u16loop_gain;
1364 }
1365 
1366 #define SKIP_TIMING_CHANGE_CAP  TRUE
Hal_PNL_SkipTimingChange_GetCaps(void * pInstance)1367 MS_BOOL Hal_PNL_SkipTimingChange_GetCaps(void *pInstance)
1368 {
1369     #if (SKIP_TIMING_CHANGE_CAP)
1370         return TRUE;
1371     #else
1372         return FALSE;
1373     #endif
1374 }
1375 
MHal_PNL_PreSetModeOn(void * pInstance,MS_BOOL bSetMode)1376 void MHal_PNL_PreSetModeOn(void *pInstance, MS_BOOL bSetMode)
1377 {
1378     if (bSetMode == TRUE)
1379     {
1380         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, 0, BIT(15));
1381     }
1382     else
1383     {
1384         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, BIT(15), BIT(15));
1385     }
1386 }
1387 
MHal_PNL_HWLVDSReservedtoLRFlag(void * pInstance,PNL_DrvHW_LVDSResInfo lvdsresinfo)1388 void MHal_PNL_HWLVDSReservedtoLRFlag(void *pInstance, PNL_DrvHW_LVDSResInfo lvdsresinfo)
1389 {
1390     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1391     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1392     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1393     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1394 
1395     if (lvdsresinfo.bEnable)
1396     {
1397         if (lvdsresinfo.u16channel & BIT(0))  // Channel A
1398         {
1399             if (lvdsresinfo.u32pair & BIT(3))  // pair 3
1400             {
1401                 MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, BIT(15), BIT(15));
1402             }
1403             if (lvdsresinfo.u32pair & BIT(4))  // pair 4
1404             {
1405                 MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, BIT(14), BIT(14));
1406             }
1407         }
1408         if (lvdsresinfo.u16channel & BIT(1))  // Channel B
1409         {
1410             if (lvdsresinfo.u32pair & BIT(3))  // pair 3
1411             {
1412                 MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, BIT(13), BIT(13));
1413             }
1414             if (lvdsresinfo.u32pair & BIT(4))  // pair 4
1415             {
1416                 MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, BIT(12), BIT(12));
1417             }
1418         }
1419 
1420         if((pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type >= E_PNL_LPLL_VBY1_10BIT_4LANE)
1421             &&(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type <= E_PNL_LPLL_VBY1_8BIT_8LANE))
1422         {
1423             MOD_W2BYTEMSK(REG_MOD_BK00_30_L, BIT(14), BIT(14));
1424         }
1425     }
1426     else
1427     {
1428         MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, 0x0000, (BIT(15) | BIT(14) | BIT(13) | BIT(12)));
1429 
1430         if((pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type >= E_PNL_LPLL_VBY1_10BIT_4LANE)
1431             &&(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type <= E_PNL_LPLL_VBY1_8BIT_8LANE))
1432         {
1433             MOD_W2BYTEMSK(REG_MOD_BK00_30_L, 0x00, BIT(14));
1434         }
1435     }
1436 }
1437 
1438 ////////////////////////////////////////////////////////////////////////
1439 // Turn OD function
1440 ////////////////////////////////////////////////////////////////////////
MHal_PNL_OverDriver_Init(void * pInstance,MS_PHY u32OD_MSB_Addr,MS_PHY u32OD_MSB_limit,MS_PHY u32OD_LSB_Addr,MS_PHY u32OD_LSB_limit,MS_U8 u8MIUSel)1441 void MHal_PNL_OverDriver_Init(void *pInstance, MS_PHY u32OD_MSB_Addr, MS_PHY u32OD_MSB_limit, MS_PHY u32OD_LSB_Addr, MS_PHY u32OD_LSB_limit, MS_U8 u8MIUSel)
1442 {
1443     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1444     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1445     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK16_61_L,u8MIUSel<<8,BIT(8)|BIT(9)); // OD MIU select
1446 
1447     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_15_L, (MS_U16)(u32OD_MSB_Addr & 0xFFFF)); // OD MSB request base address
1448     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_16_L, (MS_U16)((u32OD_MSB_Addr >> 16) & 0x00FF), 0x00FF); // OD MSB request base address
1449     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_60_L, (MS_U16)((u32OD_MSB_Addr >> 24) & 0x0003), 0x0003); // OD MSB request base address
1450     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_17_L, (MS_U16)(u32OD_MSB_limit & 0xFFFF)); // OD MSB request address limit
1451     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_18_L, (MS_U16)((u32OD_MSB_limit >> 16) & 0x00FF), 0x00FF); // OD MSB request address limit
1452     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_60_L, (MS_U16)((u32OD_MSB_limit >> 24) & 0x0003)<<2, 0x000C); // OD MSB request address limit
1453     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_39_L, (MS_U16)(u32OD_LSB_limit & 0xFFFF)); // OD frame buffer write address limit
1454     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3A_L, (MS_U16)((u32OD_LSB_limit >> 16) & 0x00FF), 0x00FF); // OD frame buffer write address limit
1455     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3B_L, (MS_U16)(u32OD_LSB_limit & 0xFFFF)); // OD frame buffer read address limit
1456     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3C_L, (MS_U16)((u32OD_LSB_limit >> 16) & 0x00FF), 0x00FF); // OD frame buffer read address limit
1457     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_4F_L, (MS_U16)(u32OD_LSB_Addr & 0xFFFF)); // OD LSB request base address
1458     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_50_L, (MS_U16)((u32OD_LSB_Addr >> 16) & 0x00FF), 0x00FF); // OD LSB request base address
1459     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_50_L, (MS_U16)((u32OD_LSB_limit & 0x00FF) << 8), 0xFF00); // OD LSB request limit address
1460     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_51_L, (MS_U16)((u32OD_LSB_limit >> 8) & 0xFFFF)); // OD LSB request limit address
1461 
1462     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_1A_L, 0x4020); // OD request rFIFO limit threshold, priority threshold
1463     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_1C_L, 0x4020); // OD request wFIFO limit threshold, priority threshold
1464     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3A_L, 0x00, BIT(14)); // OD strength gradually bypass
1465     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3A_L, 0x2F00, 0x3F00);    // OD strength gradually slop
1466     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_12_L, 0x0C, 0xFF);    // OD active threshold
1467 
1468 }
1469 
MHal_PNL_OverDriver_Enable(void * pInstance,MS_BOOL bEnable)1470 void MHal_PNL_OverDriver_Enable(void *pInstance, MS_BOOL bEnable)
1471 {
1472     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1473     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1474 
1475     // OD mode
1476     // OD used user weight to output blending directly
1477     // OD Enable
1478     if (bEnable)
1479     {
1480         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, 0x2D, 0x2F);
1481     }
1482     else
1483     {
1484         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, 0x2C, 0x2F);
1485     }
1486 }
1487 
MHal_PNL_OverDriver_TBL(void * pInstance,MS_U8 u8ODTbl[1056])1488 void MHal_PNL_OverDriver_TBL(void *pInstance, MS_U8 u8ODTbl[1056])
1489 {
1490     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1491     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1492 
1493     MS_U16 i;
1494     MS_U8 u8target;
1495     MS_BOOL bEnable;
1496 
1497     bEnable = SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, BIT(0));
1498     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, 0x00, BIT(0)); // OD enable
1499     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_01_L, 0x0E, 0x0E); // OD table SRAM enable, RGB channel
1500 
1501     u8target= u8ODTbl[9];
1502     for (i=0; i<272; i++)
1503     {
1504         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_03_L, (i == 9)?u8target:(u8target ^ u8ODTbl[i]), 0x00FF);
1505         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_02_L, (i|0x8000), 0x81FF);
1506         while(SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_02_L, BIT(15)));
1507     }
1508 
1509     u8target= u8ODTbl[(272+19)];
1510     for (i=0; i<272; i++)
1511     {
1512         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_06_L, (i == 19)?u8target:(u8target ^ u8ODTbl[(272+i)]), 0x00FF);
1513         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_05_L, (i|0x8000), 0x81FF);
1514         while(SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_05_L, BIT(15)));
1515     }
1516 
1517     u8target= u8ODTbl[(272*2+29)];
1518     for (i=0; i<256; i++)
1519     {
1520         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_09_L, (i == 29)?u8target:(u8target ^ u8ODTbl[(272*2+i)]), 0x00FF);
1521         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_08_L, (i|0x8000), 0x81FF);
1522         while(SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_08_L, BIT(15)));
1523     }
1524 
1525     u8target= u8ODTbl[(272*2+256+39)];
1526     for (i=0; i<256; i++)
1527     {
1528         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_0C_L, (i == 39)?u8target:(u8target ^ u8ODTbl[(272*2+256+i)]), 0x00FF);
1529         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_0B_L, (i|0x8000), 0x81FF);
1530         while(SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_0D_L, BIT(15)));
1531     }
1532 
1533     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_01_L, 0x00, 0x0E); // OD table SRAM enable, RGB channel
1534     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, bEnable, BIT(0)); // OD enable
1535 }
1536 
_MHal_PNL_MOD_Swing_Refactor_AfterCAL(void * pInstance,MS_U16 u16Swing_Level)1537 MS_U16 _MHal_PNL_MOD_Swing_Refactor_AfterCAL(void *pInstance, MS_U16 u16Swing_Level)
1538 {
1539     MS_U8 u8ibcal = 0x00;
1540     MS_U16 u16AfterCal_value = 0;
1541     MS_U16 u16Cus_value = 0;
1542 
1543     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1544     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1545     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1546     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1547     // =========
1548     // GCR_CAL_LEVEL[1:0] : REG_MOD_A_BK00_70_L =>
1549     // 2'b00 250mV ' GCR_ICON_CHx[5:0]=2'h15 (decimal 21)
1550     // 2'b01 350mV ' GCR_ICON_CHx[5:0]=2'h1F (decimal 31)
1551     // 2'b10 300mV ' GCR_ICON_CHx[5:0]=2'h1A (decimal 26)
1552     // 2'b11 200mV ' GCR_ICON_CHx[5:0]=2'h10 (decimal 16)
1553     // =========
1554     switch(pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET)
1555     {
1556         default:
1557         case 0:
1558             u8ibcal = 0x15;
1559         break;
1560         case 1:
1561             u8ibcal = 0x1F;
1562         break;
1563         case 2:
1564             u8ibcal = 0x1A;
1565         break;
1566         case 3:
1567             u8ibcal = 0x10;
1568         break;
1569     }
1570     u16Cus_value = (u16Swing_Level) * (pPNLResourcePrivate->sthalPNL._u8MOD_CALI_VALUE + 4)/(u8ibcal + 4);
1571     u16AfterCal_value = (u16Cus_value-40)/10+2;
1572 
1573     HAL_MOD_CAL_DBG(printf("\r\n--Swing value after refactor = %d\n", u16AfterCal_value));
1574 
1575     return u16AfterCal_value;
1576 }
1577 
MHal_PNL_MODSwingRegToRealLevelValue(void * pInstance,MS_U16 u16SwingRegValue)1578 MS_U16 MHal_PNL_MODSwingRegToRealLevelValue(void *pInstance, MS_U16 u16SwingRegValue)
1579 {
1580     MS_U8 u8ibcal = 0x00;
1581     MS_U16 u16SwingRealLevelValue = 0;
1582     MS_U16 u16CusValue = 0;
1583     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1584     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1585     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1586     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1587     // =========
1588     // GCR_CAL_LEVEL[1:0] : REG_MOD_A_BK00_70_L =>
1589     // 2'b00 250mV ' GCR_ICON_CHx[5:0]=2'h15 (decimal 21)
1590     // 2'b01 350mV ' GCR_ICON_CHx[5:0]=2'h1F (decimal 31)
1591     // 2'b10 300mV ' GCR_ICON_CHx[5:0]=2'h1A (decimal 26)
1592     // 2'b11 200mV ' GCR_ICON_CHx[5:0]=2'h10 (decimal 16)
1593     // =========
1594     switch(pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET)
1595     {
1596         default:
1597         case 0:
1598             u8ibcal = 0x15;
1599         break;
1600         case 1:
1601             u8ibcal = 0x1F;
1602         break;
1603         case 2:
1604             u8ibcal = 0x1A;
1605         break;
1606         case 3:
1607             u8ibcal = 0x10;
1608         break;
1609     }
1610 
1611     u16CusValue =  ((u16SwingRegValue-2)*10)+40;
1612     u16SwingRealLevelValue=(u16CusValue*(u8ibcal + 4))/(pPNLResourcePrivate->sthalPNL._u8MOD_CALI_VALUE + 4);
1613 
1614     HAL_MOD_CAL_DBG(printf("\r\n--Swing Real Level Value = %d\n", u16SwingRealLevelValue));
1615 
1616     return u16SwingRealLevelValue;
1617 }
1618 
MHal_PNL_MOD_Control_Out_Swing(void * pInstance,MS_U16 u16Swing_Level)1619 MS_BOOL MHal_PNL_MOD_Control_Out_Swing(void *pInstance, MS_U16 u16Swing_Level)
1620 {
1621     MS_BOOL bStatus = FALSE;
1622 
1623     MS_U16 u16ValidSwing = 0;
1624     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1625     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1626     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1627     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1628 
1629     if((pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_LVDS)||
1630       (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_HS_LVDS))
1631     {
1632         if(u16Swing_Level>600)
1633             u16Swing_Level=600;
1634         if(u16Swing_Level<40)
1635             u16Swing_Level=40;
1636 
1637         u16ValidSwing = _MHal_PNL_MOD_Swing_Refactor_AfterCAL(pInstance, u16Swing_Level);
1638     }
1639     else
1640     {
1641         u16ValidSwing = u16Swing_Level;
1642     }
1643 
1644     // Disable HW calibration keep mode first, to make SW icon value can write into register.
1645     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0, BIT(15));
1646 
1647     if((pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type >= E_PNL_LPLL_VBY1_10BIT_4LANE)&&
1648        (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type <= E_PNL_LPLL_VBY1_8BIT_8LANE))
1649     {
1650         u16ValidSwing &=0x0F;
1651         // vby1 vreg
1652         // ch0+ch1+ch2+ch3
1653         MOD_A_W2BYTE(REG_MOD_A_BK00_20_L, (u16ValidSwing << 12 | u16ValidSwing << 8 | u16ValidSwing << 4 | u16ValidSwing));
1654         // ch4+ch5+ch6+ch7
1655         MOD_A_W2BYTE(REG_MOD_A_BK00_21_L, (u16ValidSwing << 12 | u16ValidSwing << 8 | u16ValidSwing << 4 | u16ValidSwing));
1656         // ch8+ch9+ch10+ch11
1657         MOD_A_W2BYTE(REG_MOD_A_BK00_22_L, (u16ValidSwing << 12 | u16ValidSwing << 8 | u16ValidSwing << 4 | u16ValidSwing));
1658         // ch12+ch13
1659         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_23_L, (u16ValidSwing << 4 | u16ValidSwing), 0x00ff);
1660     }
1661     else
1662     {
1663         u16ValidSwing &=0xFF;
1664         // LVDS fill ICON
1665         // ch0+ch1
1666         MOD_A_W2BYTE(REG_MOD_A_BK00_08_L, (u16ValidSwing << 8 | u16ValidSwing));
1667         // ch2+ch3
1668         MOD_A_W2BYTE(REG_MOD_A_BK00_09_L, (u16ValidSwing << 8 | u16ValidSwing));
1669         // ch4+ch5
1670         MOD_A_W2BYTE(REG_MOD_A_BK00_0A_L, (u16ValidSwing << 8 | u16ValidSwing));
1671         // ch6+ch7
1672         MOD_A_W2BYTE(REG_MOD_A_BK00_0B_L, (u16ValidSwing << 8 | u16ValidSwing));
1673         // ch8+ch9
1674         MOD_A_W2BYTE(REG_MOD_A_BK00_0C_L, (u16ValidSwing << 8 | u16ValidSwing));
1675         // ch10+ch11
1676         MOD_A_W2BYTE(REG_MOD_A_BK00_0D_L, (u16ValidSwing << 8 | u16ValidSwing));
1677         // ch12+ch13
1678         MOD_A_W2BYTE(REG_MOD_A_BK00_0E_L, (u16ValidSwing << 8 | u16ValidSwing));
1679     }
1680     bStatus = TRUE;
1681 
1682     return bStatus;
1683 }
1684 
1685 ////////////////////////////////////////////////////////////////////////
1686 // Turn Pre-Emphasis Current function
1687 ////////////////////////////////////////////////////////////////////////
MHal_PNL_MOD_Control_Out_PE_Current(void * pInstance,MS_U16 u16Current_Level)1688 MS_BOOL MHal_PNL_MOD_Control_Out_PE_Current (void *pInstance, MS_U16 u16Current_Level)
1689 {
1690     MS_BOOL bStatus = FALSE;
1691     MS_U16 u16ValidCurrent = u16Current_Level & 0x0F;
1692 
1693     MOD_A_W2BYTE(REG_MOD_A_BK00_18_L,
1694         ( (u16ValidCurrent  ) |(u16ValidCurrent << 4 )|(u16ValidCurrent << 8 )
1695         |(u16ValidCurrent << 12 )));
1696 
1697     MOD_A_W2BYTE(REG_MOD_A_BK00_19_L,
1698         ( (u16ValidCurrent  ) |(u16ValidCurrent << 4 )|(u16ValidCurrent << 8 )
1699         |(u16ValidCurrent << 12 )));
1700 
1701     MOD_A_W2BYTE(REG_MOD_A_BK00_1A_L,
1702         ( (u16ValidCurrent  ) |(u16ValidCurrent << 4 )|(u16ValidCurrent << 8 )
1703         |(u16ValidCurrent << 12 )));
1704 
1705     MOD_A_W2BYTE(REG_MOD_A_BK00_1B_L,
1706         ( (u16ValidCurrent  ) |(u16ValidCurrent << 4 )|(u16ValidCurrent << 8 )
1707         |(u16ValidCurrent << 12 )));
1708 
1709     bStatus = TRUE;
1710 
1711     return bStatus;
1712 }
1713 
MHal_PNL_MOD_PECurrent_Setting(void * pInstance,MS_U16 u16Current_Level,MS_U16 u16Channel_Select)1714 void MHal_PNL_MOD_PECurrent_Setting(void *pInstance, MS_U16 u16Current_Level, MS_U16 u16Channel_Select)
1715 {
1716     MS_U16 u16ValidCurrent = u16Current_Level & 0x0F;
1717     MS_U16 u16Ch00_03_mask,u16Ch04_07_mask,u16Ch08_11_mask,u16Ch12_15_mask  = 0;
1718 
1719     u16Ch00_03_mask = (((u16Channel_Select & BIT(0))? 0x000F:0x00)|((u16Channel_Select & BIT(1))? 0x00F0:0x00)
1720                      |((u16Channel_Select & BIT(2))? 0x0F00:0x00)|((u16Channel_Select & BIT(3))? 0xF000:0x00));
1721     u16Ch04_07_mask = (((u16Channel_Select & BIT(4))? 0x000F:0x00)|((u16Channel_Select & BIT(5))? 0x00F0:0x00)
1722                      |((u16Channel_Select & BIT(6))? 0x0F00:0x00)|((u16Channel_Select & BIT(7))? 0xF000:0x00));
1723     u16Ch08_11_mask = (((u16Channel_Select & BIT(8))? 0x000F:0x00)|((u16Channel_Select & BIT(9))? 0x00F0:0x00)
1724                      |((u16Channel_Select & BIT(10))? 0x0F00:0x00)|((u16Channel_Select & BIT(11))? 0xF000:0x00));
1725     u16Ch12_15_mask = (((u16Channel_Select & BIT(12))? 0x000F:0x00)|((u16Channel_Select & BIT(13))? 0x00F0:0x00)
1726                      |((u16Channel_Select & BIT(14))? 0x0F00:0x00)|((u16Channel_Select & BIT(15))? 0xF000:0x00));
1727 
1728     if(u16Ch00_03_mask)
1729     {
1730         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_18_L,
1731             ((u16ValidCurrent)|(u16ValidCurrent << 4)|(u16ValidCurrent << 8)|(u16ValidCurrent << 12 )), u16Ch00_03_mask);
1732     }
1733     else
1734     {
1735         MOD_A_W2BYTE(REG_MOD_A_BK00_18_L,0x00);
1736     }
1737 
1738     if(u16Ch04_07_mask)
1739     {
1740         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_19_L,
1741             ((u16ValidCurrent)|(u16ValidCurrent << 4)|(u16ValidCurrent << 8)|(u16ValidCurrent << 12 )), u16Ch04_07_mask);
1742     }
1743     else
1744     {
1745         MOD_A_W2BYTE(REG_MOD_A_BK00_19_L,0x00);
1746     }
1747 
1748     if(u16Ch08_11_mask)
1749     {
1750         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_1A_L,
1751             ((u16ValidCurrent)|(u16ValidCurrent << 4)|(u16ValidCurrent << 8)|(u16ValidCurrent << 12 )), u16Ch08_11_mask);
1752     }
1753     else
1754     {
1755         MOD_A_W2BYTE(REG_MOD_A_BK00_1A_L,0x00);
1756     }
1757 
1758     if(u16Ch12_15_mask)
1759     {
1760         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_1B_L,
1761             ((u16ValidCurrent)|(u16ValidCurrent << 4)|(u16ValidCurrent << 8)|(u16ValidCurrent << 12 )), u16Ch12_15_mask);
1762     }
1763     else
1764     {
1765         MOD_A_W2BYTE(REG_MOD_A_BK00_1B_L,0x00);
1766     }
1767 }
1768 
1769 ////////////////////////////////////////////////////////////////////////
1770 // 1.Turn TTL low-power mode function
1771 // 2.Turn internal termination function
1772 // 3.Turn DRIVER BIAS OP function
1773 ////////////////////////////////////////////////////////////////////////
MHal_PNL_MOD_Control_Out_TTL_Resistor_OP(void * pInstance,MS_BOOL bEnble)1774 MS_BOOL MHal_PNL_MOD_Control_Out_TTL_Resistor_OP (void *pInstance, MS_BOOL bEnble)
1775 {
1776     MS_BOOL bStatus = FALSE;
1777     if(bEnble)
1778     {
1779         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_34_L, 0xFFFF, 0xFFFF); //Enable TTL low-power mode
1780 //        MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, 0x001E, 0x001E);
1781 
1782         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_32_L, 0xFFFF, 0xFFFF); //GCR_EN_RINT (internal termination open)
1783         MOD_W2BYTEMSK(REG_MOD_BK00_76_L, 0x003F, 0x003F);
1784 
1785         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3C_L, 0xFFFF, 0xFFFF); //Disable DRIVER BIAS OP
1786         MOD_W2BYTEMSK(REG_MOD_BK00_7A_L, 0x003F, 0x003F);
1787     }
1788     else
1789     {
1790         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_34_L, 0x0000, 0xFFFF); //Disable TTL low-power mode
1791 //        MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, 0x0000, 0x001E);
1792 
1793         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_32_L, 0x0000, 0xFFFF); //GCR_EN_RINT (internal termination close)
1794         MOD_W2BYTEMSK(REG_MOD_BK00_76_L, 0x0000, 0x003F);
1795 
1796         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3C_L, 0x0000, 0xFFFF); //Enable DRIVER BIAS OP
1797         MOD_W2BYTEMSK(REG_MOD_BK00_7A_L, 0x0000, 0x003F);
1798     }
1799 
1800     bStatus = TRUE;
1801     return bStatus;
1802 }
1803 
MHal_PNL_PreInit(void * pInstance,PNL_OUTPUT_MODE eParam)1804 void MHal_PNL_PreInit(void *pInstance, PNL_OUTPUT_MODE eParam)
1805 {
1806     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1807     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1808     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1809     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1810     pPNLResourcePrivate->sthalPNL._eDrvPnlInitOptions = eParam;
1811 }
1812 
MHal_PNL_Get_Output_MODE(void * pInstance)1813 PNL_OUTPUT_MODE MHal_PNL_Get_Output_MODE(void *pInstance)
1814 {
1815     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1816     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1817     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1818     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1819     PNL_OUTPUT_MODE eParam = pPNLResourcePrivate->sthalPNL._eDrvPnlInitOptions;
1820 
1821     return eParam;
1822 }
1823 
msReadEfuse(void * pInstance,MS_U8 u8Bank,MS_U32 u32Mask)1824 MS_U32 msReadEfuse(void *pInstance, MS_U8 u8Bank, MS_U32 u32Mask)
1825 {
1826     MS_U32 u32Result = 0;
1827     MS_U8 u8Count = 0;
1828 
1829     W2BYTEMSK(0x2050, u8Bank<<2, BMASK(8:2));  /// reg28[8:2]Addr 6~0
1830     W2BYTEMSK(0x2050, BIT(13), BIT(13));       /// Reg28[13] Margin Read
1831     while(R2BYTEMSK(0x2050, BIT(13)) == BIT(13))
1832     {
1833         MsOS_DelayTask(1);
1834         u8Count ++;
1835 
1836         if (u8Count >10)
1837             break;
1838     }
1839 
1840     u32Result = (R4BYTE(0x2058)& u32Mask);    /// reg2C,2D read value
1841     printf("[%s][%d]u32Result=%tx, after mask u32Result=%tx\n", __FUNCTION__, __LINE__,(ptrdiff_t) R4BYTE(0x2058), (ptrdiff_t)u32Result);
1842     return u32Result;
1843 
1844 }
1845 
msSetVBY1RconValue(void * pInstance)1846 void msSetVBY1RconValue(void *pInstance)
1847 {
1848     MS_U16 u16DefaultICON_Max = 40, u16DefaultICON_Min = 7;
1849     MS_U16 u16DefaultICON = 18;
1850     MS_U32 u32Mask = 0x3F;
1851     MS_BOOL bEfuseMode = FALSE;
1852     MS_U16 u16SwingOffset = 0;  // by HW RD request
1853     MS_U16 u16temp = 0;
1854     if (msReadEfuse(pInstance, 0x4E, BIT(6)) == BIT(6))
1855         bEfuseMode = TRUE;
1856 
1857 
1858     // Disable HW calibration keep mode first, to make SW icon value can write into register.
1859     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0, BIT(15));
1860 
1861     if (bEfuseMode)
1862     {
1863         if(((MS_U16)msReadEfuse(pInstance, 0x4E, u32Mask) + u16SwingOffset) > u16DefaultICON_Max)
1864             u16temp = u16DefaultICON;
1865         else if(((MS_U16)msReadEfuse(pInstance, 0x4E, u32Mask) + u16SwingOffset) < u16DefaultICON_Min)
1866             u16temp = u16DefaultICON;
1867         else
1868             u16temp = (MS_U16)msReadEfuse(pInstance, 0x4E, u32Mask) + u16SwingOffset;
1869     }
1870     else
1871     {
1872         u16temp = u16DefaultICON;
1873     }
1874 
1875     //ch0~ch13 rcon setting
1876     u16temp &= (u16temp&(MS_U16)u32Mask);
1877     printf("[%s][%d]u16temp= %x\n", __FUNCTION__, __LINE__, u16temp);
1878 
1879     MOD_A_W2BYTE(REG_MOD_A_BK00_10_L, (u16temp<<8|u16temp));
1880     MOD_A_W2BYTE(REG_MOD_A_BK00_11_L, (u16temp<<8|u16temp));
1881     MOD_A_W2BYTE(REG_MOD_A_BK00_12_L, (u16temp<<8|u16temp));
1882     MOD_A_W2BYTE(REG_MOD_A_BK00_13_L, (u16temp<<8|u16temp));
1883     MOD_A_W2BYTE(REG_MOD_A_BK00_14_L, (u16temp<<8|u16temp));
1884     MOD_A_W2BYTE(REG_MOD_A_BK00_15_L, (u16temp<<8|u16temp));
1885     MOD_A_W2BYTE(REG_MOD_A_BK00_16_L, (u16temp<<8|u16temp));
1886 }
1887 
MHal_PNL_SetOutputType(void * pInstance,PNL_OUTPUT_MODE eOutputMode,PNL_TYPE eLPLL_Type)1888 void MHal_PNL_SetOutputType(void *pInstance, PNL_OUTPUT_MODE eOutputMode, PNL_TYPE eLPLL_Type)
1889 {
1890     MS_U16 u16ValidSwing2 = 0;
1891     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1892     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1893     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1894     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1895     if( eLPLL_Type == E_PNL_TYPE_TTL)
1896     {
1897         // select pair output to be TTL
1898         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0020,0x0020);
1899         MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x0000);
1900         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0000);
1901         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0000,0x0020);
1902 
1903         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, 0x0000, (BIT(7) | BIT(6))); // shift_lvds_pair
1904 
1905         // other TTL setting
1906         MOD_A_W2BYTE(REG_MOD_A_BK00_68_L, 0x0000);     // TTL output enable
1907 
1908         MOD_A_W2BYTE(REG_MOD_A_BK00_40_L, 0x0000);
1909         MOD_A_W2BYTE(REG_MOD_A_BK00_41_L, 0x0000);
1910         MOD_W2BYTEMSK(REG_MOD_BK00_7E_L, 0x0000, 0xE000);
1911 
1912         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, 0x3FF, 0x3FF);       // TTL skew
1913 
1914         // GPO gating
1915         MOD_W2BYTEMSK(REG_MOD_BK00_4A_L, BIT(8), BIT(8));         // GPO gating
1916     }
1917     else if(( eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_8LANE)||
1918             ( eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_4LANE)||
1919             ( eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_2LANE))
1920     {
1921         MOD_W2BYTEMSK(REG_MOD_BK00_34_L, 0xF000, 0xF000);  //[15:14]datax[13:12]data_format3,2
1922 
1923         // rcon
1924         if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.u32PNL_MISC & (MS_U32)E_APIPNL_MISC_SKIP_ICONVALUE)
1925         {
1926             HAL_MOD_CAL_DBG(printf("User define Swing Value=%u\n", __FUNCTION__, __LINE__, pPNLResourcePrivate->sthalPNL._u16PnlDefault_SwingLevel));
1927             MHal_PNL_MOD_Control_Out_Swing(pInstance, pPNLResourcePrivate->sthalPNL._u16PnlDefault_SwingLevel);
1928         }
1929         else
1930         {
1931             HAL_MOD_CAL_DBG(printf("Use RconValue\n", __FUNCTION__, __LINE__));
1932             msSetVBY1RconValue(pInstance);
1933         }
1934 
1935         // rint
1936         MOD_A_W2BYTE(REG_MOD_A_BK00_32_L, 0x0000);
1937 
1938         MOD_A_W2BYTE(REG_MOD_A_BK00_68_L, 0x003f);
1939 
1940         //-------------------------------------
1941         //## pe
1942 //        MOD_A_W2BYTE(REG_MOD_A_BK00_30_L, 0x3fff);
1943 //        MOD_W2BYTE(REG_MOD_BK00_23_L, 0x7000);
1944 //        MOD_W2BYTE(REG_MOD_BK00_24_L, 0x7fff);
1945 //        MOD_W2BYTE(REG_MOD_BK00_25_L, 0x003f);
1946 
1947         // VBY1 setting
1948         MOD_A_W2BYTE(REG_MOD_A_BK00_71_L, 0xFFFF);
1949 
1950         MOD_W2BYTE(REG_MOD_BK00_61_L, 0x8F3F); //[15]all dk scr[13:8]aln_de_cnt [7:0] aln_pix_cnt
1951 //        MOD_W2BYTEMSK(REG_MOD_BK00_62_L, 0xA040, 0xFDCF); //[15]proc_st[13:12]byte_mode 4 byte mode[6]4ch_vby1[9]swap
1952 
1953         MOD_A_W2BYTE(REG_MOD_A_BK00_40_L, 0xFFFF);
1954         MOD_A_W2BYTE(REG_MOD_A_BK00_41_L, 0xFFFF);
1955         MOD_A_W2BYTE(REG_MOD_A_BK00_48_L, 0xFFFF);
1956         MOD_A_W2BYTE(REG_MOD_A_BK00_49_L, 0xFFFF);
1957         MOD_A_W2BYTE(REG_MOD_A_BK00_42_L, 0xFFFF);
1958         MOD_A_W2BYTE(REG_MOD_A_BK00_43_L, 0xFFFF);
1959 
1960         switch(eOutputMode)
1961         {
1962             case E_PNL_OUTPUT_NO_OUTPUT:
1963                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0020,0x0020);
1964                 MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x0000);
1965                 MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0000);
1966                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0000,0x0020);
1967                 if(1)//( eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_4LANE)
1968                 {
1969                     //-------------------------------------
1970                     //## icon (Swing)
1971                     MOD_A_W2BYTE(REG_MOD_A_BK00_08_L, 0x0000);
1972                     MOD_A_W2BYTE(REG_MOD_A_BK00_09_L, 0x0000);
1973 
1974                     //-------------------------------------
1975                     //vby1
1976                     MOD_W2BYTE(REG_MOD_BK00_61_L, 0x8f3f); //[15]all dk scr[13:8]aln_de_cnt [7:0] aln_pix_cnt
1977                     //MOD_W2BYTEMSK(REG_MOD_BK00_62_L, 0xa040, 0xFDCF); //[15]proc_st[13:12]byte_mode 4 byte mode[6]4ch_vby1[9]swap
1978                 }
1979                 else if( eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_2LANE)
1980                 {
1981                     //-------------------------------------
1982                     //## icon (Swing)
1983                     MOD_A_W2BYTE(REG_MOD_A_BK00_08_L, 0x0000);
1984                     MOD_A_W2BYTE(REG_MOD_A_BK00_09_L, 0x0000);
1985 
1986                     //vby1
1987                     MOD_W2BYTE(REG_MOD_BK00_61_L, 0x8f3f);
1988                     //MOD_W2BYTEMSK(REG_MOD_BK00_62_L, 0xa040, 0xFDCF);
1989                 }
1990                 break;
1991 
1992             case E_PNL_OUTPUT_CLK_ONLY:
1993             case E_PNL_OUTPUT_DATA_ONLY:
1994             case E_PNL_OUTPUT_CLK_DATA:
1995             default:
1996                 if(eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_8LANE)
1997                 {
1998                     //MOD_A_W2BYTE(REG_MOD_A_BK00_3A_L, 0xC100);
1999                     MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x5555); //[15:0]reg_output_conf[15:0]
2000                 }
2001                 else if( eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_4LANE)
2002                 {
2003                     //MOD_A_W2BYTE(REG_MOD_A_BK00_3A_L, 0xC000);
2004                     MOD_W2BYTE(REG_MOD_BK00_4A_L, 0x0002); //[1]reg_dualmode[0]abswitch
2005                     MOD_A_W2BYTE(REG_MOD_A_BK00_0A_L, 0x7f7f);
2006                     MOD_A_W2BYTE(REG_MOD_A_BK00_0B_L, 0x7f7f);
2007                     MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x5500); //[15:0]reg_output_conf[15:0]
2008                 }
2009                 else if( eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_2LANE)
2010                 {
2011                     //MOD_A_W2BYTE(REG_MOD_A_BK00_3A_L, 0xC000);
2012                     MOD_W2BYTE(REG_MOD_BK00_4A_L, 0x0000);
2013                     MOD_A_W2BYTE(REG_MOD_A_BK00_0A_L, 0x7f7f);
2014                     MOD_A_W2BYTE(REG_MOD_A_BK00_0B_L, 0x0000);
2015                     MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x0500);
2016                 }
2017                 break;
2018         }
2019     }
2020     //// for osd dedicated output port, 1 port for video and 1 port for osd
2021     else if((eLPLL_Type == E_PNL_TYPE_HS_LVDS)&&
2022             (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Mode == E_PNL_MODE_SINGLE))
2023     {
2024         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0xC01F , 0xFFFF); // enable clk_dot_mini_pre_osd & clk_dot_mini_osd
2025         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, BIT(3), 0xFFFF ); // enable osd lvds path
2026         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, BIT(15), BIT(15)); //[15]sw_rst
2027         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0xC000 , 0xF000); // enable clk_dot_mini_pre_osd & clk_dot_mini_osd
2028     }
2029     else
2030     {
2031         switch(eOutputMode)
2032         {
2033             case E_PNL_OUTPUT_NO_OUTPUT:
2034                 // if MOD_45[5:0] = 0x3F && XC_MOD_EXT_DATA_EN_L = 0x0,
2035                 // then if XC_MOD_OUTPUT_CONF_L = 0x0 ---> output TTL as tri-state
2036                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0020,0x0020);
2037                 MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x0000);
2038                 MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0000);
2039                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0000,0x0020);
2040 
2041                 //----------------------------------
2042                 // Purpose: Set the output to be the GPO, and let it's level to Low
2043                 // 1. External Enable, Pair 0~5
2044                 // 2. GPIO Enable, pair 0~5
2045                 // 3. GPIO Output data : All low, pair 0~5
2046                 // 4. GPIO OEZ: output piar 0~5
2047                 //----------------------------------
2048 
2049                 //1.External Enable, Pair 0~5
2050                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_40_L, 0x0FFF, 0x0FFF);
2051                 //2.GPIO Enable, pair 0~5
2052                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_48_L, 0x0FFF, 0x0FFF);
2053                 //3.GPIO Output data : All low, pair 0~5
2054                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_44_L, 0x0000, 0x0FFF);
2055                 //4.GPIO OEZ: output piar 0~5
2056                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_42_L, 0x0000, 0x0FFF);
2057 
2058                 //1.External Enable, Pair 6~15
2059                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_40_L, 0xF000, 0xF000);
2060                 MOD_A_W2BYTE(REG_MOD_A_BK00_41_L, 0xFFFF);
2061                 //2.GPIO Enable, pair 6~15
2062                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_48_L, 0xF000, 0xF000);
2063                 MOD_A_W2BYTE(REG_MOD_A_BK00_49_L, 0xFFFF);
2064                 //3.GPIO Output data : All low, pair 6~15
2065                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_44_L, 0x0000, 0xF000);
2066                 MOD_A_W2BYTE(REG_MOD_A_BK00_45_L, 0x0000);
2067                 //4.GPIO OEZ: output piar 6~15
2068                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_42_L, 0x0000, 0xF000);
2069                 MOD_A_W2BYTE(REG_MOD_A_BK00_43_L, 0x0000);
2070 
2071                 //1234.External Enable, Pair 16~17
2072                 MOD_W2BYTE(REG_MOD_BK00_7E_L, 0xFF00);
2073 
2074                 //1.External Enable, Pair 18~20, 2.GPIO Enable, pair 18~20
2075                 MOD_W2BYTEMSK(REG_MOD_BK00_7C_L, 0x3F3F, 0x3F3F);
2076                 //3.GPIO Output data : All low, pair 18~20
2077                 MOD_W2BYTEMSK(REG_MOD_BK00_7A_L, 0x0000, 0x3F00);
2078                 //4.GPIO OEZ: output piar 18~20
2079                 MOD_W2BYTEMSK(REG_MOD_BK00_7F_L, 0x0000, 0xFC00);
2080                 break;
2081 
2082             case E_PNL_OUTPUT_CLK_ONLY:
2083                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_00_L, 0, 0xF000);
2084                 MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x4004);
2085                 break;
2086 
2087             case E_PNL_OUTPUT_DATA_ONLY:
2088             case E_PNL_OUTPUT_CLK_DATA:
2089             default:
2090 
2091                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_48_L, 0x0000, 0xF000);
2092                 MOD_A_W2BYTE(REG_MOD_A_BK00_49_L, 0x0000);
2093                 //1. set GCR_PVDD_2P5=1¡¦b1;           MOD PVDD power:    1: 2.5V
2094                 //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, 0, BIT(6));
2095                 //2. set PD_IB_MOD=1¡¦b0;
2096                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0x00, BIT(0));
2097                 //  save ch6 init value
2098                 u16ValidSwing2 = (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_0B_L, 0x3F00)>>8);
2099                 //3. set Desired Pairs: GCR_ICON[5:0]=6h3f (current all open);
2100                 MHal_PNL_MOD_Control_Out_Swing(pInstance, MHal_PNL_MODSwingRegToRealLevelValue(pInstance, 0x3F));
2101                 //4. set Desired Pairs: GCR_PE_ADJ[2:0]=3h7 (pre-emphasis current all open )
2102                 MHal_PNL_MOD_Control_Out_PE_Current (pInstance, 0x07);
2103                 //5. Enable low-power modeinternal termination Open, Enable OP
2104                 MHal_PNL_MOD_Control_Out_TTL_Resistor_OP (pInstance, 1);
2105 
2106                 MsOS_DelayTask(1);
2107 
2108                 //6. Enable low-power modeinternal termination Open, Enable OP
2109                 MHal_Output_LVDS_Pair_Setting(pInstance,
2110                                               pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type,
2111 											  pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7,
2112 											  pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15,
2113                                               pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21);
2114                 MHal_Shift_LVDS_Pair(pInstance, pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Shift);
2115 
2116                 //7. set Desired Pairs: GCR_PE_ADJ[2:0]=3¡¦h0 (pre-emphasis current all Close)
2117                 MHal_PNL_MOD_Control_Out_PE_Current (pInstance, 0x00);
2118                 //8. set Desired Pairs: GCR_ICON[5:0]    (current all init);
2119                 MHal_PNL_MOD_Control_Out_Swing(pInstance, MHal_PNL_MODSwingRegToRealLevelValue(pInstance, u16ValidSwing2));
2120                 //9. Disable low-power modeinternal termination Close, Disable OP
2121                 MHal_PNL_MOD_Control_Out_TTL_Resistor_OP (pInstance, 0);
2122 
2123                 // other TTL setting
2124                 MOD_A_W2BYTE(REG_MOD_A_BK00_68_L, 0x003F);     // LVDS output enable, [5:4] Output enable: PANEL_LVDS/ PANEL_miniLVDS/ PANEL_RSDS
2125 
2126                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_40_L, 0x0000, 0xF000);
2127                 MOD_A_W2BYTE(REG_MOD_A_BK00_41_L, 0x0000);
2128                 MOD_W2BYTEMSK(REG_MOD_BK00_7E_L, 0x0000, 0x000F);
2129 
2130                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, 0x000, 0x3FF);    // TTL skew
2131 
2132                 // GPO gating
2133                 MOD_W2BYTEMSK(REG_MOD_BK00_4A_L, 0x0, BIT(8));     // GPO gating
2134 
2135                 break;
2136         }
2137     }
2138 
2139 //    MHal_PNL_Bringup(pInstance);
2140 }
2141 
Mhal_PNL_Flock_LPLLSet(void * pInstance,MS_U64 ldHz)2142 void Mhal_PNL_Flock_LPLLSet(void *pInstance, MS_U64 ldHz)
2143 {
2144     UNUSED(ldHz);
2145 }
2146 
MHal_PNL_MISC_Control(void * pInstance,MS_U32 u32PNL_MISC)2147 void MHal_PNL_MISC_Control(void *pInstance, MS_U32 u32PNL_MISC)
2148 {
2149     if(u32PNL_MISC & E_DRVPNL_MISC_MFC_ENABLE)
2150     {
2151         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, BIT(7), BIT(7));       // shift LVDS pair
2152     }
2153 }
2154 
MHal_PNL_Init_XC_Clk(void * pInstance,PNL_InitData * pstPanelInitData)2155 void MHal_PNL_Init_XC_Clk(void *pInstance, PNL_InitData *pstPanelInitData)
2156 {
2157     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2158     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2159     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2160     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2161 
2162     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__);
2163 
2164     // setup output dot clock
2165 
2166     W2BYTEMSK(L_CLKGEN0(0x53), CKG_ODCLK_CLK_LPLL, CKG_ODCLK_MASK);      // select source tobe LPLL clock
2167     W2BYTEMSK(L_CLKGEN0(0x53), DISABLE, CKG_ODCLK_INVERT);               // clock not invert
2168     W2BYTEMSK(L_CLKGEN0(0x53), DISABLE, CKG_ODCLK_GATED);                // enable clock
2169     W2BYTEMSK(L_CLKGEN0(0x53), 0xC0, 0xF0);      //  reg_ckg_odclk_mft
2170 
2171     W2BYTE(L_CLKGEN0(0x58),0x0000); //[3:0]ckg_tx_mod
2172     W2BYTE(L_CLKGEN1(0x31), 0x0000); //[11:8]ckg_odclk_frc
2173 
2174     if((pstPanelInitData->eLPLL_Type >= E_PNL_LPLL_VBY1_10BIT_4LANE)&&
2175        (pstPanelInitData->eLPLL_Type <= E_PNL_LPLL_VBY1_8BIT_8LANE))
2176     {
2177 
2178         W2BYTE(REG_CLKGEN0_57_L,0x0008); //[3:0]ckg_fifo
2179 		W2BYTE(L_CLKGEN0(0x63), 0x0410);   //[11:8]ckg_tx_mod_osd[4:0]osd2mod
2180 		W2BYTE(REG_RVD_09_L, 0x1800); //[12:8]ckg_vby1_fifo_osd [3:0]clk_vby1_fifo
2181 		W2BYTEMSK(L_CLKGEN0(0x55), 0x00, 0xF00); //[11:8] reg_ckg_osdc
2182     }
2183     else
2184     {
2185 
2186         W2BYTE(REG_CLKGEN0_57_L,0x0000); //[3:0]ckg_fifo
2187 		if((pstPanelInitData->eLPLL_Type == E_PNL_TYPE_HS_LVDS)&&(pstPanelInitData->eLPLL_Mode == E_PNL_MODE_SINGLE))
2188     {
2189         W2BYTE(L_CLKGEN0(0x63), 0x0410);   //[11:8]ckg_tx_mod_osd[4:0]osd2mod
2190 			W2BYTE(REG_RVD_09_L, 0x1000); //[12:8]ckg_vby1_fifo_osd [3:0]clk_vby1_fifo+
2191     }
2192 		else
2193     {
2194 			W2BYTE(L_CLKGEN0(0x63),0x0000); //[11:8]ckg_tx_mod [3:0]ckg_osd2mod
2195 			W2BYTE(REG_RVD_09_L, 0x0000); //[12:8]ckg_vby1_fifo_osd [3:0]clk_vby1_fifo
2196 		}
2197     }
2198 }
2199 
MHal_PNL_Init_MOD(void * pInstance,PNL_InitData * pstPanelInitData)2200 void MHal_PNL_Init_MOD(void *pInstance, PNL_InitData *pstPanelInitData)
2201 {
2202     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2203     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2204     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2205     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2206 
2207     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__);
2208 
2209     //------------------------------------------------------------------------
2210 
2211     PNL_DBG(PNL_DBGLEVEL_INIT, "u16MOD_CTRL0 = %x\n", pstPanelInitData->u16MOD_CTRL0);
2212     PNL_DBG(PNL_DBGLEVEL_INIT, "u16MOD_CTRL9 = %x\n", pstPanelInitData->u16MOD_CTRL9);
2213     PNL_DBG(PNL_DBGLEVEL_INIT, "u16MOD_CTRLA = %x\n", pstPanelInitData->u16MOD_CTRLA);
2214     PNL_DBG(PNL_DBGLEVEL_INIT, "u8MOD_CTRLB  = %x\n", pstPanelInitData->u8MOD_CTRLB);
2215 
2216     //-------------------------------------------------------------------------
2217     // Set MOD registers
2218     //-------------------------------------------------------------------------
2219 
2220     MOD_W2BYTEMSK(REG_MOD_BK00_40_L, pstPanelInitData->u16MOD_CTRL0, LBMASK);
2221 
2222     //    GPIO is controlled in drvPadConf.c
2223     //    MDrv_Write2Byte(L_BK_MOD(0x46), 0x0000);    //EXT GPO disable
2224     //    MDrv_Write2Byte(L_BK_MOD(0x47), 0x0000);    //EXT GPO disable
2225     if(((pstPanelInitData->eLPLL_Type_Ext>= E_PNL_LPLL_VBY1_10BIT_4LANE)&&
2226         (pstPanelInitData->eLPLL_Type_Ext<= E_PNL_LPLL_VBY1_8BIT_8LANE)))
2227     {
2228         ///u16MOD_CTRL9 [6] : 62[9]reg_vby1_pair_swap
2229         ///u16MOD_CTRL9 [12:11] : 62[5:4]reg_vby1_pair_mirror
2230         MOD_W2BYTEMSK(REG_MOD_BK00_62_L, 0xAC40, 0xFDCF); //[15]proc_st[13:12]byte_mode 4 byte mode[6]4ch_vby1[9]swap
2231 
2232         MOD_W2BYTEMSK(REG_MOD_BK00_62_L, (pstPanelInitData->u16MOD_CTRL9 & BIT(6))<<3, BIT(9));
2233         MOD_W2BYTEMSK(REG_MOD_BK00_62_L, (pstPanelInitData->u16MOD_CTRL9 & (BIT(12)|BIT(11)))>>7, BIT(5)|BIT(4));
2234 
2235         if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16MOD_CTRLA & BIT(1))  // use Dual port to decide the Vx1 1 or 2 devision config
2236         {
2237             if(pstPanelInitData->eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_8LANE)
2238             {
2239                 // 2 divison just be supported in monet vby1 8 lane
2240                 printf("\n[%s][%d]Vx1 2 division\n", __FUNCTION__, __LINE__);
2241                 MOD_W2BYTEMSK(REG_MOD_BK00_20_L, 0x0002, 0x0007);//[2:0]reg_mft_mode
2242 
2243                 MOD_W2BYTEMSK(REG_MOD_BK00_21_L, 0x1002, 0xFFFF); //[11:0]reg_dly_value
2244                 MOD_W2BYTEMSK(REG_MOD_BK00_22_L, 0x0F00, 0xFFFF); //[12:0]reg_hsize
2245                 MOD_W2BYTEMSK(REG_MOD_BK00_26_L, 0x0780, 0xFFFF); //[12:0]reg_div_len
2246                 MOD_W2BYTEMSK(REG_MOD_BK00_7F_L, 0x0002, 0xFFFF); //[2:0]reg_sram_usage
2247                 MOD_W2BYTEMSK(REG_MOD_BK00_53_L, 0x4000, 0xFFFF); //[14]reg_vfde_mask
2248             }
2249             else
2250             {
2251                 MOD_W2BYTEMSK(REG_MOD_BK00_20_L, 0x0000, 0x0007);//[2:0]reg_mft_mode
2252             }
2253         }
2254         else
2255         {
2256             printf("\n[%s][%d]Vx1 1 division\n", __FUNCTION__, __LINE__);
2257             MOD_W2BYTEMSK(REG_MOD_BK00_20_L, 0x0000, 0x0007);
2258             MOD_W2BYTEMSK(REG_MOD_BK00_53_L, 0x0000, 0xFFFF); //[14]reg_vfde_mask
2259         }
2260 
2261         if((pstPanelInitData->eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_2LANE)||(pstPanelInitData->eLPLL_Type_Ext == E_PNL_LPLL_VBY1_8BIT_2LANE))
2262             MOD_W2BYTEMSK(REG_MOD_BK00_62_L, 0x00, BIT(6)); //[6]4ch_vby1
2263         else
2264             MOD_W2BYTEMSK(REG_MOD_BK00_62_L, BIT(6), BIT(6)); //[6]4ch_vby1
2265 
2266 
2267         ///u16MOD_CTRL9 [7] : 63[13]reg_vby1_pair_swap_osd
2268         ///u16MOD_CTRL9 [14:13] : 63[11:10]reg_vby1_pair_mirror2
2269         MOD_W2BYTEMSK(REG_MOD_BK00_63_L, (pstPanelInitData->u16MOD_CTRL9 & BIT(7))<<6, BIT(13));
2270         MOD_W2BYTEMSK(REG_MOD_BK00_63_L, (pstPanelInitData->u16MOD_CTRL9 & (BIT(14)|BIT(13)))>>3, BIT(11)|BIT(10));
2271 
2272         if((pstPanelInitData->eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_8LANE)||(pstPanelInitData->eLPLL_Type_Ext == E_PNL_LPLL_VBY1_8BIT_8LANE))
2273         {
2274             MOD_W2BYTEMSK(REG_MOD_BK00_63_L, BIT(12), BIT(12)); // [12] enable 8ch vx1 mode : 1
2275 
2276             if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16MOD_CTRLA & BIT(1))
2277             {
2278                 // 2 Divisoin
2279                 MOD_W2BYTEMSK(REG_MOD_BK00_63_L, BIT(11), BIT(11)); // [11:10]reg_vby1_pair_mirror2
2280             }
2281             else
2282             {
2283                 // 1 Division
2284                 MOD_W2BYTEMSK(REG_MOD_BK00_63_L, 0x00, BIT(11)); // [11:10]reg_vby1_pair_mirror2
2285             }
2286         }
2287         else //if   ///E_PNL_LPLL_VBY1_10BIT_4LANE, E_PNL_LPLL_VBY1_10BIT_2LANE
2288         {
2289             MOD_W2BYTEMSK(REG_MOD_BK00_63_L,    0x00, BIT(12)); // [12] enable 8ch vx1 mode : 0
2290         }
2291 
2292         MHal_Output_Channel_Order(pInstance,
2293                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u8OutputOrderType,
2294                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder0_3,
2295                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder4_7,
2296                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder8_11,
2297                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder12_13);
2298 
2299 
2300         if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16MOD_CTRLA & BIT(1))  // use Dual port to decide the Vx1 1 or 2 devision config
2301         {
2302             printf("\n[%s][%d]Vx1 2 division\n", __FUNCTION__, __LINE__);
2303         }
2304         else
2305         {
2306             printf("\n[%s][%d]Vx1 1 division\n", __FUNCTION__, __LINE__);
2307         }
2308 
2309         ////per RD's suggestion ---Start
2310         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_30_L, 0x3FFF, 0x3FFF);   //reg_gcr_pe_en_ch
2311         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_32_L, 0x0000, 0x3FFF);   //reg_gcr_en_rint_ch
2312         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3C_L, 0x3FFF, 0x3FFF);   //reg_gcr_test_ch
2313 
2314         /// reg_gcr_pe_adj ch0~ch13
2315         MOD_A_W2BYTE(REG_MOD_A_BK00_18_L,0x2222);
2316         MOD_A_W2BYTE(REG_MOD_A_BK00_19_L,0x2222);
2317         MOD_A_W2BYTE(REG_MOD_A_BK00_1A_L,0x2222);
2318         MOD_A_W2BYTE(REG_MOD_A_BK00_1B_L,0x2222);
2319 
2320         MOD_W2BYTEMSK(REG_MOD_BK00_67_L, BIT(0)|BIT(3), BIT(0)|BIT(3));  // [0] reg_vby1_8v4o_mode, [3]reg_vby1_ext_ptr_en
2321         MOD_W2BYTEMSK(REG_MOD_BK00_67_L, BIT(15), BIT(15));
2322 
2323         //The threshold value be set too strict ( ori: MOD_5C =0x0 )
2324         //And this reg should be set before enable serializer function
2325         //[15]reg_sw_rptr_fix_en: pointer fix by sw mode enable
2326         //[14:12]reg_sw_wptr_check: sw mode to decision write point check point
2327         //[10:8]reg_sw_rptr_fix_ini: sw mode to decision read point initial value
2328         //[6:4]reg_sw_rptr_fix_hi_th: sw mode to decision read pointer hi boundary
2329         //[2:0]reg_sw_rptr_fix_lo_th: sw mode to decision read pointer low boundary
2330         MOD_W2BYTEMSK(REG_MOD_BK00_5C_L,0x8142,0xFFFF);
2331         MOD_W2BYTEMSK(REG_MOD_BK00_5E_L,0x8142,0xFFFF);
2332 
2333         MOD_W2BYTE(REG_MOD_BK00_5B_L, 0x0087); //[0]enable serializer function ,
2334                                                //[1]enable serializer auto fix read/write point mis-balance
2335                                                //[2]enable osd serializer auto fix read/write point mis-balance
2336                                                //[7]for OSD, switch chanel 8~13 as OSD path
2337     }
2338     else
2339     {
2340         MOD_W2BYTE(REG_MOD_BK00_49_L, pstPanelInitData->u16MOD_CTRL9); //{L_BK_MOD(0x49), 0x00}, // [7,6] : output formate selction 10: 8bit, 01: 6bit :other 10bit, bit shift
2341         MHal_Output_Channel_Order(pInstance,
2342                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u8OutputOrderType,
2343                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder0_3,
2344                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder4_7,
2345                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder8_11,
2346                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder12_13);
2347     }
2348 
2349     MOD_W2BYTE(REG_MOD_BK00_4A_L, pstPanelInitData->u16MOD_CTRLA);
2350     MOD_W2BYTE(REG_MOD_BK00_4B_L,  pstPanelInitData->u8MOD_CTRLB);  //[1:0]ti_bitmode 10:8bit  11:6bit  0x:10bit
2351 
2352     //dual port lvds _start_//
2353     // output configure for 26 pair output 00: TTL, 01: LVDS/RSDS/mini-LVDS data differential pair, 10: mini-LVDS clock output, 11: RSDS clock output
2354     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0x1F, 0x1F);    //[4]ck_pd[3]ck_pc[2]ck_pb[1]ck_pa[0]en_ck   // original is MDrv_WriteByteMask(L_BK_MOD(0x77), 0x0F, BITMASK(7:2));
2355     //dual port lvds _end_//
2356 
2357     //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, (_u8PnlDiffSwingLevel << 1), 0xFE);       //differential output swing level
2358     if(((pstPanelInitData->eLPLL_Type_Ext>= E_PNL_LPLL_VBY1_10BIT_4LANE)&&
2359         (pstPanelInitData->eLPLL_Type_Ext<= E_PNL_LPLL_VBY1_8BIT_8LANE)))
2360         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0xC000, 0xF000);       //bank selection for skew clock
2361 
2362     //if(!MHal_PNL_MOD_Control_Out_Swing(_u8PnlDiffSwingLevel))
2363     //    printf(">>Swing Level setting error!!\n");
2364     if(pstPanelInitData->eLPLL_Type != E_PNL_TYPE_MINILVDS)
2365     {
2366         MOD_W2BYTEMSK(REG_MOD_A_BK00_70_L, 0x7, 0x07);
2367     }
2368 
2369     //// Patch for Vx1 and it should be control by panel ini
2370     if(((pstPanelInitData->eLPLL_Type_Ext>= E_PNL_LPLL_VBY1_10BIT_4LANE)&&
2371         (pstPanelInitData->eLPLL_Type_Ext<= E_PNL_LPLL_VBY1_8BIT_8LANE)))
2372     {
2373         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_31_L, 0x0FFF, 0x3FFF);
2374     }
2375     else
2376     {
2377         MOD_A_W2BYTE(REG_MOD_A_BK00_31_L, pstPanelInitData->u16LVDSTxSwapValue);
2378     }
2379 
2380 
2381     // TODO: move from MDrv_Scaler_Init(), need to double check!
2382     MOD_W2BYTEMSK(REG_MOD_BK00_53_L, BIT(0), BIT(0));
2383 
2384 
2385     //--------------------------------------------------------------
2386     //Depend On Bitmode to set Dither
2387     //--------------------------------------------------------------
2388 
2389 
2390     // always enable noise dither and disable TAILCUT
2391     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, ((pstPanelInitData->u8PanelNoiseDith ? XC_PAFRC_DITH_NOISEDITH_EN : (1 - XC_PAFRC_DITH_NOISEDITH_EN)) <<3) , BIT(3));
2392     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, XC_PAFRC_DITH_TAILCUT_DISABLE, BIT(4));
2393 
2394     switch(pstPanelInitData->u8MOD_CTRLB & 0x03)//[1:0]ti_bitmode b'10:8bit  11:6bit  0x:10bit
2395     {
2396         case HAL_TI_6BIT_MODE:
2397             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, BIT(0), BIT(0));
2398             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, BIT(2), BIT(2));
2399             break;
2400 
2401         case HAL_TI_8BIT_MODE:
2402             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, BIT(0), BIT(0));
2403             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, 0x00, BIT(2));
2404             break;
2405 
2406         case HAL_TI_10BIT_MODE:
2407         default:
2408             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, 0x00, BIT(0));
2409             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, 0x00, BIT(2));
2410             break;
2411     }
2412 
2413 
2414     //-----depend on bitmode to set Dither------------------------------
2415     MHal_PNL_SetOutputType(pInstance, pPNLResourcePrivate->sthalPNL._eDrvPnlInitOptions, pstPanelInitData->eLPLL_Type);     // TTL to Ursa
2416     //MHal_PNL_Bringup(pInstance);
2417 
2418     MHal_PNL_MISC_Control(pInstance, pstPanelInitData->u32PNL_MISC);
2419 
2420     PNL_DBG(PNL_DBGLEVEL_INIT, "OutputType  = %x, eLPLL_Type = %x\n", pPNLResourcePrivate->sthalPNL._eDrvPnlInitOptions, pstPanelInitData->eLPLL_Type);
2421     PNL_DBG(PNL_DBGLEVEL_INIT, "u32PNL_MISC  = %tx\n", (ptrdiff_t)pstPanelInitData->u32PNL_MISC);
2422 
2423 }
2424 
MHal_PNL_DumpMODReg(void * pInstance,MS_U32 u32Addr,MS_U16 u16Value,MS_BOOL bHiByte,MS_U16 u16Mask)2425 void MHal_PNL_DumpMODReg(void *pInstance, MS_U32 u32Addr, MS_U16 u16Value, MS_BOOL bHiByte, MS_U16 u16Mask)
2426 {
2427     if (bHiByte)
2428     {
2429         MOD_W2BYTEMSK(u32Addr, (u16Value << 8), (u16Mask << 8));
2430     }
2431     else
2432     {
2433         MOD_W2BYTEMSK(u32Addr, u16Value, u16Mask);
2434     }
2435 }
2436 
MHal_MOD_Calibration_Init(void * pInstance,PNL_ModCali_InitData * pstModCaliInitData)2437 void MHal_MOD_Calibration_Init(void *pInstance, PNL_ModCali_InitData *pstModCaliInitData)
2438 {
2439     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2440     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2441     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2442     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2443     // Setup the default swing level
2444     pPNLResourcePrivate->sthalPNL._u16PnlDefault_SwingLevel = pstModCaliInitData->u16ExpectSwingLevel;   //mv
2445 #if 0
2446 	// Pair setting
2447 	// =========
2448 	// Select calibration source pair, 00: ch2, 01: ch6, 10:ch8, 11:ch12
2449 	//MOD_7D_L[3:2]
2450 	// =========
2451 	//in msModCurrentCalibration, it will transfer to the real data
2452 
2453     switch(pstModCaliInitData->u8ModCaliPairSel)
2454     {
2455         default:
2456         case 0:
2457         //ch 2
2458             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_PAIR_SEL = 0x00; // ch2
2459         break;
2460         case 1:
2461         //ch 6
2462             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_PAIR_SEL = 0x01; // ch6, calibration initialized value
2463         break;
2464         case 2:
2465         //ch 8
2466             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_PAIR_SEL = 0x02;
2467         break;
2468         case 3:
2469         //ch 12
2470             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_PAIR_SEL = 0x03;
2471         break;
2472     }
2473 #endif
2474     // Target setting
2475     // =========
2476     // GCR_CAL_LEVEL[1:0] : REG_MOD_A_BK00_70_L =>
2477     // =========
2478     //in msModCurrentCalibration, it will transfer to the real data
2479     switch(pstModCaliInitData->u8ModCaliTarget)
2480     {
2481         default:
2482         case 0:
2483             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET = 0;
2484         break;
2485         case 1:
2486             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET = 1;
2487         break;
2488         case 2:
2489             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET = 2;
2490         break;
2491         case 3:
2492             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET = 3;
2493         break;
2494     }
2495     // Offset setting, for fine tune
2496     //_usMOD_CALI_OFFSET = pstModCaliInitData->s8ModCaliOffset;
2497     // _u8MOD_CALI_VALUE is a real value; the _u8MOD_CALI_VALUE is an idea value
2498     // Target value should be the same with _u8MOD_CALI_VALUE to be a default value
2499     pPNLResourcePrivate->sthalPNL._u8MOD_CALI_VALUE= pstModCaliInitData->u8ModCaliTarget;
2500     // PVDD setting
2501     pPNLResourcePrivate->sthalPNL._bPVDD_2V5 = pstModCaliInitData->bPVDD_2V5;
2502 
2503     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__);
2504     PNL_DBG(PNL_DBGLEVEL_INIT, "u16ExpectSwingLevel = %u\n", pstModCaliInitData->u16ExpectSwingLevel);
2505     PNL_DBG(PNL_DBGLEVEL_INIT, "u8ModCaliTarget     = %x\n", pstModCaliInitData->u8ModCaliTarget);
2506     PNL_DBG(PNL_DBGLEVEL_INIT, "_u8MOD_CALI_TARGET  = %x\n", pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET);
2507     PNL_DBG(PNL_DBGLEVEL_INIT, "_u8MOD_CALI_VALUE   = %x\n", pPNLResourcePrivate->sthalPNL._u8MOD_CALI_VALUE);
2508     PNL_DBG(PNL_DBGLEVEL_INIT, "bPVDD_2V5           = %x\n", pstModCaliInitData->bPVDD_2V5);
2509 
2510 }
2511 
MHal_BD_LVDS_Output_Type(void * pInstance,MS_U16 Type)2512 void MHal_BD_LVDS_Output_Type(void *pInstance, MS_U16 Type)
2513 {
2514     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2515     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2516     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2517     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2518     if(Type == LVDS_DUAL_OUTPUT_SPECIAL )
2519     {
2520         pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Shift = LVDS_DUAL_OUTPUT_SPECIAL;
2521         pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type = 1;
2522     }
2523     else
2524     {
2525         pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type  = Type;
2526     }
2527     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__);
2528     PNL_DBG(PNL_DBGLEVEL_INIT, "_u8MOD_LVDS_Pair_Type = %u\n", pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type);
2529 
2530 }
2531 
msModCalDDAOUT(void)2532 MS_BOOL msModCalDDAOUT(void)
2533 {
2534    // W2BYTEMSK(BK_MOD(0x7D), ENABLE, 8:8);
2535    // MsOS_DelayTask(10);  //10ms
2536     return (MS_BOOL)((MOD_R2BYTEMSK(REG_MOD_A_BK00_74_L, BIT(8))) >> 8);
2537 }
2538 
msModCurrentCalibration(void * pInstance)2539 MS_U8 msModCurrentCalibration(void *pInstance)
2540 {
2541 #if MOD_CAL_TIMER
2542         MS_U32 delay_start_time;
2543         delay_start_time=MsOS_GetSystemTime();
2544 #endif
2545 
2546 #if (!ENABLE_Auto_ModCurrentCalibration)
2547         return 0x60;
2548 #else
2549     MS_U8 u8cur_ibcal=0;
2550     MS_U16 u16reg_32da = 0, u16reg_32dc = 0;
2551     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2552     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2553     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2554     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2555     u16reg_32da = MOD_A_R2BYTE(REG_MOD_A_BK00_00_L);
2556     u16reg_32dc = MOD_A_R2BYTE(REG_MOD_A_BK00_01_L);
2557 
2558     PNL_DBG(PNL_DBGLEVEL_CALIBRATION, "[%s][%d]\n", __FUNCTION__, __LINE__);
2559 
2560     // (1) Set keep mode to auto write calibration result into register.
2561     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, BIT(15), BIT(15));
2562 
2563     // (2) Set calibration step waiting time
2564     MOD_A_W2BYTE(REG_MOD_A_BK00_71_L, 0x0080); // (about 5us)
2565     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0x0000, 0x00FF);
2566 
2567     // (3) Set calibration toggle time
2568     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0x0500, 0x0F00);
2569 
2570     // (4) Select calibration level (LVDS is 250mV)
2571     MOD_W2BYTEMSK(REG_MOD_A_BK00_70_L, pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET, BIT(2)|BIT(1)|BIT(0));    // Select calibration target voltage, 00: 250mV, 01:350mV, 10: 300mV, 11: 200mV
2572 
2573     // (5) Enable Calibration mode
2574     MOD_W2BYTEMSK(REG_MOD_A_BK00_70_L, BIT(7), BIT(7));         // Enable calibration function
2575 
2576     // (6) Store output configuration value and Enable each pair test mode
2577     MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0xFFFF);
2578     MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0FFF);
2579 
2580     MS_U8 u8CheckTimes = 0;
2581     while(1)
2582     {
2583         // (7) Enable Hardware calibration
2584         MOD_W2BYTEMSK(REG_MOD_BK00_3D_L, BIT(15), BIT(15));
2585 
2586         // (8) Wait 2ms
2587         MsOS_DelayTask(2);
2588 
2589         // (10) Disable Hardware calibration
2590         MOD_W2BYTEMSK(REG_MOD_BK00_3D_L, 0x00, BIT(15));
2591 
2592         // (9)Check Finish and Fail flag bit
2593         //BK1032, 0x3D[14], Finish flag=1
2594         //BK1032, 0x3D[13], Fail flag=0
2595         if (MOD_R2BYTEMSK(REG_MOD_BK00_3D_L, 0x6000) == 0x4000)
2596         {
2597             //printf("\033[0;31m [%s][%d] cal ok, break  \033[0m\n", __FUNCTION__, __LINE__);
2598             break;
2599         }
2600         else
2601         {
2602             u8CheckTimes ++;
2603             //printf("\033[0;31m [%s][%d] cal ng, u8CheckTimes: %d  \033[0m\n", __FUNCTION__, __LINE__, u8CheckTimes);
2604         }
2605 
2606         if (u8CheckTimes > 3)
2607         {
2608             // (13) If 3 times all fail, set all pair to nominal value by disable keep mode
2609             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0x00, BIT(15));
2610             //printf("\033[0;31m [%s][%d] If 3 times all fail, set all pair to nominal value by disable keep mode  \033[0m\n", __FUNCTION__, __LINE__);
2611             break;
2612         }
2613     }
2614 
2615     if (u8CheckTimes <=3)
2616     {
2617          PNL_DBG(PNL_DBGLEVEL_CALIBRATION, "\r\n----- Calibration ok \n");
2618     }
2619     else
2620     {
2621         PNL_DBG(PNL_DBGLEVEL_CALIBRATION, "\r\n----- Calibration fail: 0x%x \n", MOD_R2BYTEMSK(REG_MOD_BK00_3D_L, 0x6000));
2622     }
2623 
2624     // Wait 2ms to make sure HW auto write calibration result into register
2625     MsOS_DelayTask(2);
2626 
2627     // (14) Restore each pair output configuration
2628     MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, u16reg_32da);
2629     MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, u16reg_32dc);
2630 
2631     // (15) Disable calibration mode
2632     MOD_W2BYTEMSK(REG_MOD_A_BK00_70_L, 0x00, BIT(7));         // Disable calibration function
2633 
2634     // With HW calibration mode, HW would cal for each channel, and each channel would get different value
2635     // Return channel 2 vaule
2636     u8cur_ibcal = MOD_A_R2BYTEMSK(REG_MOD_A_BK00_09_L, 0x007F); // return ch2 calibration result
2637 
2638 #if MOD_CAL_TIMER
2639     PNL_DBG(PNL_DBGLEVEL_CALIBRATION, "[%s] takes %ld ms\n", __FUNCTION__, (MsOS_GetSystemTime()-delay_start_time));
2640 #endif
2641     PNL_DBG(PNL_DBGLEVEL_CALIBRATION, "\r\n Calibration result= %x\n", u8cur_ibcal);
2642 
2643     return (u8cur_ibcal&0x7F);//MOD_A_R2BYTEMSK(REG_MOD_A_BK00_0D_L, 0x003F);
2644 #endif
2645 }
2646 
MHal_PNL_MOD_Calibration(void * pInstance)2647 PNL_Result MHal_PNL_MOD_Calibration(void *pInstance)
2648 {
2649     MS_U8 u8Cab;
2650     MS_U8 u8BackUSBPwrStatus;
2651     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2652     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2653     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2654     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2655 
2656     u8BackUSBPwrStatus = R2BYTEMSK(L_BK_UTMI1(0x04), BIT(7));
2657 
2658     W2BYTEMSK(L_BK_UTMI1(0x04), 0x00, BIT(7));
2659 
2660     u8Cab = msModCurrentCalibration(pInstance);
2661 
2662     W2BYTEMSK(L_BK_UTMI1(0x04), u8BackUSBPwrStatus, BIT(7));
2663 
2664     if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type !=E_PNL_TYPE_MINILVDS)
2665         MOD_W2BYTEMSK(REG_MOD_A_BK00_70_L, u8Cab, 0x07);
2666 
2667     return E_PNL_OK;
2668 
2669 }
2670 
MHal_PNL_PowerDownLPLL(void * pInstance,MS_BOOL bEnable)2671 static void MHal_PNL_PowerDownLPLL(void *pInstance, MS_BOOL bEnable)
2672 {
2673     if(bEnable)
2674     {
2675         W2BYTEMSK(L_BK_LPLL(0x03), BIT(5), BIT(5));
2676     }
2677     else
2678     {
2679         W2BYTEMSK(L_BK_LPLL(0x03), FALSE, BIT(5));
2680     }
2681 }
2682 
MHal_PNL_En(void * pInstance,MS_BOOL bPanelOn,MS_BOOL bCalEn)2683 PNL_Result MHal_PNL_En(void *pInstance, MS_BOOL bPanelOn, MS_BOOL bCalEn)
2684 {
2685     MS_U8 u8Cab;
2686     MS_U8 u8BackUSBPwrStatus;
2687     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2688     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2689     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2690     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2691 
2692     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "[%s][%d]\n", __FUNCTION__, __LINE__);
2693 
2694     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u32PNL_MISC = %tx\n", (ptrdiff_t)pPNLResourcePrivate->stdrvPNL._stPnlInitData.u32PNL_MISC);
2695     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "bPanelOn = %x\n", bPanelOn);
2696     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "eLPLL_Type            = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type);
2697     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "_u8MOD_LVDS_Pair_Type = %x\n", pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type);
2698     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG0_7       = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7);
2699     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG8_15      = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15);
2700     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG16_21     = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21);
2701 
2702     MS_U16 u16PortA = MOD_A_R2BYTE(REG_MOD_A_BK00_00_L);
2703     MS_U16 u16PortB = MOD_A_R2BYTE(REG_MOD_A_BK00_01_L);
2704 
2705     if(u16PortA!=0)
2706         pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7   = MOD_A_R2BYTE(REG_MOD_A_BK00_00_L);
2707     if(u16PortB!=0)
2708         pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15  = MOD_A_R2BYTE(REG_MOD_A_BK00_01_L);
2709 
2710     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "==========================\n\n");
2711     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG0_7       = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7);
2712     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG8_15      = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15);
2713     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG16_21     = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21);
2714 
2715 
2716     if(bPanelOn)
2717     {
2718         // The order is PanelVCC -> delay pnlGetOnTiming1() -> VOP -> MOD
2719         // VOP
2720         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_46_L, 0x4000, HBMASK);
2721 
2722         // For Napoli compatible
2723         // need to wait 1ms to wait LDO stable before MOD power on
2724         MsOS_DelayTask(1);
2725 
2726         // turn on LPLL
2727         MHal_PNL_PowerDownLPLL(pInstance, FALSE);
2728 
2729         // mod power on
2730         MHal_MOD_PowerOn(pInstance
2731                         , ENABLE
2732                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type
2733                         , pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type
2734                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7
2735                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15
2736                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21);
2737 
2738         if(bCalEn)
2739         {
2740 
2741             u8BackUSBPwrStatus = R2BYTEMSK(L_BK_UTMI1(0x04), BIT(7));
2742 
2743             W2BYTEMSK(L_BK_UTMI1(0x04), 0x00, BIT(7));
2744 
2745             u8Cab = msModCurrentCalibration(pInstance);
2746 
2747             W2BYTEMSK(L_BK_UTMI1(0x04), u8BackUSBPwrStatus, BIT(7));
2748 
2749         }
2750         else
2751         {
2752             if((pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type>=E_PNL_LPLL_VBY1_10BIT_4LANE)&&
2753                 (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type<=E_PNL_LPLL_VBY1_8BIT_8LANE) &&
2754                 ((pPNLResourcePrivate->stdrvPNL._stPnlInitData.u32PNL_MISC & (MS_U32)E_APIPNL_MISC_SKIP_ICONVALUE) == FALSE))
2755             {
2756                 HAL_MOD_CAL_DBG(printf("Use RCON value \n", __FUNCTION__, __LINE__));
2757                 msSetVBY1RconValue(pInstance);
2758             }
2759             else
2760             {
2761                 HAL_MOD_CAL_DBG(printf("User define Swing Value=%u\n", __FUNCTION__, __LINE__, pPNLResourcePrivate->sthalPNL._u16PnlDefault_SwingLevel));
2762 
2763                 if(!MHal_PNL_MOD_Control_Out_Swing(pInstance, pPNLResourcePrivate->sthalPNL._u16PnlDefault_SwingLevel))
2764                     printf(">>Swing Level setting error!!\n");
2765             }
2766         }
2767 
2768         if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.bVideo_HW_Training_En)
2769             MHal_PNL_VBY1_Hardware_TrainingMode_En(pInstance, TRUE, ENABLE);
2770     }
2771     else
2772     {
2773         // The order is LPLL -> MOD -> VOP -> delay for MOD power off -> turn off VCC
2774 
2775         // LPLL
2776         // MHal_PNL_PowerDownLPLL(TRUE); //Remove to keep op vsync if panel off
2777 
2778         MHal_MOD_PowerOn(pInstance
2779                         , DISABLE
2780                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type
2781                         , pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type
2782                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7
2783                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15
2784                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21);
2785         // VOP
2786         if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_LVDS ||
2787             pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_DAC_I ||
2788             pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_DAC_P)//(bIsLVDS)
2789             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_46_L, 0xFF, LBMASK);
2790         else
2791             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_46_L, 0x00, 0xFF);
2792     }
2793 
2794     return E_PNL_OK;
2795 }
2796 
MHal_PNL_SetOutputPattern(void * pInstance,MS_BOOL bEnable,MS_U16 u16Red,MS_U16 u16Green,MS_U16 u16Blue)2797 void MHal_PNL_SetOutputPattern(void *pInstance, MS_BOOL bEnable, MS_U16 u16Red , MS_U16 u16Green, MS_U16 u16Blue)
2798 {
2799     if (bEnable)
2800     {
2801         MOD_W2BYTEMSK(REG_MOD_BK00_02_L, u16Red , 0x03FF);
2802         MOD_W2BYTEMSK(REG_MOD_BK00_03_L, u16Green , 0x03FF);
2803         MOD_W2BYTEMSK(REG_MOD_BK00_04_L, u16Blue , 0x03FF);
2804         MsOS_DelayTask(10);
2805         MOD_W2BYTEMSK(REG_MOD_BK00_01_L, BIT(15) , BIT(15));
2806     }
2807     else
2808     {
2809         MOD_W2BYTEMSK(REG_MOD_BK00_01_L, DISABLE , BIT(15));
2810     }
2811 
2812 }
2813 
MHal_PNL_Switch_LPLL_SubBank(void * pInstance,MS_U16 u16Bank)2814 void MHal_PNL_Switch_LPLL_SubBank(void *pInstance, MS_U16 u16Bank)
2815 {
2816     UNUSED(u16Bank);
2817 }
2818 
MHal_PNL_Switch_TCON_SubBank(void * pInstance,MS_U16 u16Bank)2819 void MHal_PNL_Switch_TCON_SubBank(void *pInstance, MS_U16 u16Bank)
2820 {
2821     W2BYTEMSK(L_BK_TCON(0x00), u16Bank&0xff, 0xFF);
2822 }
2823 
MHal_PNL_Read_TCON_SubBank(void * pInstance)2824 MS_U16 MHal_PNL_Read_TCON_SubBank(void *pInstance)
2825 {
2826     return (MS_U16)R2BYTEMSK(L_BK_TCON(0x00),0xFF);
2827 }
2828 
MHal_PNL_Is_VBY1_Locked(void * pInstance)2829 MS_BOOL MHal_PNL_Is_VBY1_Locked(void *pInstance)
2830 {
2831     if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_47_L, 0x0300) == 0x00)
2832     {
2833         return TRUE;
2834     }
2835     else
2836     {
2837         return FALSE;
2838     }
2839 }
2840 
MHal_PNL_Is_VBY1_LockN_Locked(void * pInstance)2841 MS_BOOL MHal_PNL_Is_VBY1_LockN_Locked(void *pInstance)
2842 {
2843     if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_47_L, 0x0100) == 0x00)
2844     {
2845         return TRUE;
2846     }
2847     else
2848     {
2849         return FALSE;
2850     }
2851 }
2852 
MHal_PNL_VBY1_Handshake(void * pInstance)2853 MS_BOOL MHal_PNL_VBY1_Handshake(void *pInstance)
2854 {
2855     MS_BOOL bIsLock = FALSE;
2856 
2857     if (MHal_PNL_Is_VBY1_Locked(pInstance) == FALSE)
2858     {
2859         MS_U16 u16CheckTimes = 0;
2860         //MS_U16 u16DeboundTimes = 0;
2861 
2862         // need to toggle vby1 packer  process start first
2863         MOD_W2BYTEMSK(REG_MOD_BK00_62_L, 0x00, BIT(11));
2864         MOD_W2BYTEMSK(REG_MOD_BK00_62_L, BIT(11), BIT(11));
2865 
2866         MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0F56); // set reg. initial value
2867         MOD_W2BYTEMSK(REG_MOD_BK00_60_L, 0xD6, 0x00FF); // after power on go to stand-by
2868         MOD_W2BYTEMSK(REG_MOD_BK00_60_L, 0x96, 0x00FF); // connection is established, go to Acquisition
2869         MOD_W2BYTEMSK(REG_MOD_BK00_60_L, 0xB6, 0x00FF); // when internal clock is stable, got to CDR training
2870         MOD_W2BYTEMSK(REG_MOD_BK00_60_L, 0xBE, 0x00FF); // enable encoder for DC blance
2871 
2872         while(u16CheckTimes < 10)
2873         {
2874 #if 0
2875             u16DeboundTimes = 2;
2876             while ((!MHal_PNL_Is_VBY1_LockN_Locked()) && (u16DeboundTimes --))
2877             {
2878                 MsOS_DelayTask(1); // can't remove
2879             }
2880 #endif
2881             if(MHal_PNL_Is_VBY1_LockN_Locked(pInstance))
2882             {
2883                 //-------------------------------------------------------------------
2884                 // step1. Toggle clock when training
2885                 MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0FAE);
2886                 //--------------------------------------------------------------------
2887                 bIsLock = TRUE;
2888                 // pass 2 times debound to make sure VBY1 is locked
2889                 break;
2890             }
2891 
2892             u16CheckTimes++;
2893             MsOS_DelayTaskUs(40);
2894         }
2895 
2896         if(bIsLock)
2897             {
2898             // step3. Disable HW check when lock done, Enable when loss lock
2899             //MOD_W2BYTEMSK(REG_MOD_BK00_33_L, 0x00, BIT15);
2900 
2901             /// Add the delay to increase time to send
2902             //MDrv_TIMER_Delayms(10);
2903         }
2904     }
2905     else
2906     {
2907         if(MOD_R2BYTEMSK(REG_MOD_BK00_60_L, 0x0FFF) != 0x0FAE)
2908         {
2909             MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0FAE);
2910         }
2911         bIsLock = TRUE;
2912             }
2913 
2914     return bIsLock;
2915 }
2916 
MHal_PNL_Is_VBY1_OC_Locked(void * pInstance)2917 MS_BOOL MHal_PNL_Is_VBY1_OC_Locked(void *pInstance)
2918 {
2919     if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_47_L, 0x0C00) == 0x00)  // MOD_BK00_56_L[11:10]        for OSD
2920             {
2921         return TRUE;
2922     }
2923     else
2924     {
2925         return FALSE;
2926             }
2927 }
2928 
MHal_PNL_Is_VBY1_OC_LockN_Locked(void * pInstance)2929 MS_BOOL MHal_PNL_Is_VBY1_OC_LockN_Locked(void *pInstance)
2930 {
2931     if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_47_L, 0x0400) == 0x00)  // MOD_BK00_56_L[11:10]        for OSD
2932             {
2933         return TRUE;
2934     }
2935     else
2936     {
2937         return FALSE;
2938             }
2939 }
2940 
MHal_PNL_VBY1_OC_Handshake(void * pInstance)2941 MS_BOOL MHal_PNL_VBY1_OC_Handshake(void *pInstance)
2942 {
2943     MS_BOOL bIsLock = FALSE;
2944 
2945     if (MHal_PNL_Is_VBY1_OC_Locked(pInstance) == FALSE)
2946     {
2947         MS_U16 u16CheckTimes = 0;
2948 //        MS_U16 u16DeboundTimes = 0;
2949 
2950         // need to toggle vby1 packer  process start first
2951         MOD_W2BYTEMSK(REG_MOD_BK00_66_L, 0x00, BIT(11));
2952         MOD_W2BYTEMSK(REG_MOD_BK00_66_L, BIT(11), BIT(11));
2953 
2954 
2955         MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0F56); // set reg. initial value
2956         MOD_W2BYTEMSK(REG_MOD_BK00_64_L, 0xD6, 0x00FF); // after power on go to stand-by
2957         MOD_W2BYTEMSK(REG_MOD_BK00_64_L, 0x96, 0x00FF); // connection is established, go to Acquisition
2958         MOD_W2BYTEMSK(REG_MOD_BK00_64_L, 0xB6, 0x00FF); // when internal clock is stable, got to CDR training
2959         MOD_W2BYTEMSK(REG_MOD_BK00_64_L, 0xBE, 0x00FF); // enable encoder for DC blance
2960 
2961         while(u16CheckTimes < 10)
2962         {
2963         #if 0
2964             u16DeboundTimes = 2;
2965             while ((!MHal_PNL_Is_VBY1_OC_LockN_Locked()) && (u16DeboundTimes --))
2966             {
2967             MsOS_DelayTask(1);
2968             }
2969         #endif
2970             if(MHal_PNL_Is_VBY1_OC_LockN_Locked(pInstance))
2971             {
2972                 //-------------------------------------------------------------------
2973                 // step1. Toggle clock when training
2974 
2975                 MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0FAE);
2976                 bIsLock = TRUE;
2977                 // pass 2 times debound to make sure VBY1 is locked
2978                 break;
2979             }
2980 
2981             u16CheckTimes++;
2982             MsOS_DelayTaskUs(40);
2983         }
2984 
2985         if(bIsLock)
2986         {
2987             // step3. Disable HW check when lock done, Enable when loss lock
2988 //            MOD_W2BYTEMSK(REG_MOD_BK00_33_L, 0x00, BIT15);
2989         }
2990     }
2991     else
2992     {
2993         if(MOD_R2BYTEMSK(REG_MOD_BK00_64_L, 0x0FFF) != 0x0FAE)
2994         {
2995             MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0FAE);
2996         }
2997         bIsLock = TRUE;
2998     }
2999 
3000     return bIsLock;
3001 }
3002 
MHal_PNL_IsYUVOutput(void * pInstance)3003 MS_BOOL MHal_PNL_IsYUVOutput(void *pInstance)
3004 {
3005    return FALSE;
3006 }
3007 
MHal_PNL_SetOutputInterlaceTiming(void * pInstance,MS_BOOL bEnable)3008 MS_BOOL MHal_PNL_SetOutputInterlaceTiming(void *pInstance, MS_BOOL bEnable)
3009 {
3010     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
3011     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
3012 
3013     if (bEnable == TRUE)
3014     {
3015         //interlace output vtotal modify
3016         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_21_L, BIT(9), BIT(9));
3017 
3018         // two different interlace information through channel A reserved bit
3019         MOD_W2BYTEMSK(REG_MOD_BK00_40_L, BIT(4) | BIT(7), BIT(4) | BIT(7));
3020         // two different interlace information through channel B reserved bit
3021         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, BIT(10)|BIT(11), BIT(10)|BIT(11));
3022     }
3023     else
3024     {
3025         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_21_L  , 0, BIT(9));
3026         MOD_W2BYTEMSK(REG_MOD_BK00_40_L, 0, BIT(4) | BIT(7));
3027         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, 0, BIT(10)|BIT(11));
3028     }
3029 
3030     return TRUE;
3031 }
3032 
MHal_PNL_GetOutputInterlaceTiming(void * pInstance)3033 MS_BOOL MHal_PNL_GetOutputInterlaceTiming(void *pInstance)
3034 {
3035     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
3036     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
3037 
3038     MS_BOOL bIsInterlaceOutput = FALSE;
3039     //interlace output vtotal modify
3040     if (SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_21_L, BIT(9)) == BIT(9))
3041     {
3042         if ((MOD_R2BYTEMSK(REG_MOD_BK00_40_L, BIT(4) | BIT(7)) == (BIT(4) | BIT(7)))
3043             || (MOD_R2BYTEMSK(REG_MOD_BK00_42_L, BIT(10) | BIT(11)) == (BIT(10)|BIT(11))))
3044         {
3045             bIsInterlaceOutput = TRUE;
3046         }
3047     }
3048     else
3049     {
3050         bIsInterlaceOutput = FALSE;
3051     }
3052     return bIsInterlaceOutput;
3053 }
3054 
3055 ////Ext LPLL setting
_MHal_PNL_Init_ExtLPLL(void * pInstance,PNL_TYPE eLPLL_Type,PNL_MODE eLPLL_Mode,MS_U64 ldHz)3056 static void _MHal_PNL_Init_ExtLPLL(void *pInstance, PNL_TYPE eLPLL_Type,PNL_MODE eLPLL_Mode,MS_U64 ldHz)
3057 {
3058     E_PNL_SUPPORTED_LPLL_EXT_TYPE u8SupportedLPLLLIndex = E_PNL_SUPPORTED_LPLL_EXT_MAX;
3059 
3060     u8SupportedLPLLLIndex = _MHal_PNL_GetSupportedLPLLIndex(pInstance, eLPLL_Type,eLPLL_Mode,ldHz, E_PNL_LPLL_OSD);
3061 
3062     if (u8SupportedLPLLLIndex == E_PNL_SUPPORTED_LPLL_EXT_MAX)
3063     {
3064         printf("Not Supported LPLL Type, skip LPLL Init\n");
3065         return;
3066     }
3067 
3068     _MHal_PNL_DumpLPLLTable(pInstance, u8SupportedLPLLLIndex, E_PNL_LPLL_OSD);
3069 }
3070 
_MHal_PNL_Get_ExtLPLL_LoopDIV(void * pInstance,MS_U8 u8LPLL_Mode,MS_U8 eLPLL_Type,MS_U64 ldHz)3071 static MS_U8 _MHal_PNL_Get_ExtLPLL_LoopDIV(void *pInstance, MS_U8 u8LPLL_Mode, MS_U8 eLPLL_Type, MS_U64 ldHz)
3072 {
3073     MS_U16 u16loop_div = 0;
3074     E_PNL_SUPPORTED_LPLL_EXT_TYPE u8SupportedLPLLLIndex = E_PNL_SUPPORTED_LPLL_EXT_MAX;
3075     u8SupportedLPLLLIndex = _MHal_PNL_GetSupportedLPLLIndex(pInstance, eLPLL_Type,u8LPLL_Mode,ldHz,E_PNL_LPLL_OSD);
3076 
3077     if (u8SupportedLPLLLIndex == E_PNL_SUPPORTED_LPLL_EXT_MAX)
3078     {
3079         u16loop_div = 0 ;
3080     }
3081     else
3082     {
3083         u16loop_div = u16EXT_LoopDiv[u8SupportedLPLLLIndex];
3084     }
3085 
3086     u16loop_div *= 2;
3087     return u16loop_div;
3088 }
3089 
_MHal_PNL_Get_ExtLPLL_LoopGain(void * pInstance,MS_U8 eLPLL_Mode,MS_U8 eLPLL_Type,MS_U64 ldHz)3090 static MS_U8 _MHal_PNL_Get_ExtLPLL_LoopGain(void *pInstance, MS_U8 eLPLL_Mode, MS_U8 eLPLL_Type, MS_U64 ldHz)
3091 {
3092     MS_U16 u16loop_gain = 0;
3093     E_PNL_SUPPORTED_LPLL_EXT_TYPE u8SupportedLPLLLIndex = E_PNL_SUPPORTED_LPLL_EXT_MAX;
3094     u8SupportedLPLLLIndex = _MHal_PNL_GetSupportedLPLLIndex(pInstance, eLPLL_Type,eLPLL_Mode,ldHz,E_PNL_LPLL_OSD);
3095 
3096     if (u8SupportedLPLLLIndex == E_PNL_SUPPORTED_LPLL_EXT_MAX)
3097     {
3098         u16loop_gain = 0 ;
3099     }
3100     else
3101     {
3102         u16loop_gain = u16EXT_LoopGain[u8SupportedLPLLLIndex];
3103     }
3104     return u16loop_gain;
3105 }
3106 
3107 
3108 // Output Dclk
MHal_PNL_CalExtLPLLSETbyDClk(void * pInstance,MS_U8 u8LPLL_Mode,MS_U8 u8LPLL_Type,MS_U64 ldHz)3109 void MHal_PNL_CalExtLPLLSETbyDClk(void *pInstance, MS_U8 u8LPLL_Mode, MS_U8 u8LPLL_Type, MS_U64 ldHz)
3110 {
3111 
3112     MS_U64 u64LdPllSet = 0;
3113     MS_U64 u64DclkFactor = 0;
3114     MS_U32 u32Div = 0;
3115     // loop div and loop gain use default parameters to avoid dclk floating out of range and getting wrong value
3116     MS_U32 u32Factor = 10;
3117 
3118     _MHal_PNL_Init_ExtLPLL(pInstance, u8LPLL_Type, u8LPLL_Mode, ldHz);
3119 
3120     //the first " *2 " is from  the dual mode
3121     u32Div=(MS_U32)(_MHal_PNL_Get_ExtLPLL_LoopDIV(pInstance, u8LPLL_Mode, u8LPLL_Type, ldHz));
3122     u64DclkFactor=((MS_U64)LVDS_MPLL_CLOCK_MHZ * (MS_U64)524288 * (MS_U64)_MHal_PNL_Get_ExtLPLL_LoopGain(pInstance, u8LPLL_Mode, u8LPLL_Type, ldHz));
3123     u64LdPllSet = (u64DclkFactor * 1000000 * u32Factor *2) + ((ldHz * u32Div) >> 1);
3124     do_div(u64LdPllSet, ldHz);
3125     do_div(u64LdPllSet, u32Div);
3126 
3127     W4BYTE(L_BK_LPLL(0x48), (MS_U32)u64LdPllSet);
3128     //printf("MHal_PNL_CalExtLPLLSETbyDClk u32KHz = %u, u32LpllSet = %x\n", ldHz, (MS_U32)u64LdPllSet);
3129 
3130 }
3131 
MHal_PNL_SetOSDCOutputType(void * pInstance,PNL_TYPE eLPLL_Type,E_PNL_OSDC_OUTPUT_FORMAT eOC_OutputFormat)3132 void MHal_PNL_SetOSDCOutputType(void *pInstance, PNL_TYPE eLPLL_Type, E_PNL_OSDC_OUTPUT_FORMAT eOC_OutputFormat)
3133 {
3134     // VBy1 co-registers
3135     if ((eLPLL_Type >= E_PNL_LPLL_VBY1_10BIT_4LANE)
3136         && (eLPLL_Type <= E_PNL_LPLL_VBY1_8BIT_8LANE))
3137     {
3138         MOD_W2BYTE(REG_MOD_BK00_42_L, 0x1008); //[3]enable osd lvds channel
3139         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, BIT(15), BIT(15)); //[15]sw_rst
3140 
3141         //-------------------------------------
3142         //## pe
3143 //        MOD_A_W2BYTE(REG_MOD_A_BK00_30_L, 0x3fff);
3144 //        MOD_W2BYTE(REG_MOD_BK00_23_L, 0x7000);
3145 //        MOD_W2BYTE(REG_MOD_BK00_24_L, 0x7fff);
3146 //        MOD_W2BYTE(REG_MOD_BK00_25_L, 0x003f);
3147 
3148         MOD_W2BYTE(REG_MOD_BK00_65_L, 0x8f3f); //[15]all dk scr[13:8]aln_de_cnt [7:0] aln_pix_cnt
3149 
3150     }
3151 
3152     if( eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_4LANE)
3153     {
3154         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, BIT(14),BIT(14)|BIT(15)); //[15]enskew_path2[14]enclk_path2[4]ck_pd[3]ck_pc[2]ck_pb[1]ck_pa[0]en_ck
3155         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0055); //[7:0]reg_output_conf[27:16]
3156         W2BYTE(REG_CLKGEN0_53_L,0x00CC); //[13:8] clk_bt656 -> clk_lpll_buf
3157         W2BYTE(REG_CLKGEN0_63_L,0x0410); //[11:8] clk_tx_mod_osd, [4:0] osd2mod
3158         W2BYTE(REG_RVD_09_L, 0x1800); //[12:8]ckg_vby1_fifo_osd [3:0]clk_vby1_fifo
3159 
3160         MOD_W2BYTE(REG_MOD_BK00_42_L, 0x1000); //[12]sw_rst, [3]enable osd lvds channel
3161         MOD_A_W2BYTE(REG_MOD_A_BK00_38_L, 0xc01f);
3162         MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x0440); //[3:0] reg_ckg_tx_mod
3163         MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x0044); //reg_ckg_dot
3164 
3165         MOD_W2BYTE(REG_MOD_BK00_71_L, 0xffff);
3166         MOD_W2BYTE(REG_MOD_BK00_5B_L, 0x0087); //[0]enable serializer function ,
3167                                                //[1]enable serializer auto fix read/write point mis-balance
3168                                                //[2]enable osd serializer auto fix read/write point mis-balance
3169                                                //[7]for OSD, switch chanel 8~13 as OSD path
3170         MOD_W2BYTE(REG_MOD_BK00_64_L, 0xd000);
3171         MOD_W2BYTE(REG_MOD_BK00_64_L, 0xd330);
3172         MOD_W2BYTE(REG_MOD_BK00_64_L, 0xd320);
3173         MOD_W2BYTE(REG_MOD_BK00_65_L, 0x8f3f);
3174         //-------------------------------------
3175         //## icon (Swing)
3176         MOD_A_W2BYTE(REG_MOD_A_BK00_0C_L, 0x7f7f);
3177         MOD_A_W2BYTE(REG_MOD_A_BK00_0D_L, 0x7f7f);
3178         MOD_A_W2BYTE(REG_MOD_A_BK00_0E_L, 0x0000);
3179 
3180         // vby1 osd 4 lane
3181         MOD_W2BYTE(REG_MOD_BK00_66_L, 0xa260); //[15]proc_st[13:12]byte_mode 4 byte mode[6]2ch_vby1_osd[9]swap
3182     }
3183     else if( eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_2LANE)
3184     {
3185         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, BIT(14) ,BIT(14)|BIT(15));
3186         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0005);
3187 
3188         //-------------------------------------
3189         //## icon (Swing)
3190         MOD_A_W2BYTE(REG_MOD_A_BK00_0C_L, 0x7f7f);
3191         MOD_A_W2BYTE(REG_MOD_A_BK00_0D_L, 0x0000);
3192         MOD_A_W2BYTE(REG_MOD_A_BK00_0E_L, 0x0000);
3193 
3194         //vby1 osd 2 lane
3195         MOD_W2BYTE(REG_MOD_BK00_66_L, 0xa240); //[15]proc_st[13:12]byte_mode 4 byte mode[6]2ch_vby1_osd[9]swap[5]vby1_osd_4ch
3196     }
3197 
3198     // Control VBY1 output format and bit orders
3199     switch(eOC_OutputFormat)
3200     {
3201         case E_PNL_OSDC_OUTPUT_FORMAT_VBY1_ARGB1:
3202             MOD_W2BYTEMSK(REG_MOD_BK00_6A_L, 0, BIT(1));
3203             break;
3204 
3205         case E_PNL_OSDC_OUTPUT_FORMAT_VBY1_ARGB2:
3206             MOD_W2BYTEMSK(REG_MOD_BK00_6A_L, BIT(1), BIT(1));
3207             break;
3208 
3209         default:
3210             printf("OSDC output format uses default value\n");
3211             MOD_W2BYTEMSK(REG_MOD_BK00_6A_L, 0, BIT(1));
3212             break;
3213     }
3214 
3215 
3216 }
3217 
MHal_PNL_SetOSDSSC(void * pInstance,MS_U16 u16Fmodulation,MS_U16 u16Rdeviation,MS_BOOL bEnable)3218 MS_BOOL MHal_PNL_SetOSDSSC(void *pInstance, MS_U16 u16Fmodulation, MS_U16 u16Rdeviation, MS_BOOL bEnable)
3219 {
3220     MS_U16 u16Span;
3221     MS_U16 u16Step;
3222     MS_U32 u32PLL_SET;/// = MDrv_Read3Byte(L_BK_LPLL(0x0F));
3223 
3224     MHal_PNL_Switch_LPLL_SubBank(pInstance, 0x00);
3225     u32PLL_SET = R4BYTE(L_BK_LPLL(0x48));
3226     // Set SPAN
3227     if(u16Fmodulation < 200 || u16Fmodulation > 400)
3228         u16Fmodulation = 300;
3229     u16Span =( ( (((MS_U32)LVDS_MPLL_CLOCK_MHZ*LVDS_SPAN_FACTOR ) / (u16Fmodulation) ) * 10000) / ((MS_U32)u32PLL_SET) ) ;
3230 
3231     // Set STEP
3232     if(u16Rdeviation > 300)
3233         u16Rdeviation = 300;
3234     u16Step = ((MS_U32)u32PLL_SET*u16Rdeviation) / ((MS_U32)u16Span*10000);
3235 
3236     W2BYTE(L_BK_LPLL(0x4E), u16Step & 0x0FFF);// LPLL_STEP
3237     W2BYTE(L_BK_LPLL(0x4F), u16Span & 0x3FFF);// LPLL_SPAN
3238     W2BYTEMSK((L_BK_LPLL(0x4E)), (bEnable << 15), BIT(15)); // Enable ssc
3239 
3240 
3241     return TRUE;
3242 }
3243 
MHal_PNL_SetOSDSSC_En(void * pInstance,MS_BOOL bEnable)3244 void MHal_PNL_SetOSDSSC_En(void *pInstance, MS_BOOL bEnable)
3245 {
3246     //printf("bEnable = %d\n", bEnable);
3247     MHal_PNL_Switch_LPLL_SubBank(pInstance, 0x00);
3248     W2BYTEMSK((L_BK_LPLL(0x4E)), (bEnable << 15), BIT(15)); // Enable ssc
3249 }
3250 
MHal_PNL_Set_T3D_Setting(void * pInstance)3251 void MHal_PNL_Set_T3D_Setting(void *pInstance)
3252 {
3253     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
3254     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
3255     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
3256     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
3257 
3258     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK63_55_L, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16Width, 0x1FFF);//pixel width
3259     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK63_66_L, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16Height, 0x1FFF);//reg_col_height
3260     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK63_51_L, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16Width, 0x1FFF);//reg_ln_width
3261     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK63_52_L, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16Height, 0x1FFF);//reg_col_height
3262     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK62_61_L, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16Width, 0x3FFF);//reg_ln_width
3263     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK62_62_L, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16Height, 0x1FFF);//reg_col_height
3264 
3265     //per designer, should always enable t3d, since it will affect osd/video's pipeline
3266     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK63_61_L, BIT(0), BIT(0));//Enable Depth Render, for osd pipe line adjustment
3267     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK62_08_L, BIT(4), BIT(4));//mtv bypass mode
3268     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK63_57_L,(BIT(0)|BIT(1)),(BIT(0)|BIT(1)));//T3D fix subde enable, fix for T3D/PIP conflict issue (bit 0)     Bug Fix miu eco (bit 1)
3269 
3270     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK62_63_L, 0x00, BIT(0)); // default disable T3D SRAM
3271 }
3272 
MHal_PNL_Set_Device_Bank_Offset(void * pInstance)3273 void MHal_PNL_Set_Device_Bank_Offset(void *pInstance)
3274 {
3275     UNUSED(pInstance);
3276     memset(u32PNL_XCDeviceBankOffset, 0, sizeof(MS_U32)*E_PNL_DEVICE_ID_NUM);
3277     u32PNL_XCDeviceBankOffset[E_PNL_DEVICE_ID_0] = E_HALPNL_DEVICE0_XC_BANK_OFFSET; // Set SC0 reg bank offset
3278     u32PNL_XCDeviceBankOffset[E_PNL_DEVICE_ID_1] = E_HALPNL_DEVICE1_XC_BANK_OFFSET; // Set SC2 reg bank offset
3279 }
3280 
MHal_PNL_Init(void * pInstance)3281 void MHal_PNL_Init(void *pInstance)
3282 {
3283     // Do nothing
3284     UNUSED(pInstance);
3285 }
3286 
MHal_PNL_Bringup(void * pInstance)3287 void MHal_PNL_Bringup(void *pInstance)
3288 {
3289     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
3290     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
3291     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
3292     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
3293 
3294     ///patch for bring up
3295     if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_LVDS)
3296     {
3297     }
3298     else if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_8LANE)
3299     {
3300         //==========================//
3301         //=    Setting LPLL        =//
3302         //==========================//
3303         //==========================//
3304         //=   ICON RCON PE         =//
3305         //==========================//
3306         //W2BYTE(0x111e10, 0xffff);
3307         //W2BYTE(0x111e12, 0xffff);
3308         //W2BYTE(0x111e14, 0xffff);
3309         //W2BYTE(0x111e16, 0xffff);
3310         //W2BYTE(0x111e18, 0xffff);
3311         //W2BYTE(0x111e1a, 0xffff);
3312         //W2BYTE(0x111e1c, 0xffff);
3313 
3314         //==========================//
3315         //=    Setting MOD         =//
3316         //==========================//
3317         //W2BYTE(0x103210, 0x5410);
3318         //W2BYTE(0x103212, 0x7632);
3319         W2BYTE(0x111ee2, 0xffff);
3320         W2BYTE(0x1032c0, 0xd000);
3321         W2BYTE(0x1032c0, 0xd330);
3322         W2BYTE(0x1032c0, 0xd320);
3323         W2BYTE(0x1032c2, 0x8f3f);
3324 //        W2BYTE(0x1032c4, 0xac40); //Addr:62; bit[11:10] = 2'b11; => reg_vby1_w_r_ini[1:0]
3325         //W2BYTE(0x1032cc, 0xac40); //Addr:66; bit[11:10] = 2'b11; => reg_vby1_w_r_ini_osd[1:0]
3326         //==========================//
3327         //=    GPIO                 =//
3328         //==========================//
3329         W2BYTE(0x111e80, 0xffff);
3330         W2BYTE(0x111e82, 0xffff);
3331         W2BYTE(0x111e84, 0xffff);
3332         W2BYTE(0x111e86, 0xffff);
3333         W2BYTE(0x111e90, 0xffff);
3334         W2BYTE(0x111e92, 0xffff);
3335 
3336         if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16MOD_CTRLA & BIT(1))  // use Dual port to decide the Vx1 1 or 2 devision config
3337         {
3338             printf("Vx1 2 division\n");
3339             //==========================//
3340             //=    Setting MOD         =//
3341             //==========================//
3342             W2BYTE(0x103240, 0x0002);  //[2:0]reg_mft_mode
3343             W2BYTE(0x103242, 0x1002);  //[11:0]reg_dly_value
3344             W2BYTE(0x103244, 0x0f00);  //[12:0]reg_hsize
3345             W2BYTE(0x10324c, 0x0780);  //[12:0]reg_div_len
3346             W2BYTE(0x1032fe, 0x0002);  //[2:0]reg_sram_usage
3347             W2BYTE(0x1032a6, 0x4000);  //[14]reg_vfde_mask
3348             //W2BYTE(0x103210, 0x6420);  //vby1 swap
3349             //W2BYTE(0x103212, 0x7531);
3350             //W2BYTE(0x1032c6, 0x1800);  //[12]vby1_8ch[11:10]pair_mirror2
3351         }
3352     }
3353 
3354 }
3355 
MHal_PNL_GetPanelVStart(void)3356 MS_U16 MHal_PNL_GetPanelVStart(void)
3357 {
3358     return 8;
3359 }
3360 
MHal_PNL_Check_VBY1_Handshake_Status(void * pInstance)3361 MS_BOOL MHal_PNL_Check_VBY1_Handshake_Status(void *pInstance)
3362 {
3363     if(MOD_R2BYTEMSK(REG_MOD_BK00_60_L, 0x0FFF) != 0xFAE)
3364     {
3365         //printf("VBY1 handshake return because the reg value is 0x%u, not 0xFAE.\n", MOD_R2BYTEMSK(REG_MOD_BK00_60_L, 0x0FFF));
3366         return FALSE;
3367     }
3368     else
3369     {
3370         //printf("VBY handshake check success.\n");
3371         return TRUE;
3372     }
3373 }
3374 
MHal_PNL_ChannelFIFOPointerADjust(void * pInstance)3375 void MHal_PNL_ChannelFIFOPointerADjust(void *pInstance)
3376 {
3377     // 0 to 1 then will do write and read point capture to
3378     // Read  : REG_MOD_BK00_5F_L[14:12]
3379     // write : REG_MOD_BK00_5F_L[10:8]
3380     // it takes 3 ticks to capture and riu takes 5 ticks to write
3381     // so we don't have to do any delay between rising capture and
3382     // read/write pointer recognition
3383     MsOS_DelayTaskUs(500);
3384     MOD_A_W2BYTE(REG_MOD_A_BK00_5C_L, 0x3300);
3385 
3386     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L,      0, BIT(0));
3387     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(0), BIT(0));
3388 
3389     //split Video & OSD process start bit
3390     //if (MDrv_ReadByte(REG_CHIP_REVISION) >= 1)
3391     if((R2BYTEMSK(REG_CHIP_REVISION, 0xFF00)>>8) >=1)
3392     {
3393         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_79_L,       0, BIT(14));
3394         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_79_L, BIT(14), BIT(14));
3395     }
3396 
3397     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, 0 , BIT(1));
3398     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(1), BIT(1));
3399 
3400     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, 0, BIT(2)|BIT(3));
3401     MS_U16 u16name = MOD_A_R2BYTE(REG_MOD_A_BK00_5D_L);
3402     MS_S8 u8WritePointer = (u16name & 0x0700) >> 8; // REG_MOD_BK00_5F_L[10:8]
3403     MS_S8 u8ReadPointer = (u16name & 0x7000) >> 12; // REG_MOD_BK00_5F_L[14:12]
3404 
3405     //OSD part
3406     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(2)|BIT(3), BIT(2)|BIT(3));
3407     MS_U16 OSDu16name = MOD_A_R2BYTE(REG_MOD_A_BK00_5D_L);
3408     MS_S8 OSDu8WritePointer = (OSDu16name & 0x0700) >> 8; // REG_MOD_BK00_5F_L[10:8]
3409     MS_S8 OSDu8ReadPointer = (OSDu16name & 0x7000) >> 12; // REG_MOD_BK00_5F_L[14:12]
3410 
3411     MS_BOOL bOSDC = ((MOD_A_R2BYTE(REG_MOD_A_BK00_58_L)&0x00F0) == 0x0040)?TRUE:FALSE;
3412     while (((abs(u8WritePointer-u8ReadPointer) >4) && (abs(u8WritePointer-u8ReadPointer)<2))
3413         ||(((abs(OSDu8WritePointer-OSDu8ReadPointer) >4) && (abs(OSDu8WritePointer-OSDu8ReadPointer)<2))&&bOSDC))
3414     {
3415         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L,      0, BIT(0));
3416         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(0), BIT(0));
3417 
3418         //split Video & OSD process start bit
3419         //if (MDrv_ReadByte(REG_CHIP_REVISION) >= 1)
3420         if((R2BYTEMSK(REG_CHIP_REVISION, 0xFF00)>>8) >=1)
3421         {
3422             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_79_L,       0, BIT(14));
3423             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_79_L, BIT(14), BIT(14));
3424         }
3425 
3426         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, 0 , BIT(1));
3427         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(1), BIT(1));
3428 
3429         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, 0, BIT(2)|BIT(3));
3430                 u16name = MOD_A_R2BYTE(REG_MOD_A_BK00_5D_L);
3431         u8WritePointer = (u16name & 0x0700) >> 8; // REG_MOD_BK00_5F_L[10:8]
3432         u8ReadPointer = (u16name & 0x7000) >> 12; // REG_MOD_BK00_5F_L[14:12]
3433 
3434         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(2)|BIT(3), BIT(2)|BIT(3));
3435         OSDu16name = MOD_A_R2BYTE(REG_MOD_A_BK00_5D_L);
3436         OSDu8WritePointer = (OSDu16name & 0x0700) >> 8; // REG_MOD_BK00_5F_L[10:8]
3437         OSDu8ReadPointer = (OSDu16name & 0x7000) >> 12; // REG_MOD_BK00_5F_L[14:12]
3438         printf("bOSDC [%d]\n",bOSDC);
3439 
3440     }
3441 
3442 }
3443 
MHal_PNL_VBY1_Hardware_TrainingMode_En(void * pInstance,MS_BOOL bIsVideoMode,MS_BOOL bEnable)3444 void MHal_PNL_VBY1_Hardware_TrainingMode_En(void *pInstance, MS_BOOL bIsVideoMode ,MS_BOOL bEnable)
3445 {
3446     if(bIsVideoMode)
3447     {
3448         if(bEnable)
3449         {
3450             MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0AAE);
3451         }
3452         else
3453         {
3454             MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0AA6);
3455         }
3456     }
3457     else
3458     {
3459         if(bEnable)
3460         {
3461             MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0AAE);
3462         }
3463         else
3464         {
3465             MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0AA6);
3466         }
3467     }
3468 }
3469 
MHal_PNL_VBY1_IsSupport_Hardware_TrainingMode(void * pInstance)3470 MS_BOOL MHal_PNL_VBY1_IsSupport_Hardware_TrainingMode(void *pInstance)
3471 {
3472     #ifdef SUPPORT_VBY1_HWTRAINING_MODE
3473         return TRUE;
3474     #else
3475         return FALSE;
3476     #endif
3477 }
3478 
MHal_PNL_TCON_Patch(void)3479 void MHal_PNL_TCON_Patch(void)
3480 {
3481     // MOD sw reset
3482     MOD_W2BYTE(REG_MOD_BK00_42_L,0x0000);
3483     MOD_W2BYTE(REG_MOD_BK00_42_L,0x1000);
3484 
3485     // Setting TCON signal through MOD PAD
3486     MOD_A_W2BYTE(REG_MOD_A_BK00_51_L,0x1811);
3487     MOD_A_W2BYTE(REG_MOD_A_BK00_51_L,0x9811);
3488     MOD_A_W2BYTE(REG_MOD_A_BK00_51_L,0x0000);
3489     MOD_A_W2BYTE(REG_MOD_A_BK00_51_L,0x1912);
3490     MOD_A_W2BYTE(REG_MOD_A_BK00_51_L,0x9912);
3491     MOD_A_W2BYTE(REG_MOD_A_BK00_51_L,0x0000);
3492     MOD_A_W2BYTE(REG_MOD_A_BK00_51_L,0x1a13);
3493     MOD_A_W2BYTE(REG_MOD_A_BK00_51_L,0x9a13);
3494     MOD_A_W2BYTE(REG_MOD_A_BK00_51_L,0x0000);
3495     MOD_A_W2BYTE(REG_MOD_A_BK00_51_L,0x1b17);
3496     MOD_A_W2BYTE(REG_MOD_A_BK00_51_L,0x9b17);
3497     MOD_A_W2BYTE(REG_MOD_A_BK00_51_L,0x0000);
3498 }
3499 #endif
3500 
3501