xref: /utopia/UTPA2-700.0.x/modules/xc/hal/macan/pnl/halPNL.c (revision 53ee8cc121a030b8d368113ac3e966b4705770ef)
1 //<MStar Software>
2 //******************************************************************************
3 // MStar Software
4 // Copyright (c) 2010 - 2012 MStar Semiconductor, Inc. All rights reserved.
5 // All software, firmware and related documentation herein ("MStar Software") are
6 // intellectual property of MStar Semiconductor, Inc. ("MStar") and protected by
7 // law, including, but not limited to, copyright law and international treaties.
8 // Any use, modification, reproduction, retransmission, or republication of all
9 // or part of MStar Software is expressly prohibited, unless prior written
10 // permission has been granted by MStar.
11 //
12 // By accessing, browsing and/or using MStar Software, you acknowledge that you
13 // have read, understood, and agree, to be bound by below terms ("Terms") and to
14 // comply with all applicable laws and regulations:
15 //
16 // 1. MStar shall retain any and all right, ownership and interest to MStar
17 //    Software and any modification/derivatives thereof.
18 //    No right, ownership, or interest to MStar Software and any
19 //    modification/derivatives thereof is transferred to you under Terms.
20 //
21 // 2. You understand that MStar Software might include, incorporate or be
22 //    supplied together with third party`s software and the use of MStar
23 //    Software may require additional licenses from third parties.
24 //    Therefore, you hereby agree it is your sole responsibility to separately
25 //    obtain any and all third party right and license necessary for your use of
26 //    such third party`s software.
27 //
28 // 3. MStar Software and any modification/derivatives thereof shall be deemed as
29 //    MStar`s confidential information and you agree to keep MStar`s
30 //    confidential information in strictest confidence and not disclose to any
31 //    third party.
32 //
33 // 4. MStar Software is provided on an "AS IS" basis without warranties of any
34 //    kind. Any warranties are hereby expressly disclaimed by MStar, including
35 //    without limitation, any warranties of merchantability, non-infringement of
36 //    intellectual property rights, fitness for a particular purpose, error free
37 //    and in conformity with any international standard.  You agree to waive any
38 //    claim against MStar for any loss, damage, cost or expense that you may
39 //    incur related to your use of MStar Software.
40 //    In no event shall MStar be liable for any direct, indirect, incidental or
41 //    consequential damages, including without limitation, lost of profit or
42 //    revenues, lost or damage of data, and unauthorized system use.
43 //    You agree that this Section 4 shall still apply without being affected
44 //    even if MStar Software has been modified by MStar in accordance with your
45 //    request or instruction for your use, except otherwise agreed by both
46 //    parties in writing.
47 //
48 // 5. If requested, MStar may from time to time provide technical supports or
49 //    services in relation with MStar Software to you for your use of
50 //    MStar Software in conjunction with your or your customer`s product
51 //    ("Services").
52 //    You understand and agree that, except otherwise agreed by both parties in
53 //    writing, Services are provided on an "AS IS" basis and the warranty
54 //    disclaimer set forth in Section 4 above shall apply.
55 //
56 // 6. Nothing contained herein shall be construed as by implication, estoppels
57 //    or otherwise:
58 //    (a) conferring any license or right to use MStar name, trademark, service
59 //        mark, symbol or any other identification;
60 //    (b) obligating MStar or any of its affiliates to furnish any person,
61 //        including without limitation, you and your customers, any assistance
62 //        of any kind whatsoever, or any information; or
63 //    (c) conferring any license or right under any intellectual property right.
64 //
65 // 7. These terms shall be governed by and construed in accordance with the laws
66 //    of Taiwan, R.O.C., excluding its conflict of law rules.
67 //    Any and all dispute arising out hereof or related hereto shall be finally
68 //    settled by arbitration referred to the Chinese Arbitration Association,
69 //    Taipei in accordance with the ROC Arbitration Law and the Arbitration
70 //    Rules of the Association by three (3) arbitrators appointed in accordance
71 //    with the said Rules.
72 //    The place of arbitration shall be in Taipei, Taiwan and the language shall
73 //    be English.
74 //    The arbitration award shall be final and binding to both parties.
75 //
76 //******************************************************************************
77 //<MStar Software>
78 #ifndef _HAL_PNL_C_
79 #define _HAL_PNL_C_
80 
81 //-------------------------------------------------------------------------------------------------
82 //  Include Files
83 //-------------------------------------------------------------------------------------------------
84 
85 #include "MsCommon.h"
86 #include "MsTypes.h"
87 #include "utopia.h"
88 #include "utopia_dapi.h"
89 #include "apiPNL.h"
90 #include "apiPNL_v2.h"
91 #include "drvPNL.h"
92 #include "halPNL.h"
93 #include "PNL_private.h"
94 #include "pnl_hwreg_utility2.h"
95 #include "Macan_pnl_lpll_tbl.h"
96 #include "Macan_pnl_lpll_ext_tbl.h"
97 
98 #ifdef MSOS_TYPE_LINUX_KERNEL
99 #include <linux/string.h>
100 #include <linux/delay.h>
101 #include <asm/div64.h>
102 #else
103 #include "string.h"
104 #define do_div(x,y) ((x)/=(y))
105 #endif
106 
107 //-------------------------------------------------------------------------------------------------
108 //  Driver Compiler Options
109 //-------------------------------------------------------------------------------------------------
110 
111 //-------------------------------------------------------------------------------------------------
112 //  Local Defines
113 //-------------------------------------------------------------------------------------------------
114 
115 #define UNUSED(x)       (x=x)
116 #if 1
117 #define HAL_PNL_DBG(_dbgSwitch_, _fmt, _args...)      { if((_dbgSwitch_ & _u16PnlDbgSwitch) != 0) printf("PNL:"_fmt, ##_args); }
118 #define HAL_MOD_CAL_DBG(x)    //x
119 #else
120 #define HAL_PNL_DBG(_dbgSwitch_, _fmt, _args...)      { }
121 #endif
122 
123 #define DAC_LPLL_ICTRL     0x0002
124 #define LVDS_LPLL_ICTRL    0x0001
125 
126 //Get MOD calibration time
127 #define MOD_CAL_TIMER   FALSE
128 
129 //if mboot read eFuse and fill the register, then add this define to mark utopia efuse code flow
130 #define MOD_EFUSE_IN_MBOOT
131 
132 //for LVDS HW Calibration ICON limitation
133 #define MOD_LVDS_ICON_HIGH_LIMIT 0x2E
134 #define MOD_LVDS_ICON_LOW_LIMIT  0x06
135 #define MOD_LVDS_ICON_DEFAULT    0x19
136 
137 //for LVDS HW Calibration timeout (i.e. retry times after hw calibration failed)
138 #define MOD_LVDS_HW_CALI_TIME_OUT  3
139 
140 #define LANE_NUM_EACH_PINMAPPING_GROUP1 4
141 #define LANE_NUM_EACH_PINMAPPING_GROUP2 4
142 #define LANE_NUM_EACH_PINMAPPING_GROUP3 4
143 #define LANE_NUM_EACH_PINMAPPING_GROUP4 2
144 
145 #define PINMAPPING_EXP 16
146 
147 //-------------------------------------------------------------------------------------------------
148 //  Local Structurs
149 //-------------------------------------------------------------------------------------------------
150 
151 //-------------------------------------------------------------------------------------------------
152 //  Global Variables
153 //-------------------------------------------------------------------------------------------------
154 
155 //-------------------------------------------------------------------------------------------------
156 //  Local Variables
157 //-------------------------------------------------------------------------------------------------
158 MS_U8 LANE_AND_CLK_TBL[VBY1_CLK_TBL_ROW][3]=
159 { //lane(from)  lane(to) bit(mask)
160  { 0, 3, 0x02, },
161  { 4, 7, 0x04, },
162  { 8, 10, 0x08, },
163  { 11, 21, 0x10, }
164 };
165 //-------------------------------------------------------------------------------------------------
166 //  Debug Functions
167 //-------------------------------------------------------------------------------------------------
168 
169 //-------------------------------------------------------------------------------------------------
170 //  Local Functions
171 //-------------------------------------------------------------------------------------------------
172 static MS_BOOL _Hal_MOD_External_eFuse(void);
173 static MS_U16 _Hal_MOD_Refine_ICON(MS_U16 u16ICON);
174 static void _MHal_PNL_Auto_Set_Config(void *pInstance,
175                                       MS_U16 u16OutputOrder0_3,
176                                       MS_U16 u16OutputOrder4_7,
177                                       MS_U16 u16OutputOrder8_11,
178                                       MS_U16 u16OutputOrder12_13);
179 
180 static void _MHal_PNL_Set_Clk(void *pInstance,
181                               MS_U8 u8LaneNum,
182                               MS_U16 u16OutputOrder0_3,
183                               MS_U16 u16OutputOrder4_7,
184                               MS_U16 u16OutputOrder8_11,
185                               MS_U16 u16OutputOrder12_13);
186 
187 static MS_U8 _MHal_PNL_Get_LaneNum(void *pInstance);
188 //-------------------------------------------------------------------------------------------------
189 //  Global Function
190 //-------------------------------------------------------------------------------------------------
191 /**
192 *   @brief: Power On MOD. but not mutex protected
193 *
194 */
MHal_MOD_PowerOn(void * pInstance,MS_BOOL bEn,MS_U8 u8LPLL_Type,MS_U8 DualModeType,MS_U16 u16OutputCFG0_7,MS_U16 u16OutputCFG8_15,MS_U16 u16OutputCFG16_21)195 MS_U8 MHal_MOD_PowerOn(void *pInstance, MS_BOOL bEn, MS_U8 u8LPLL_Type,MS_U8 DualModeType, MS_U16 u16OutputCFG0_7, MS_U16 u16OutputCFG8_15, MS_U16 u16OutputCFG16_21)
196 {
197     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
198     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
199     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
200     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
201 
202     if( bEn )
203     {
204         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, 0x00, BIT(8));
205 
206         //analog MOD power down. 1: power down, 0: power up
207         // For Mod2 no output signel
208         ///////////////////////////////////////////////////
209 
210         //2. Power on MOD (current and regulator)
211         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0x00 , BIT(0));
212         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, BIT(8) , BIT(8));
213 
214 
215         // 3. 4. 5.
216         MHal_Output_LVDS_Pair_Setting(pInstance, DualModeType, u16OutputCFG0_7, u16OutputCFG8_15, u16OutputCFG16_21);
217 
218 
219         //enable ib, enable ck
220         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, (BIT(1) | BIT(0)), (BIT(1) | BIT(0)));
221 
222         // clock gen of dot-mini
223         if(u8LPLL_Type == E_PNL_TYPE_MINILVDS)
224         {
225             MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x4400);
226             MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x4400);
227         }
228         else if((u8LPLL_Type == E_PNL_LPLL_VBY1_10BIT_4LANE)||
229                 (u8LPLL_Type == E_PNL_LPLL_VBY1_10BIT_2LANE)||
230                 (u8LPLL_Type == E_PNL_LPLL_VBY1_8BIT_4LANE) ||
231                 (u8LPLL_Type == E_PNL_LPLL_VBY1_8BIT_2LANE))
232 
233         {
234             MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x0400);  // [11:8]reg_ckg_dot_mini_pre2_osd
235             MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x0044);  // [3:0]reg_ckg_dot_mini_osd
236                                                     // [7:4]reg_ckg_dot_mini_pre_osd
237         }
238         //// for osd dedicated output port, 1 port for video and 1 port for osd
239         else if((u8LPLL_Type == E_PNL_TYPE_HS_LVDS)&&
240                 (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Mode == E_PNL_MODE_SINGLE))
241         {
242             MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x0400);  // [11:8]reg_ckg_dot_mini_pre2_osd
243             MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x0044);  // [3:0]reg_ckg_dot_mini_osd
244                                                     // [7:4]reg_ckg_dot_mini_pre_osd
245         }
246         else if(u8LPLL_Type == E_PNL_LPLL_VBY1_10BIT_8LANE)
247         {
248             MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x0000);  // [11:8]reg_ckg_dot_mini_pre2_osd
249             MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x0000);  // [3:0]reg_ckg_dot_mini_osd
250         }
251         else
252         {
253             MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x0000);
254             MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x0000);
255         }
256     }
257     else
258     {
259         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, BIT(8), BIT(8));
260         if(u8LPLL_Type !=E_PNL_TYPE_MINILVDS)
261         {
262             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, BIT(0), BIT(0));                              //analog MOD power down. 1: power down, 0: power up
263             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0x00, BIT(8));
264         }
265 
266         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0, (BIT(1) | BIT(0) ));                           //enable ib, enable ck
267 
268         // clock gen of dot-mini
269         MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x1100);
270         MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x1100);
271 
272         if((u8LPLL_Type>=E_PNL_LPLL_VBY1_10BIT_4LANE)&&(u8LPLL_Type<=E_PNL_LPLL_VBY1_8BIT_8LANE))
273         {
274             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0020,0x0020);
275             MsOS_DelayTask(1);
276             MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x0000);
277             MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0000);
278             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0000,0x0020);
279         }
280     }
281     return 1;
282 }
283 
284 /**
285 *   @brief: Setup the PVDD power 1:2.5V, 0:3.3V
286 *
287 */
MHal_MOD_PVDD_Power_Setting(void * pInstance,MS_BOOL bIs2p5)288 void MHal_MOD_PVDD_Power_Setting(void *pInstance, MS_BOOL bIs2p5)
289 {
290     //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, ((bIs2p5)? BIT(6):0), BIT(6));    //MOD PVDD=1: 0.9
291 }
292 
MHal_PNL_TCON_Init(void * pInstance)293 void MHal_PNL_TCON_Init(void *pInstance)
294 {
295 
296 }
297 
MHal_Shift_LVDS_Pair(void * pInstance,MS_U8 Type)298 void MHal_Shift_LVDS_Pair(void *pInstance, MS_U8 Type)
299 {
300     if(Type == 1)
301         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, (BIT(7) | BIT(6)), (BIT(7) | BIT(6))); // shift_lvds_pair, set LVDS Mode3
302     else
303         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, 0x0000, (BIT(7) | BIT(6)));
304 
305 }
306 
MHal_Output_LVDS_Pair_Setting(void * pInstance,MS_U8 Type,MS_U16 u16OutputCFG0_7,MS_U16 u16OutputCFG8_15,MS_U16 u16OutputCFG16_21)307 void MHal_Output_LVDS_Pair_Setting(void *pInstance, MS_U8 Type, MS_U16 u16OutputCFG0_7, MS_U16 u16OutputCFG8_15, MS_U16 u16OutputCFG16_21)
308 {
309 
310     if(Type == LVDS_DUAL_OUTPUT_SPECIAL )
311     {
312         MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x0555);
313         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x1554);
314     }
315     else if(Type == LVDS_SINGLE_OUTPUT_A)
316     {
317         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_00_L, 0x5550, 0xFFF0);
318         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0555);
319     }
320     else if( Type == LVDS_SINGLE_OUTPUT_B)
321     {
322         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_00_L, 0x5550, 0xFFF0);
323         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0555);
324     }
325     else if( Type == LVDS_OUTPUT_User)
326     {
327         MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, u16OutputCFG0_7);
328         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, u16OutputCFG8_15);
329     }
330     else
331     {
332         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_00_L, 0x5550, 0xFFF0);
333         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0555);
334     }
335 
336     MsOS_DelayTask(2);
337 
338 
339 }
340 
MHal_Output_Channel_Order(void * pInstance,MS_U8 Type,MS_U16 u16OutputOrder0_3,MS_U16 u16OutputOrder4_7,MS_U16 u16OutputOrder8_11,MS_U16 u16OutputOrder12_13)341 void MHal_Output_Channel_Order(void *pInstance,
342                                MS_U8 Type,
343                                MS_U16 u16OutputOrder0_3,
344                                MS_U16 u16OutputOrder4_7,
345                                MS_U16 u16OutputOrder8_11,
346                                MS_U16 u16OutputOrder12_13)
347 {
348     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
349     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
350     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
351     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
352 
353     if(Type == APIPNL_OUTPUT_CHANNEL_ORDER_USER )
354     {
355         MOD_W2BYTE(REG_MOD_BK00_08_L, u16OutputOrder0_3);
356         MOD_W2BYTE(REG_MOD_BK00_09_L, u16OutputOrder4_7);
357         MOD_W2BYTE(REG_MOD_BK00_0A_L, u16OutputOrder8_11);
358         MOD_W2BYTE(REG_MOD_BK00_0B_L, u16OutputOrder12_13);
359     }
360     else
361     {
362         if(   (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_8LANE)
363             ||(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_8BIT_8LANE))
364         {
365             if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16MOD_CTRLA & BIT(1)) // 2 Divisoin
366             {
367                 MOD_W2BYTE(REG_MOD_BK00_08_L, 0xBA98);
368                 MOD_W2BYTE(REG_MOD_BK00_09_L, 0x6420);
369                 MOD_W2BYTE(REG_MOD_BK00_0A_L, 0x7531);
370                 MOD_W2BYTE(REG_MOD_BK00_0B_L, 0x0000);
371             }
372             else
373             {
374                 MOD_W2BYTE(REG_MOD_BK00_08_L, 0xBA98);
375                 MOD_W2BYTE(REG_MOD_BK00_09_L, 0x3210);
376                 MOD_W2BYTE(REG_MOD_BK00_0A_L, 0x7654);
377                 MOD_W2BYTE(REG_MOD_BK00_0B_L, 0x0000);
378             }
379         }
380         else if( (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_4LANE)||
381                  (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_8BIT_4LANE)||
382                  (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_2LANE)||
383                  (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_8BIT_2LANE))
384         {
385             MOD_W2BYTE(REG_MOD_BK00_08_L, 0xBA98);
386             MOD_W2BYTE(REG_MOD_BK00_09_L, 0x3210);
387             MOD_W2BYTE(REG_MOD_BK00_0A_L, 0x7654);
388             MOD_W2BYTE(REG_MOD_BK00_0B_L, 0x0000);
389         }
390         else if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_LVDS)
391         {//LVDS
392             MOD_W2BYTE(REG_MOD_BK00_08_L, 0x10DC);
393             MOD_W2BYTE(REG_MOD_BK00_09_L, 0x5432);
394             MOD_W2BYTE(REG_MOD_BK00_0A_L, 0x9876);
395             MOD_W2BYTE(REG_MOD_BK00_0B_L, 0x00BA);
396         }
397         else
398         {
399             MOD_W2BYTE(REG_MOD_BK00_08_L, 0x76DC);
400             MOD_W2BYTE(REG_MOD_BK00_09_L, 0xBA98);
401             MOD_W2BYTE(REG_MOD_BK00_0A_L, 0x3210);
402             MOD_W2BYTE(REG_MOD_BK00_0B_L, 0x0054);
403         }
404     }
405 
406 }
407 
MHal_PQ_Clock_Gen_For_Gamma(void * pInstance)408 void MHal_PQ_Clock_Gen_For_Gamma(void *pInstance)
409 {
410     W2BYTEMSK(REG_CLKGEN0_52_L, 0x00, 0x07);
411 }
412 
MHal_VOP_SetGammaMappingMode(void * pInstance,MS_U8 u8Mapping)413 void MHal_VOP_SetGammaMappingMode(void *pInstance, MS_U8 u8Mapping)
414 {
415     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
416     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
417 
418     if(u8Mapping & GAMMA_MAPPING)
419     {
420         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_74_L, (u8Mapping & GAMMA_10BIT_MAPPING)? BIT(15):0, BIT(15));
421     }
422     else
423     {
424         PNL_ASSERT(0, "Invalid eSupportGammaMapMode [%d] Passed to [%s], please make sure the u8Mapping[%d] is valid\n.",
425                        u8Mapping, __FUNCTION__, u8Mapping);
426     }
427 }
428 
Hal_VOP_Is_GammaMappingMode_enable(void * pInstance)429 MS_BOOL Hal_VOP_Is_GammaMappingMode_enable(void *pInstance)
430 {
431     // Only support 1024 entry
432     return TRUE;
433 }
434 
435 // After A5, 8 bit mode only support burst write!!!
Hal_VOP_Is_GammaSupportSignalWrite(void * pInstance,DRVPNL_GAMMA_MAPPEING_MODE u8Mapping)436 MS_BOOL Hal_VOP_Is_GammaSupportSignalWrite(void *pInstance, DRVPNL_GAMMA_MAPPEING_MODE u8Mapping)
437 {
438     if( u8Mapping == E_DRVPNL_GAMMA_10BIT_MAPPING )
439         return TRUE;
440     else
441         return FALSE;
442 }
443 
444 /////////////////////////////////////////////////////////////////////////////
445 // Gamma format (12 bit LUT)
446 //      0, 1, 2, 3, ..., NumOfLevel, totally N Sets of tNormalGammaR/G/B[],
447 //      1 set uses 2 bytes of memory.
448 //
449 // [T2 and before ] N = 256
450 // [T3]             N = 256 or 1024
451 // ______________________________________________________________________________
452 //  Byte | 0         1           2               n-1        n
453 //    [G1|G0]       [G0]       [G1] . ...... .  [Gmax]    [Gmax]
454 //    3:0  3:0      11:4       11:4              3:0       11:4
455 //
456 #ifdef MONACO_SC2
Hal_PNL_Set12BitGammaPerChannel_SC2(void * pInstance,MS_U8 u8Channel,MS_U8 * u8Tab,DRVPNL_GAMMA_MAPPEING_MODE GammaMapMode)457 void Hal_PNL_Set12BitGammaPerChannel_SC2(void *pInstance, MS_U8 u8Channel, MS_U8 * u8Tab, DRVPNL_GAMMA_MAPPEING_MODE GammaMapMode )
458 {
459     MS_U16 u16Addr             = 0;
460     MS_U16 u16CodeTableIndex  = u16Addr/2*3;
461     MS_U16 u16GammaValue      = 0;
462     MS_U16 u16MaxGammaValue   = 0;
463     MS_U16 u16NumOfLevel = GammaMapMode == E_DRVPNL_GAMMA_8BIT_MAPPING ? 256 : 1024;
464     MS_BOOL bUsingBurstWrite = !Hal_VOP_Is_GammaSupportSignalWrite(pInstance,GammaMapMode);
465     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
466     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
467 
468     // Go to burst write if not support
469     if ( bUsingBurstWrite )
470     {
471         // 1.   initial burst write address, LUT_ADDR[7:0]
472         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6C_L, 0x00 , 0x3FF);
473 
474         // 2.   select burst write channel, REG_LUT_BW_CH_SEL[1:0]
475         switch(u8Channel)
476         {
477             case 0:  // Red
478                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, 0x00 , BIT(3) | BIT(2) );
479                 break;
480 
481             case 1:  // Green
482                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, BIT(2) , BIT(3) | BIT(2) );
483                 break;
484 
485             case 2:  // Blue
486                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, BIT(3) , BIT(3) | BIT(2) );
487                 break;
488         }
489 
490         // 3.   enable burst write mode, REG_LUT_BW_MAIN_EN
491         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, BIT(0) , BIT(0)); // Burst write enable
492 
493     }
494 
495     //printf("\33[0;31m Gamma Mapping mode %d \n \33[m",GammaMapMode );
496     // write gamma table per one channel
497     for(; u16Addr < u16NumOfLevel; u16CodeTableIndex += 3)
498     {
499         // gamma x
500         u16GammaValue = u8Tab[u16CodeTableIndex] & 0x0F;
501         u16GammaValue |= u8Tab[u16CodeTableIndex+1] << 4;
502 
503         PNL_DBG(PNL_DBGLEVEL_GAMMA,"Gamma x: SrcGTbl[%d] = 0x%x, [%d] = 0x%x, Gamma = 0x%x, GammaLvl=%d\n",
504                                     u16CodeTableIndex, u8Tab[u16CodeTableIndex], u16CodeTableIndex+1, u8Tab[u16CodeTableIndex+1], u16GammaValue, u16NumOfLevel);
505 
506         if(u16MaxGammaValue < u16GammaValue)
507         {
508             u16MaxGammaValue = u16GammaValue;
509         }
510 
511         // write gamma value
512         hal_PNL_WriteGamma12Bit(pInstance,u8Channel,bUsingBurstWrite, u16Addr, u16GammaValue);
513         u16Addr++;
514 
515         // gamma x+1
516         u16GammaValue = (u8Tab[u16CodeTableIndex] & 0xF0) >> 4;
517         u16GammaValue |= u8Tab[u16CodeTableIndex+2] << 4;
518 
519         PNL_DBG(PNL_DBGLEVEL_GAMMA, "Gamma x+1: SrcGTbl[%d] = 0x%x, [%d] = 0x%x, Gamma = 0x%x\n", u16CodeTableIndex, u8Tab[u16CodeTableIndex], u16CodeTableIndex+2, u8Tab[u16CodeTableIndex+2], u16GammaValue);
520 
521         if(u16MaxGammaValue < u16GammaValue)
522             {
523             u16MaxGammaValue = u16GammaValue;
524             }
525 
526         // write gamma value
527         hal_PNL_WriteGamma12Bit(pInstance,u8Channel,bUsingBurstWrite, u16Addr, u16GammaValue);
528         u16Addr++;
529     }
530 
531     if ( bUsingBurstWrite )
532     {
533         // 5.   after finish burst write data of one channel, disable burst write mode
534         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, 0x00 , BIT(0));
535     }
536 
537     hal_PNL_SetMaxGammaValue(pInstance,u8Channel, u16MaxGammaValue);
538 }
539 #endif
540 
541 #ifdef USE_PANEL_GAMMA
_hal_PNL_WriteGamma12Bit_PanelGamma(void * pInstance,MS_U8 u8Channel,MS_BOOL bBurstWrite,MS_U16 u16Addr,MS_U16 u16GammaValue)542 static void _hal_PNL_WriteGamma12Bit_PanelGamma(void *pInstance, MS_U8 u8Channel, MS_BOOL bBurstWrite, MS_U16 u16Addr, MS_U16 u16GammaValue)
543 {
544     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
545     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
546 
547     MS_U16 u16Delay = 0xFFFF;
548 
549     PNL_DBG(PNL_DBGLEVEL_GAMMA, "Write [ch %d][addr 0x%x]: 0x%x \n", u8Channel, u16Addr, u16GammaValue);
550 
551     if (!bBurstWrite )
552     {
553         while (SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK24_1C_L, 0x0C) && (--u16Delay));          // Check whether the Write chanel is ready
554         PNL_ASSERT(u16Delay > 0, "%s\n", "WriteGamma timeout");
555 
556         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_1B_L, u16Addr, 0xFF);                          // set address port
557         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, (REG_SC_BK24_1D_L + u8Channel *2), u16GammaValue, 0xFFF);      // Set channel data
558 
559         // kick off write
560         switch(u8Channel)
561         {
562             case 0:  // Red
563                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK24_1C_L, 0x00 , BIT(3) | BIT(2) );
564                 break;
565 
566             case 1:  // Green
567                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK24_1C_L, BIT(2) , BIT(3) | BIT(2) );
568                 break;
569 
570             case 2:  // Blue
571                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK24_1C_L, BIT(3) , BIT(3) | BIT(2) );
572                 break;
573 
574         }
575 
576         while (SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_1C_L, 0x0C) && (--u16Delay));          // Check whether the Write chanel is ready
577     }
578     else
579     {
580 
581         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK24_1D_L, u16GammaValue, 0xFFF);
582         SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK00_7F_L, 0x00); // make little time delay
583     }
584 
585 
586     PNL_ASSERT(u16Delay > 0, "%s\n", "WriteGamma timeout");
587 }
588 
_hal_PNL_SetMaxGammaValue_PanelGamma(void * pInstance,MS_U8 u8Channel,MS_U16 u16MaxGammaValue)589 static void _hal_PNL_SetMaxGammaValue_PanelGamma(void *pInstance, MS_U8 u8Channel, MS_U16 u16MaxGammaValue)
590 {
591     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
592     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
593 
594     PNL_DBG(PNL_DBGLEVEL_GAMMA, "Max gamma of SC%tu %d is 0x%x\n", (ptrdiff_t)pPNLInstancePrivate->u32DeviceID, u8Channel, u16MaxGammaValue);
595         switch(u8Channel)
596         {
597             case 0:  // max. Red
598                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_2C_L , u16MaxGammaValue, 0xFFF);           // max. base 0
599                 break;
600 
601             case 1:  // max. Green
602                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_2E_L , u16MaxGammaValue, 0xFFF);           // max. base 1
603                 break;
604 
605             case 2:  //max.  Blue
606                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_30_L , u16MaxGammaValue, 0xFFF);           // max. base 1
607                 break;
608            }
609 }
610 
_Hal_PNL_Set12BitGammaPerChannel_PanelGamma(void * pInstance,MS_U8 u8Channel,MS_U8 * u8Tab,DRVPNL_GAMMA_MAPPEING_MODE GammaMapMode)611 static void _Hal_PNL_Set12BitGammaPerChannel_PanelGamma(void *pInstance, MS_U8 u8Channel, MS_U8 * u8Tab, DRVPNL_GAMMA_MAPPEING_MODE GammaMapMode )
612 {
613     MS_U16 u16Addr             = 0;
614     MS_U16 u16CodeTableIndex  = u16Addr/2*3;
615     MS_U16 u16GammaValue      = 0;
616     MS_U16 u16MaxGammaValue   = 0;
617     MS_U16 u16NumOfLevel = GammaMapMode == E_DRVPNL_GAMMA_8BIT_MAPPING ? 256 : 1024;
618     MS_BOOL bUsingBurstWrite = !Hal_VOP_Is_GammaSupportSignalWrite(pInstance,GammaMapMode);
619     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
620     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
621 
622     // Go to burst write if not support
623     if ( bUsingBurstWrite )
624     {
625         // 1.   initial burst write address, LUT_ADDR[7:0]
626         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK24_1B_L, 0x00 , 0xFF);
627 
628         // 2.   select burst write channel, REG_LUT_BW_CH_SEL[1:0]
629         switch(u8Channel)
630         {
631             case 0:  // Red
632                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK24_1C_L, 0x00 , BIT(3) | BIT(2) );
633                 break;
634 
635             case 1:  // Green
636                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK24_1C_L, BIT(2) , BIT(3) | BIT(2) );
637                 break;
638 
639             case 2:  // Blue
640                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK24_1C_L, BIT(3) , BIT(3) | BIT(2) );
641                 break;
642         }
643 
644         // 3.   enable burst write mode, REG_LUT_BW_MAIN_EN
645         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK24_1C_L, BIT(0) , BIT(0)); // Burst write enable
646 
647     }
648 
649     //printf("\33[0;31m Gamma Mapping mode %d \n \33[m",GammaMapMode );
650     // write gamma table per one channel
651     for(; u16Addr < u16NumOfLevel; u16CodeTableIndex += 3)
652     {
653         // gamma x
654         u16GammaValue = u8Tab[u16CodeTableIndex] & 0x0F;
655         u16GammaValue |= u8Tab[u16CodeTableIndex+1] << 4;
656 
657         PNL_DBG(PNL_DBGLEVEL_GAMMA,"Gamma x: SrcGTbl[%d] = 0x%x, [%d] = 0x%x, Gamma = 0x%x, GammaLvl=%d\n",
658                                     u16CodeTableIndex, u8Tab[u16CodeTableIndex], u16CodeTableIndex+1, u8Tab[u16CodeTableIndex+1], u16GammaValue, u16NumOfLevel);
659 
660         if(u16MaxGammaValue < u16GammaValue)
661         {
662             u16MaxGammaValue = u16GammaValue;
663         }
664 
665         // write gamma value
666         _hal_PNL_WriteGamma12Bit_PanelGamma(pInstance,u8Channel,bUsingBurstWrite, u16Addr, u16GammaValue);
667         u16Addr++;
668 
669         // gamma x+1
670         u16GammaValue = (u8Tab[u16CodeTableIndex] & 0xF0) >> 4;
671         u16GammaValue |= u8Tab[u16CodeTableIndex+2] << 4;
672 
673         PNL_DBG(PNL_DBGLEVEL_GAMMA, "Gamma x+1: SrcGTbl[%d] = 0x%x, [%d] = 0x%x, Gamma = 0x%x\n", u16CodeTableIndex, u8Tab[u16CodeTableIndex], u16CodeTableIndex+2, u8Tab[u16CodeTableIndex+2], u16GammaValue);
674 
675         if(u16MaxGammaValue < u16GammaValue)
676             {
677             u16MaxGammaValue = u16GammaValue;
678             }
679 
680         // write gamma value
681         _hal_PNL_WriteGamma12Bit_PanelGamma(pInstance,u8Channel,bUsingBurstWrite, u16Addr, u16GammaValue);
682         u16Addr++;
683     }
684 
685     if ( bUsingBurstWrite )
686     {
687         // 5.   after finish burst write data of one channel, disable burst write mode
688         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK24_1C_L, 0x00 , BIT(0));
689     }
690     _hal_PNL_SetMaxGammaValue_PanelGamma(pInstance,u8Channel, u16MaxGammaValue);
691 }
692 
693 #endif
694 
_hal_PNL_WriteGamma12Bit(void * pInstance,MS_U8 u8Channel,MS_BOOL bBurstWrite,MS_U16 u16Addr,MS_U16 u16GammaValue)695 static void _hal_PNL_WriteGamma12Bit(void *pInstance, MS_U8 u8Channel, MS_BOOL bBurstWrite, MS_U16 u16Addr, MS_U16 u16GammaValue)
696 {
697     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
698     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
699 
700     MS_U16 u16Delay = 0xFFFF;
701 
702     PNL_DBG(PNL_DBGLEVEL_GAMMA, "Write [ch %d][addr 0x%x]: 0x%x \n", u8Channel, u16Addr, u16GammaValue);
703 
704     if (!bBurstWrite )
705     {
706         while (SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, 0xE0) && (--u16Delay));          // Check whether the Write chanel is ready
707         PNL_ASSERT(u16Delay > 0, "%s\n", "WriteGamma timeout");
708 
709         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6C_L, u16Addr, 0x3FF);                          // set address port
710         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, (REG_SC_BK10_6E_L + u8Channel *2), u16GammaValue, 0xFFF);      // Set channel data
711 
712         // kick off write
713         switch(u8Channel)
714         {
715             case 0:  // Red
716                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6D_L, BIT(5), BIT(5));
717                 break;
718 
719             case 1:  // Green
720                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6D_L, BIT(6), BIT(6));
721                 break;
722 
723             case 2:  // Blue
724                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6D_L, BIT(7), BIT(7));
725                 break;
726         }
727 
728         while (SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6D_L, 0xE0) && (--u16Delay));          // Check whether the Write chanel is ready
729     }
730     else
731     {
732 
733         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_72_L, u16GammaValue, 0xFFF);
734         SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK00_7F_L, 0x00); // make little time delay
735     }
736 
737 
738     PNL_ASSERT(u16Delay > 0, "%s\n", "WriteGamma timeout");
739 }
740 
741 
_hal_PNL_SetMaxGammaValue(void * pInstance,MS_U8 u8Channel,MS_U16 u16MaxGammaValue)742 static void _hal_PNL_SetMaxGammaValue(void *pInstance, MS_U8 u8Channel, MS_U16 u16MaxGammaValue)
743 {
744     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
745     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
746 
747     PNL_DBG(PNL_DBGLEVEL_GAMMA, "Max gamma of SC%tu %d is 0x%x\n", (ptrdiff_t)pPNLInstancePrivate->u32DeviceID, u8Channel, u16MaxGammaValue);
748 #ifdef MONACO_SC2
749     if(pPNLInstancePrivate->u32DeviceID == 0)
750     {
751 #endif
752         switch(u8Channel)
753         {
754             case 0:  // max. Red
755                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_7D_L , u16MaxGammaValue, 0xFFF);           // max. base 0
756                 break;
757 
758             case 1:  // max. Green
759                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_7E_L , u16MaxGammaValue, 0xFFF);           // max. base 1
760                 break;
761 
762             case 2:  //max.  Blue
763                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_7F_L , u16MaxGammaValue, 0xFFF);           // max. base 1
764                 break;
765            }
766 #ifdef MONACO_SC2
767     }else    //Nike
768     {
769     switch(u8Channel)
770     {
771         case 0:  // max. Red
772                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7A_L , u16MaxGammaValue, 0xFFF);           // max. base 0
773                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7B_L , u16MaxGammaValue, 0xFFF);           // max. base 1
774             break;
775 
776         case 1:  // max. Green
777                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7C_L , u16MaxGammaValue, 0xFFF);           // max. base 0
778                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7D_L , u16MaxGammaValue, 0xFFF);           // max. base 1
779             break;
780 
781         case 2:  //max.  Blue
782                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7E_L , u16MaxGammaValue, 0xFFF);           // max. base 0
783                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7F_L , u16MaxGammaValue, 0xFFF);           // max. base 1
784             break;
785      }
786 
787     }
788 #endif
789 }
790 
791 /////////////////////////////////////////////////////////////////////////////
792 // Gamma format (12 bit LUT)
793 //      0, 1, 2, 3, ..., NumOfLevel, totally N Sets of tNormalGammaR/G/B[],
794 //      1 set uses 2 bytes of memory.
795 //
796 // [T2 and before ] N = 256
797 // [T3]             N = 256 or 1024
798 // ______________________________________________________________________________
799 //  Byte | 0         1           2               n-1        n
800 //    [G1|G0]       [G0]       [G1] . ...... .  [Gmax]    [Gmax]
801 //    3:0  3:0      11:4       11:4              3:0       11:4
802 //
_Hal_PNL_Set12BitGammaPerChannel(void * pInstance,MS_U8 u8Channel,MS_U8 * u8Tab,DRVPNL_GAMMA_MAPPEING_MODE GammaMapMode)803 static void _Hal_PNL_Set12BitGammaPerChannel(void *pInstance, MS_U8 u8Channel, MS_U8 * u8Tab, DRVPNL_GAMMA_MAPPEING_MODE GammaMapMode)
804 {
805     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
806     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
807 
808     MS_U16 u16Addr            = 0;
809     MS_U16 u16CodeTableIndex  = u16Addr/2*3;
810     MS_U16 u16GammaValue      = 0;
811     MS_U16 u16MaxGammaValue   = 0;
812     MS_U16 u16NumOfLevel = GammaMapMode == E_DRVPNL_GAMMA_8BIT_MAPPING ? 256 : 1024;
813     MS_BOOL bUsingBurstWrite = !Hal_VOP_Is_GammaSupportSignalWrite(pInstance,GammaMapMode);
814 
815     // Go to burst write if not support
816     if ( bUsingBurstWrite )
817     {
818         // 1.   initial burst write address, LUT_ADDR[7:0]
819         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_71_L, 0x00 , 0x3FF);
820 
821         // 2.   select burst write channel, REG_LUT_BW_CH_SEL[1:0]
822         switch(u8Channel)
823         {
824             case 0:  // Red
825                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_70_L, 0x00 , BIT(6) | BIT(5) );
826                 break;
827 
828             case 1:  // Green
829                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_70_L, BIT(5) , BIT(6) | BIT(5) );
830                 break;
831 
832             case 2:  // Blue
833                 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_70_L, BIT(6) , BIT(6) | BIT(5) );
834                 break;
835         }
836 
837         // 3.   enable burst write mode, REG_LUT_BW_MAIN_EN
838         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_70_L, BIT(7) , BIT(7)); // Burst write enable
839 
840     }
841 
842     //printf("\33[0;31m Gamma Mapping mode %d \n \33[m",GammaMapMode );
843     // write gamma table per one channel
844     for(; u16Addr < u16NumOfLevel; u16CodeTableIndex += 3)
845     {
846         // gamma x
847         u16GammaValue = u8Tab[u16CodeTableIndex] & 0x0F;
848         u16GammaValue |= u8Tab[u16CodeTableIndex+1] << 4;
849 
850         PNL_DBG(PNL_DBGLEVEL_GAMMA,"Gamma x: SrcGTbl[%d] = 0x%x, [%d] = 0x%x, Gamma = 0x%x, GammaLvl=%d\n",
851                                     u16CodeTableIndex, u8Tab[u16CodeTableIndex], u16CodeTableIndex+1, u8Tab[u16CodeTableIndex+1], u16GammaValue, u16NumOfLevel);
852 
853         if(u16MaxGammaValue < u16GammaValue)
854         {
855             u16MaxGammaValue = u16GammaValue;
856         }
857 
858         // write gamma value
859         _hal_PNL_WriteGamma12Bit(pInstance,u8Channel,bUsingBurstWrite, u16Addr, u16GammaValue);
860         u16Addr++;
861 
862         // gamma x+1
863         u16GammaValue = (u8Tab[u16CodeTableIndex] & 0xF0) >> 4;
864         u16GammaValue |= u8Tab[u16CodeTableIndex+2] << 4;
865 
866         PNL_DBG(PNL_DBGLEVEL_GAMMA, "Gamma x+1: SrcGTbl[%d] = 0x%x, [%d] = 0x%x, Gamma = 0x%x\n", u16CodeTableIndex, u8Tab[u16CodeTableIndex], u16CodeTableIndex+2, u8Tab[u16CodeTableIndex+2], u16GammaValue);
867 
868         if(u16MaxGammaValue < u16GammaValue)
869         {
870             u16MaxGammaValue = u16GammaValue;
871         }
872 
873         // write gamma value
874         _hal_PNL_WriteGamma12Bit(pInstance,u8Channel,bUsingBurstWrite, u16Addr, u16GammaValue);
875         u16Addr++;
876     }
877 
878     if ( bUsingBurstWrite )
879     {
880         // 5.   after finish burst write data of one channel, disable burst write mode
881         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_70_L, 0x00 , BIT(7));
882     }
883 
884     _hal_PNL_SetMaxGammaValue(pInstance,u8Channel, u16MaxGammaValue);
885 }
886 
hal_PNL_WriteGamma12Bit(void * pInstance,MS_U8 u8Channel,MS_BOOL bBurstWrite,MS_U16 u16Addr,MS_U16 u16GammaValue)887 void hal_PNL_WriteGamma12Bit(void *pInstance, MS_U8 u8Channel, MS_BOOL bBurstWrite, MS_U16 u16Addr, MS_U16 u16GammaValue)
888 {
889     #ifdef USE_PANEL_GAMMA
890         _hal_PNL_WriteGamma12Bit_PanelGamma(pInstance, u8Channel, bBurstWrite, u16Addr, u16GammaValue);
891     #endif
892     _hal_PNL_WriteGamma12Bit(pInstance, u8Channel, bBurstWrite, u16Addr, u16GammaValue);
893 
894 }
895 
hal_PNL_SetMaxGammaValue(void * pInstance,MS_U8 u8Channel,MS_U16 u16MaxGammaValue)896 void hal_PNL_SetMaxGammaValue(void *pInstance, MS_U8 u8Channel, MS_U16 u16MaxGammaValue)
897 {
898     #ifdef USE_PANEL_GAMMA
899         _hal_PNL_SetMaxGammaValue_PanelGamma(pInstance, u8Channel, u16MaxGammaValue);
900     #endif
901     _hal_PNL_SetMaxGammaValue(pInstance, u8Channel, u16MaxGammaValue);
902 }
903 
Hal_PNL_Set12BitGammaPerChannel(void * pInstance,MS_U8 u8Channel,MS_U8 * u8Tab,DRVPNL_GAMMA_MAPPEING_MODE GammaMapMode)904 void Hal_PNL_Set12BitGammaPerChannel(void *pInstance, MS_U8 u8Channel, MS_U8 * u8Tab, DRVPNL_GAMMA_MAPPEING_MODE GammaMapMode)
905 {
906     #ifdef USE_PANEL_GAMMA
907         _Hal_PNL_Set12BitGammaPerChannel_PanelGamma(pInstance, u8Channel, u8Tab, GammaMapMode);
908     #endif
909     _Hal_PNL_Set12BitGammaPerChannel(pInstance, u8Channel, u8Tab, GammaMapMode);
910 }
911 
912 // src : 1 (scaler lpll)
913 // src : 0 (frc lpll)
MHal_PNL_FRC_lpll_src_sel(void * pInstance,MS_U8 u8src)914 MS_U8 MHal_PNL_FRC_lpll_src_sel(void *pInstance, MS_U8 u8src)
915 {
916     if (u8src > 1)
917     {
918         return FALSE;
919     }
920     else
921     {
922 //Not support two LPLL (frc lpll) for Manhattan
923 #if 0
924         W2BYTEMSK(L_BK_LPLL(0x00), 0x00, 0x0F);
925         W2BYTEMSK(L_BK_LPLL(0x7F), u8src?BIT(8):0, BIT(8));
926 
927         if(u8src==0)
928         {
929             W2BYTEMSK(L_BK_LPLL(0x00), 0x01, 0x0F);
930             W2BYTEMSK(L_BK_LPLL(0x7F), BIT(8), BIT(8));
931             W2BYTEMSK(L_BK_LPLL(0x00), 0x00, 0x0F); // restore to sub bnak 0
932         }
933 #endif
934         return TRUE;
935     }
936 
937 }
938 
_MHal_PNL_GetSupportedLPLLIndex(void * pInstance,PNL_TYPE eLPLL_Type,PNL_MODE eLPLL_Mode,MS_U64 ldHz,PNL_LPLL_TYPE_SEL lpll_type_sel)939 static MS_U8 _MHal_PNL_GetSupportedLPLLIndex(void *pInstance,
940                                                                  PNL_TYPE eLPLL_Type,
941                                                                  PNL_MODE eLPLL_Mode,
942                                                                  MS_U64 ldHz, PNL_LPLL_TYPE_SEL lpll_type_sel)
943 {
944     MS_U8 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MAX;
945 #if defined (__aarch64__)
946     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]eLPLL_Type=%u, eLPLL_Mode=%u, ldHz=%lu, lpll_type_sel=%u\n", __FUNCTION__, __LINE__, eLPLL_Type, eLPLL_Mode, ldHz, lpll_type_sel);
947 #else
948     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]eLPLL_Type=%u, eLPLL_Mode=%u, ldHz=%llu, lpll_type_sel=%u\n", __FUNCTION__, __LINE__, eLPLL_Type, eLPLL_Mode, ldHz, lpll_type_sel);
949 #endif
950 
951     /// Mini LVDS, EPI34/28, LVDS_1CH, Vx1_1P are 1P structure
952     if(!((eLPLL_Type == E_PNL_TYPE_TTL)||
953         ((eLPLL_Type == E_PNL_TYPE_LVDS)&&(eLPLL_Mode==E_PNL_MODE_SINGLE))||
954         ((eLPLL_Type == E_PNL_TYPE_HS_LVDS)&&(eLPLL_Mode==E_PNL_MODE_SINGLE))||
955         (eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_1LANE)||(eLPLL_Type == E_PNL_LPLL_VBY1_8BIT_1LANE)||
956         ((eLPLL_Type >= E_PNL_LPLL_MINILVDS_2CH_3P_8BIT)&&(eLPLL_Type <= E_PNL_LPLL_MINILVDS_1CH_6P_6BIT))||
957         ((eLPLL_Type >= E_PNL_LPLL_EPI34_2P)&&(eLPLL_Type <= E_PNL_LPLL_EPI28_4P))))
958     {
959         ldHz/=2;
960     }
961 
962     switch(lpll_type_sel)
963     {
964         default:
965         case E_PNL_LPLL_VIDEO:
966         {
967             switch (eLPLL_Type)
968             {
969                 case E_PNL_TYPE_TTL:
970                     if (ldHz < 250000000UL)
971                     {
972                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_TTL_25to25MHz;
973                     }
974                     else if ((ldHz >= 250000000UL) && (ldHz < 500000000UL))
975                     {
976                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_TTL_25to50MHz;
977                     }
978                     else if((ldHz >= 500000000UL) && (ldHz < 1000000000UL))
979                     {
980                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_TTL_50to100MHz;
981                     }
982                     else
983                     {
984                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_TTL_100to150MHz;
985                     }
986                 break;
987 
988                 case E_PNL_TYPE_LVDS:
989                     switch (eLPLL_Mode)
990                     {
991                         case E_PNL_MODE_SINGLE:
992                             if (ldHz < 500000000UL)
993                             {
994                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_LVDS_1CH_50to50MHz;
995                             }
996                             else
997                             {
998                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_LVDS_1CH_50to80MHz;
999                             }
1000                         break;
1001 
1002                         default:
1003                         case E_PNL_MODE_DUAL:
1004                             if (ldHz < 250000000UL)
1005                             {
1006                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_LVDS_2CH_25to25MHz;
1007                             }
1008                             else if ((ldHz >= 250000000UL) && (ldHz < 500000000UL))
1009                             {
1010                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_LVDS_2CH_25to50MHz;
1011                             }
1012                             else
1013                             {
1014                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_LVDS_2CH_50to75MHz;
1015                             }
1016                         break;
1017                     }
1018                 break;
1019 
1020                 case E_PNL_TYPE_HS_LVDS:
1021 
1022                     switch (eLPLL_Mode)
1023                     {
1024                         case E_PNL_MODE_SINGLE:
1025                             if(ldHz < 500000000UL)
1026                             {
1027                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_HS_LVDS_1CH_50to50MHz;
1028                             }
1029                             else if((ldHz >= 500000000UL) && (ldHz < 1000000000UL))
1030                             {
1031                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_HS_LVDS_1CH_50to100MHz;
1032                             }
1033                             else
1034                             {
1035                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_HS_LVDS_1CH_100to150MHz;
1036                             }
1037                         break;
1038 
1039                         default:
1040                         case E_PNL_MODE_DUAL:
1041                             if(ldHz < 250000000UL)
1042                             {
1043                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_HS_LVDS_2CH_25to25MHz;
1044                             }
1045                             else if((ldHz >= 250000000UL) && (ldHz < 500000000UL))
1046                             {
1047                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_HS_LVDS_2CH_25to50MHz;
1048                             }
1049                             else if((ldHz >= 500000000UL) && (ldHz < 1000000000UL))
1050                             {
1051                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_HS_LVDS_2CH_50to100MHz;
1052                             }
1053                             else
1054                             {
1055                                 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_HS_LVDS_2CH_100to150MHz;
1056                             }
1057                         break;
1058                     }
1059                 break;
1060 ///Not Support
1061 #if 0
1062                 case E_PNL_LPLL_MINILVDS_1CH_3P_8BIT:
1063                     u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_1CH_3PAIR_8BIT_50to80MHz;
1064                 break;
1065 
1066                 case E_PNL_LPLL_MINILVDS_2CH_3P_8BIT:
1067                     if((ldHz >= 500000000) && (ldHz < 1000000000))
1068                     {
1069                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_8BIT_50to100MHz;
1070                     }
1071                     else
1072                     {
1073                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_8BIT_100to150MHz;
1074                     }
1075                 break;
1076 
1077                 case E_PNL_LPLL_MINILVDS_2CH_6P_8BIT:
1078                     if((ldHz >= 500000000) && (ldHz < 1000000000))
1079                     {
1080                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_6PAIR_8BIT_50to100MHz;
1081                     }
1082                     else
1083                     {
1084                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_6PAIR_8BIT_100to150MHz;
1085                     }
1086                 break;
1087 
1088                 case E_PNL_LPLL_MINILVDS_1CH_3P_6BIT:
1089                     if((ldHz >= 500000000) && (ldHz < 666700000))
1090                     {
1091                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_1CH_3PAIR_6BIT_50to66_67MHz;
1092                     }
1093                     else
1094                     {
1095                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_1CH_3PAIR_6BIT_66_67to80MHz;
1096                     }
1097                 break;
1098 
1099                 case E_PNL_LPLL_MINILVDS_2CH_3P_6BIT:
1100                     if ((ldHz <= 500000000) && (ldHz < 666700000))
1101                     {
1102                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_6BIT_50to66_67MHz;
1103                     }
1104                     else if((ldHz >= 666700000) && (ldHz < 1333300000))
1105                     {
1106                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_6BIT_66_67to133_33MHz;
1107                     }
1108                     else
1109                     {
1110                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_6BIT_133_33to150MHz;
1111                     }
1112                 break;
1113 
1114                 case E_PNL_LPLL_MINILVDS_2CH_6P_6BIT:
1115                     if ((ldHz <= 500000000) && (ldHz < 670000000))
1116                     {
1117                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_6PAIR_6BIT_50to67MHz;
1118                     }
1119                     else if((ldHz >= 670000000) && (ldHz < 1330000000))
1120                     {
1121                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_6PAIR_6BIT_67to133MHz;
1122                     }
1123                     else
1124                     {
1125                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_6PAIR_6BIT_133to150MHz;
1126                     }
1127                 break;
1128 
1129                 case E_PNL_LPLL_EPI34_4P:
1130                     u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI34_10BIT_4PAIR_95to150MHz;
1131                 break;
1132 
1133                 case E_PNL_LPLL_EPI34_6P:
1134                     u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI34_10BIT_6PAIR_80to150MHz;
1135                 break;
1136 
1137                 case E_PNL_LPLL_EPI34_8P:
1138                     if((ldHz >= 800000000) && (ldHz < 940000000))
1139                     {
1140                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI34_10BIT_8PAIR_80to94MHz;
1141                     }
1142                     else if((ldHz >= 940000000) && (ldHz < 1880000000))
1143                     {
1144                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI34_10BIT_8PAIR_94to188MHz;
1145                     }
1146                     else
1147                     {
1148                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI34_10BIT_8PAIR_188to300MHz;
1149                     }
1150                 break;
1151 
1152                 case E_PNL_LPLL_EPI28_4P:
1153                     if((ldHz >= 800000000) && (ldHz < 1140000000))
1154                     {
1155                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI28_8BIT_4PAIR_80to114MHz;
1156                     }
1157                     else
1158                     {
1159                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI28_8BIT_4PAIR_114to150MHz;
1160                     }
1161                 break;
1162 #endif
1163 
1164                 case E_PNL_LPLL_EPI28_6P:
1165                     if(ldHz < 1500000000UL)
1166                     {
1167                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_6PAIR_4K_EPI3G_FOR_TRY_150to150MHz;
1168                     }
1169                     else if((ldHz >= 1500000000UL) && (ldHz < 1800000000UL))
1170                     {
1171                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_6PAIR_4K_EPI3G_FOR_TRY_150to180MHz;
1172                     }
1173                     else
1174                     {
1175                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_6PAIR_4K_EPI3G_FOR_TRY_180to300MHz;
1176                     }
1177                 break;
1178 
1179                 case E_PNL_LPLL_EPI28_8P:
1180                     if(ldHz < 1500000000UL)
1181                     {
1182                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_8PAIR_4K_EPI3G_FOR_TRY_150to150MHz;
1183                     }
1184                     else if((ldHz >= 1500000000UL) && (ldHz < 2400000000UL))
1185                     {
1186                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_8PAIR_4K_EPI3G_FOR_TRY_150to240MHz;
1187                     }
1188                     else
1189                     {
1190                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_8PAIR_4K_EPI3G_FOR_TRY_240to300MHz;
1191                     }
1192                 break;
1193 
1194                 case E_PNL_LPLL_EPI28_12P:
1195                     if(ldHz < 1500000000UL)
1196                     {
1197                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_12PAIR_4K_150to150MHz;
1198                     }
1199                     else
1200                     {
1201                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_12PAIR_4K_150to300MHz;
1202                     }
1203                 break;
1204 
1205                 case E_PNL_LPLL_EPI24_12P:
1206                     if(ldHz < 1500000000UL)
1207                     {
1208                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_24_10BIT_12PAIR_4K_CASE1_150to150MHz;
1209                     }
1210                     else
1211                     {
1212                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_24_10BIT_12PAIR_4K_CASE1_150to300MHz;
1213                     }
1214                 break;
1215 
1216                 case E_PNL_LPLL_ISP_8BIT_6P_D:
1217                     if(ldHz < 1500000000UL)
1218                     {
1219                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_ISP_8BIT_6PAIR_X1_DUAL_150to150MHz;
1220                     }
1221                     else
1222                     {
1223                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_ISP_8BIT_6PAIR_X1_DUAL_150to300MHz;
1224                     }
1225                 break;
1226 
1227                 case E_PNL_LPLL_ISP_8BIT_12P:
1228                     if(ldHz < 1500000000UL)
1229                     {
1230                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_ISP_8BIT_12PAIR_150to150MHz;
1231                     }
1232                     else
1233                     {
1234                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_ISP_8BIT_12PAIR_150to300MHz;
1235                     }
1236                 break;
1237 
1238                 case E_PNL_LPLL_USI_T_8BIT_12P:
1239                     if(ldHz < 1500000000UL)
1240                     {
1241                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_USI_T_8BIT_12PAIR_4K_150to150MHz;
1242                     }
1243                     else
1244                     {
1245                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_USI_T_8BIT_12PAIR_4K_150to300MHz;
1246                     }
1247                 break;
1248 
1249                 case E_PNL_LPLL_CMPI24_10BIT_12P:
1250                     if(ldHz < 1500000000UL)
1251                     {
1252                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_CMPI_24_10BIT_12PAIR_X1_150to150MHz;
1253                     }
1254                     else
1255                     {
1256                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_CMPI_24_10BIT_12PAIR_X1_150to300MHz;
1257                     }
1258                 break;
1259 
1260                 case E_PNL_LPLL_CMPI27_8BIT_12P:
1261                     if(ldHz < 1500000000UL)
1262                     {
1263                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_CMPI_27_8BIT_12PAIR_X1_150to150MHz;
1264                     }
1265                     else
1266                     {
1267                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_CMPI_27_8BIT_12PAIR_X1_150to300MHz;
1268                     }
1269                 break;
1270 
1271                 case E_PNL_LPLL_VBY1_10BIT_8LANE:
1272                     if(ldHz < 1500000000UL)
1273                     {
1274                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_8CH_10BIT_4K_150to150MHz;
1275                     }
1276                     else
1277                     {
1278                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_8CH_10BIT_4K_150to300MHz;
1279                     }
1280                     printf("@@11=%u\n",u8SupportedLPLLIndex);
1281                 break;
1282 
1283                 case E_PNL_LPLL_VBY1_10BIT_4LANE:
1284                     if(ldHz < 750000000UL)
1285                     {
1286                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_4CH_10BIT_75to75MHz;
1287                     }
1288                     else
1289                     {
1290                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_4CH_10BIT_75to150MHz;
1291                     }
1292                 break;
1293 
1294                 case E_PNL_LPLL_VBY1_10BIT_2LANE:
1295                     if(ldHz < 375000000UL)
1296                     {
1297                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_2CH_10BIT_37_5to37_5MHz;
1298                     }
1299                     else
1300                     {
1301                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_2CH_10BIT_37_5to75MHz;
1302                     }
1303                 break;
1304 
1305                 case E_PNL_LPLL_VBY1_8BIT_8LANE:
1306                     if(ldHz < 1500000000UL)
1307                     {
1308                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_8CH_8BIT_4K_150to150MHz;
1309                     }
1310                     else if((ldHz >= 1500000000UL) && (ldHz < 2000000000UL))
1311                     {
1312                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_8CH_8BIT_4K_150to200MHz;
1313                     }
1314                     else
1315                     {
1316                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_8CH_8BIT_4K_200to300MHz;
1317                     }
1318                 break;
1319 
1320                 case E_PNL_LPLL_VBY1_8BIT_4LANE:
1321                     if(ldHz < 750000000UL)
1322                     {
1323                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_4CH_8BIT_75to75MHz;
1324                     }
1325                     else if((ldHz >= 750000000UL) && (ldHz < 1000000000UL))
1326                     {
1327                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_4CH_8BIT_75to100MHz;
1328                     }
1329                     else
1330                     {
1331                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_4CH_8BIT_100to150MHz;
1332                     }
1333                 break;
1334 
1335                 case E_PNL_LPLL_VBY1_8BIT_2LANE:
1336                     if(ldHz < 375000000UL)
1337                     {
1338                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_2CH_8BIT_37_5to37_5MHz;
1339                     }
1340                     else if((ldHz >= 375000000UL) && (ldHz < 500000000UL))
1341                     {
1342                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_2CH_8BIT_37_5to50MHz;
1343                     }
1344                     else
1345                     {
1346                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_VBY1_2CH_8BIT_50to75MHz;
1347                     }
1348                 break;
1349 
1350                 default:
1351                     u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MAX;
1352                 break;
1353             }
1354         }
1355         break;
1356         case E_PNL_LPLL_OSD:
1357         {
1358             switch (eLPLL_Type)
1359             {
1360                 case E_PNL_TYPE_HS_LVDS:
1361                 {
1362                     if(ldHz < 250000000)
1363                     {
1364                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_HS_LVDS_1ch_25to25MHz;
1365                     }
1366                     else if((ldHz >= 250000000) && (ldHz < 500000000))
1367                     {
1368                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_HS_LVDS_1ch_25to50MHz;
1369                     }
1370                     else if((ldHz >= 500000000) && (ldHz < 1000000000))
1371                     {
1372                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_HS_LVDS_1ch_50to100MHz;
1373                     }
1374                     else
1375                     {
1376                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_HS_LVDS_1ch_100to150MHz;
1377                     }
1378                 }
1379                 break;
1380 
1381                 case E_PNL_LPLL_VBY1_10BIT_4LANE:
1382                     if(ldHz < 1500000000)
1383                     {
1384                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_10bit_4lane_150to150MHz;
1385                     }
1386                     else
1387                     {
1388                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_10bit_4lane_150to340MHz;
1389                     }
1390                 break;
1391 
1392                 case E_PNL_LPLL_VBY1_10BIT_2LANE:
1393                     if(ldHz < 750000000)
1394                     {
1395                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_10bit_2lane_75to75MHz;
1396                     }
1397                     else
1398                     {
1399                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_10bit_2lane_75to150MHz;
1400                     }
1401                 break;
1402 
1403                 case E_PNL_LPLL_VBY1_10BIT_1LANE:
1404                     if(ldHz < 375000000)
1405                     {
1406                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_10bit_1lane_37_5to37_5MHz;
1407                     }
1408                     else
1409                     {
1410                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_10bit_1lane_37_5to75MHz;
1411                     }
1412                 break;
1413 
1414                 case E_PNL_LPLL_VBY1_8BIT_4LANE:
1415                     if(ldHz < 1500000000UL)
1416                     {
1417                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_8bit_4lane_150to150MHz;
1418                     }
1419                     else if((ldHz >= 1500000000UL) && (ldHz < 2000000000UL))
1420                     {
1421                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_8bit_4lane_150to200MHz;
1422                     }
1423                     else
1424                     {
1425                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_8bit_4lane_200to340MHz;
1426                     }
1427                 break;
1428 
1429                 case E_PNL_LPLL_VBY1_8BIT_2LANE:
1430                     if(ldHz < 750000000)
1431                     {
1432                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_8bit_2lane_75to75MHz;
1433                     }
1434                     else if((ldHz >= 750000000) && (ldHz < 1000000000))
1435                     {
1436                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_8bit_2lane_75to100MHz;
1437                     }
1438                     else
1439                     {
1440                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_8bit_2lane_100to150MHz;
1441                     }
1442                 break;
1443 
1444                 case E_PNL_LPLL_VBY1_8BIT_1LANE:
1445                     if(ldHz < 375000000)
1446                     {
1447                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_8bit_1lane_37_5to37_5MHz;
1448                     }
1449                     else if((ldHz >= 375000000) && (ldHz < 500000000))
1450                     {
1451                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_8bit_1lane_37_5to50MHz;
1452                     }
1453                     else
1454                     {
1455                         u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_VBY1_8bit_1lane_50to75MHz;
1456                     }
1457                 break;
1458 
1459                 default:
1460                     u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EXT_MAX;
1461                 break;
1462             }
1463         }
1464         break;
1465     }
1466     return u8SupportedLPLLIndex;
1467 }
1468 
_MHal_PNL_DumpLPLLTable(void * pInstance,MS_U8 LPLLTblIndex,PNL_LPLL_TYPE_SEL lpll_type_sel)1469 static void _MHal_PNL_DumpLPLLTable(void *pInstance, MS_U8 LPLLTblIndex, PNL_LPLL_TYPE_SEL lpll_type_sel)
1470 {
1471     if(lpll_type_sel == E_PNL_LPLL_VIDEO)
1472     {
1473         if (LPLLTblIndex == E_PNL_SUPPORTED_LPLL_MAX)
1474         {
1475             printf("[%s,%5d] Unspported LPLL Type, skip LPLL setting\n",__FUNCTION__,__LINE__);
1476             return;
1477         }
1478 
1479         int indexCounter = 0;
1480 
1481         for(indexCounter = 0 ; indexCounter<LPLL_REG_NUM; indexCounter++)
1482         {
1483             if (LPLLSettingTBL[LPLLTblIndex][indexCounter].address == 0xFF) //delay in micro second
1484             {
1485                 MsOS_DelayTaskUs(LPLLSettingTBL[LPLLTblIndex][indexCounter].value);
1486                 continue; // step forward to next register setting.
1487             }
1488 
1489             W2BYTEMSK(L_BK_LPLL(LPLLSettingTBL[LPLLTblIndex][indexCounter].address),
1490                       LPLLSettingTBL[LPLLTblIndex][indexCounter].value,
1491                       LPLLSettingTBL[LPLLTblIndex][indexCounter].mask);
1492         }
1493         PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]LPLLTblIndex=%u\n", __FUNCTION__, __LINE__, LPLLTblIndex);
1494     }
1495     else
1496     {
1497         if (LPLLTblIndex == E_PNL_SUPPORTED_LPLL_EXT_MAX)
1498         {
1499             printf("[%s,%5d] Unspported LPLL Type, skip LPLL setting\n",__FUNCTION__,__LINE__);
1500             return;
1501         }
1502 
1503         int indexCounter = 0;
1504 
1505         for(indexCounter = 0 ; indexCounter<LPLL_EXT_REG_NUM; indexCounter++)
1506         {
1507             if (LPLLSettingTBL_Ext[LPLLTblIndex][indexCounter].address == 0xFF) //delay in micro second
1508             {
1509                 MsOS_DelayTaskUs(LPLLSettingTBL_Ext[LPLLTblIndex][indexCounter].value);
1510                 continue; // step forward to next register setting.
1511             }
1512 
1513             W2BYTEMSK(L_BK_LPLL(LPLLSettingTBL_Ext[LPLLTblIndex][indexCounter].address),
1514                       LPLLSettingTBL_Ext[LPLLTblIndex][indexCounter].value,
1515                       LPLLSettingTBL_Ext[LPLLTblIndex][indexCounter].mask);
1516         }
1517         PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]LPLLTblIndex=%u\n", __FUNCTION__, __LINE__, LPLLTblIndex);
1518     }
1519 }
1520 
MHal_PNL_Init_LPLL(void * pInstance,PNL_TYPE eLPLL_Type,PNL_MODE eLPLL_Mode,MS_U64 ldHz)1521 void MHal_PNL_Init_LPLL(void *pInstance, PNL_TYPE eLPLL_Type,PNL_MODE eLPLL_Mode,MS_U64 ldHz)
1522 {
1523     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1524     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1525     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1526     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1527     E_PNL_SUPPORTED_LPLL_TYPE u8SupportedLPLLLIndex = E_PNL_SUPPORTED_LPLL_MAX;
1528     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__);
1529 
1530     u8SupportedLPLLLIndex = _MHal_PNL_GetSupportedLPLLIndex(pInstance, eLPLL_Type,eLPLL_Mode,ldHz, E_PNL_LPLL_VIDEO);
1531 
1532     if (u8SupportedLPLLLIndex == E_PNL_SUPPORTED_LPLL_MAX)
1533     {
1534         printf("Not Supported LPLL Type, skip LPLL Init\n");
1535         return;
1536     }
1537 
1538     _MHal_PNL_DumpLPLLTable(pInstance, u8SupportedLPLLLIndex, E_PNL_LPLL_VIDEO);
1539 
1540 
1541     MHal_MOD_PVDD_Power_Setting(pInstance, pPNLResourcePrivate->sthalPNL._bPVDD_2V5); // Einstein is always use 3.3V PVDD Power.
1542 }
1543 
MHal_PNL_Get_Loop_DIV(void * pInstance,MS_U8 u8LPLL_Mode,MS_U8 eLPLL_Type,MS_U64 ldHz)1544 MS_U8 MHal_PNL_Get_Loop_DIV(void *pInstance, MS_U8 u8LPLL_Mode, MS_U8 eLPLL_Type, MS_U64 ldHz)
1545 {
1546     MS_U16 u16loop_div = 0;
1547     E_PNL_SUPPORTED_LPLL_TYPE u8SupportedLPLLLIndex = E_PNL_SUPPORTED_LPLL_MAX;
1548 #if defined (__aarch64__)
1549     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]E_PNL_LPLL_VIDEO : eLPLL_Type=%u, u8LPLL_Mode=%u, ldHz=%lu\n", __FUNCTION__, __LINE__, eLPLL_Type, u8LPLL_Mode, ldHz);
1550 #else
1551     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]E_PNL_LPLL_VIDEO : eLPLL_Type=%u, u8LPLL_Mode=%u, ldHz=%llu\n", __FUNCTION__, __LINE__, eLPLL_Type, u8LPLL_Mode, ldHz);
1552 #endif
1553     u8SupportedLPLLLIndex = _MHal_PNL_GetSupportedLPLLIndex(pInstance, eLPLL_Type,u8LPLL_Mode,ldHz,E_PNL_LPLL_VIDEO);
1554 
1555     if (u8SupportedLPLLLIndex == E_PNL_SUPPORTED_LPLL_MAX)
1556     {
1557         printf("[%s,%5d] Error LPLL type\n",__FUNCTION__,__LINE__);
1558         u16loop_div = 0 ;
1559     }
1560     else
1561     {
1562         u16loop_div = u16LoopDiv[u8SupportedLPLLLIndex];
1563     }
1564     PNL_DBG(PNL_DBGLEVEL_INIT, "E_PNL_LPLL_VIDEO : u16loop_div=%u\n", u16loop_div);
1565 
1566     u16loop_div *= 2;
1567     return u16loop_div;
1568 }
1569 
MHal_PNL_Get_LPLL_LoopGain(void * pInstance,MS_U8 eLPLL_Mode,MS_U8 eLPLL_Type,MS_U64 ldHz)1570 MS_U16 MHal_PNL_Get_LPLL_LoopGain(void *pInstance, MS_U8 eLPLL_Mode, MS_U8 eLPLL_Type, MS_U64 ldHz)
1571 {
1572     MS_U16 u16loop_gain = 0;
1573     E_PNL_SUPPORTED_LPLL_TYPE u8SupportedLPLLLIndex = E_PNL_SUPPORTED_LPLL_MAX;
1574 #if defined (__aarch64__)
1575     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]E_PNL_LPLL_VIDEO : eLPLL_Type=%u, eLPLL_Mode=%u, ldHz=%lu\n", __FUNCTION__, __LINE__, eLPLL_Type, eLPLL_Mode, ldHz);
1576 #else
1577     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]E_PNL_LPLL_VIDEO : eLPLL_Type=%u, eLPLL_Mode=%u, ldHz=%llu\n", __FUNCTION__, __LINE__, eLPLL_Type, eLPLL_Mode, ldHz);
1578 #endif
1579     u8SupportedLPLLLIndex = _MHal_PNL_GetSupportedLPLLIndex(pInstance, eLPLL_Type,eLPLL_Mode,ldHz,E_PNL_LPLL_VIDEO);
1580 
1581     if (u8SupportedLPLLLIndex == E_PNL_SUPPORTED_LPLL_MAX)
1582     {
1583         printf("[%s,%5d] Error LPLL type\n",__FUNCTION__,__LINE__);
1584         u16loop_gain = 0 ;
1585     }
1586     else
1587     {
1588         u16loop_gain = u16LoopGain[u8SupportedLPLLLIndex];
1589     }
1590     PNL_DBG(PNL_DBGLEVEL_INIT, "E_PNL_LPLL_VIDEO : u16loop_gain=%u\n", u16loop_gain);
1591     return u16loop_gain;
1592 }
1593 
1594 #define SKIP_TIMING_CHANGE_CAP  TRUE
Hal_PNL_SkipTimingChange_GetCaps(void * pInstance)1595 MS_BOOL Hal_PNL_SkipTimingChange_GetCaps(void *pInstance)
1596 {
1597     #if (SKIP_TIMING_CHANGE_CAP)
1598         return TRUE;
1599     #else
1600         return FALSE;
1601     #endif
1602 }
1603 
MHal_PNL_PreSetModeOn(void * pInstance,MS_BOOL bSetMode)1604 void MHal_PNL_PreSetModeOn(void *pInstance, MS_BOOL bSetMode)
1605 {
1606     if (bSetMode == TRUE)
1607     {
1608         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, 0, BIT(15));
1609     }
1610     else
1611     {
1612         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, BIT(15), BIT(15));
1613     }
1614 }
1615 
MHal_PNL_HWLVDSReservedtoLRFlag(void * pInstance,PNL_DrvHW_LVDSResInfo lvdsresinfo)1616 void MHal_PNL_HWLVDSReservedtoLRFlag(void *pInstance, PNL_DrvHW_LVDSResInfo lvdsresinfo)
1617 {
1618     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1619     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1620     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1621     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1622 
1623     if (lvdsresinfo.bEnable)
1624     {
1625         if (lvdsresinfo.u16channel & BIT(0))  // Channel A
1626         {
1627             if (lvdsresinfo.u32pair & BIT(3))  // pair 3
1628             {
1629                 MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, BIT(15), BIT(15));
1630             }
1631             if (lvdsresinfo.u32pair & BIT(4))  // pair 4
1632             {
1633                 MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, BIT(14), BIT(14));
1634             }
1635         }
1636         if (lvdsresinfo.u16channel & BIT(1))  // Channel B
1637         {
1638             if (lvdsresinfo.u32pair & BIT(3))  // pair 3
1639             {
1640                 MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, BIT(13), BIT(13));
1641             }
1642             if (lvdsresinfo.u32pair & BIT(4))  // pair 4
1643             {
1644                 MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, BIT(12), BIT(12));
1645             }
1646         }
1647 
1648         if((pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type >= E_PNL_LPLL_VBY1_10BIT_4LANE)
1649             &&(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type <= E_PNL_LPLL_VBY1_8BIT_8LANE))
1650         {
1651             MOD_W2BYTEMSK(REG_MOD_BK00_30_L, BIT(14), BIT(14));
1652         }
1653     }
1654     else
1655     {
1656         MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, 0x0000, (BIT(15) | BIT(14) | BIT(13) | BIT(12)));
1657 
1658         if((pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type >= E_PNL_LPLL_VBY1_10BIT_4LANE)
1659             &&(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type <= E_PNL_LPLL_VBY1_8BIT_8LANE))
1660         {
1661             MOD_W2BYTEMSK(REG_MOD_BK00_30_L, 0x00, BIT(14));
1662         }
1663     }
1664 }
1665 
1666 ////////////////////////////////////////////////////////////////////////
1667 // Turn OD function
1668 ////////////////////////////////////////////////////////////////////////
MHal_PNL_OverDriver_Init(void * pInstance,MS_PHY u32OD_MSB_Addr,MS_PHY u32OD_MSB_limit,MS_U32 u32OD_LSB_Addr,MS_U32 u32OD_LSB_limit,MS_U8 u8MIUSel)1669 void MHal_PNL_OverDriver_Init(void *pInstance, MS_PHY u32OD_MSB_Addr, MS_PHY u32OD_MSB_limit, MS_U32 u32OD_LSB_Addr, MS_U32 u32OD_LSB_limit, MS_U8 u8MIUSel)
1670 {
1671     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1672     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1673     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK16_61_L,u8MIUSel<<8,BIT(8)|BIT(9)); // OD MIU select
1674 
1675     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_15_L, (MS_U16)(u32OD_MSB_Addr & 0xFFFF)); // OD MSB request base address
1676     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_16_L, (MS_U16)((u32OD_MSB_Addr >> 16) & 0x00FF), 0x00FF); // OD MSB request base address
1677     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_60_L, (MS_U16)((u32OD_MSB_Addr >> 24) & 0x0003), 0x0003); // OD MSB request base address
1678     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_17_L, (MS_U16)(u32OD_MSB_limit & 0xFFFF)); // OD MSB request address limit
1679     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_18_L, (MS_U16)((u32OD_MSB_limit >> 16) & 0x00FF), 0x00FF); // OD MSB request address limit
1680     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_60_L, (MS_U16)((u32OD_MSB_limit >> 24) & 0x0003)<<2, 0x000C); // OD MSB request address limit
1681     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_39_L, (MS_U16)(u32OD_LSB_limit & 0xFFFF)); // OD frame buffer write address limit
1682     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3A_L, (MS_U16)((u32OD_LSB_limit >> 16) & 0x00FF), 0x00FF); // OD frame buffer write address limit
1683     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3B_L, (MS_U16)(u32OD_LSB_limit & 0xFFFF)); // OD frame buffer read address limit
1684     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3C_L, (MS_U16)((u32OD_LSB_limit >> 16) & 0x00FF), 0x00FF); // OD frame buffer read address limit
1685     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_4F_L, (MS_U16)(u32OD_LSB_Addr & 0xFFFF)); // OD LSB request base address
1686     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_50_L, (MS_U16)((u32OD_LSB_Addr >> 16) & 0x00FF), 0x00FF); // OD LSB request base address
1687     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_50_L, (MS_U16)((u32OD_LSB_limit & 0x00FF) << 8), 0xFF00); // OD LSB request limit address
1688     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_51_L, (MS_U16)((u32OD_LSB_limit >> 8) & 0xFFFF)); // OD LSB request limit address
1689 
1690     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_1A_L, 0x4020); // OD request rFIFO limit threshold, priority threshold
1691     SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_1C_L, 0x4020); // OD request wFIFO limit threshold, priority threshold
1692     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3A_L, 0x00, BIT(14)); // OD strength gradually bypass
1693     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3A_L, 0x2F00, 0x3F00);    // OD strength gradually slop
1694     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_12_L, 0x0C, 0xFF);    // OD active threshold
1695 
1696 }
1697 
MHal_PNL_OverDriver_Enable(void * pInstance,MS_BOOL bEnable)1698 void MHal_PNL_OverDriver_Enable(void *pInstance, MS_BOOL bEnable)
1699 {
1700     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1701     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1702 
1703     // OD mode
1704     // OD used user weight to output blending directly
1705     // OD Enable
1706     if (bEnable)
1707     {
1708         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, 0x2D, 0x2F);
1709     }
1710     else
1711     {
1712         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, 0x2C, 0x2F);
1713     }
1714 }
1715 
MHal_PNL_OverDriver_TBL(void * pInstance,MS_U8 u8ODTbl[1056])1716 void MHal_PNL_OverDriver_TBL(void *pInstance, MS_U8 u8ODTbl[1056])
1717 {
1718     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1719     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1720 
1721     MS_U16 i;
1722     MS_U8 u8target;
1723     MS_BOOL bEnable;
1724 
1725     bEnable = SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, BIT(0));
1726     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, 0x00, BIT(0)); // OD enable
1727     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_01_L, 0x0E, 0x0E); // OD table SRAM enable, RGB channel
1728 
1729     u8target= u8ODTbl[9];
1730     for (i=0; i<272; i++)
1731     {
1732         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_03_L, (i == 9)?u8target:(u8target ^ u8ODTbl[i]), 0x00FF);
1733         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_02_L, (i|0x8000), 0x81FF);
1734         while(SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_02_L, BIT(15)));
1735     }
1736 
1737     u8target= u8ODTbl[(272+19)];
1738     for (i=0; i<272; i++)
1739     {
1740         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_06_L, (i == 19)?u8target:(u8target ^ u8ODTbl[(272+i)]), 0x00FF);
1741         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_05_L, (i|0x8000), 0x81FF);
1742         while(SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_05_L, BIT(15)));
1743     }
1744 
1745     u8target= u8ODTbl[(272*2+29)];
1746     for (i=0; i<256; i++)
1747     {
1748         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_09_L, (i == 29)?u8target:(u8target ^ u8ODTbl[(272*2+i)]), 0x00FF);
1749         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_08_L, (i|0x8000), 0x81FF);
1750         while(SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_08_L, BIT(15)));
1751     }
1752 
1753     u8target= u8ODTbl[(272*2+256+39)];
1754     for (i=0; i<256; i++)
1755     {
1756         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_0C_L, (i == 39)?u8target:(u8target ^ u8ODTbl[(272*2+256+i)]), 0x00FF);
1757         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_0B_L, (i|0x8000), 0x81FF);
1758         while(SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_0D_L, BIT(15)));
1759     }
1760 
1761     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_01_L, 0x00, 0x0E); // OD table SRAM enable, RGB channel
1762     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, bEnable, BIT(0)); // OD enable
1763 }
1764 
_MHal_PNL_MOD_Swing_Refactor_AfterCAL(void * pInstance,MS_U16 u16Swing_Level)1765 MS_U16 _MHal_PNL_MOD_Swing_Refactor_AfterCAL(void *pInstance, MS_U16 u16Swing_Level)
1766 {
1767     MS_U8 u8ibcal = 0x00;
1768     MS_U16 u16AfterCal_value = 0;
1769     MS_U16 u16Cus_value = 0;
1770 
1771     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1772     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1773     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1774     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1775     // =========
1776     // GCR_CAL_LEVEL[1:0] : REG_MOD_A_BK00_70_L =>
1777     // 2'b00 250mV ' GCR_ICON_CHx[5:0]=2'h15 (decimal 21)
1778     // 2'b01 350mV ' GCR_ICON_CHx[5:0]=2'h1F (decimal 31)
1779     // 2'b10 300mV ' GCR_ICON_CHx[5:0]=2'h1A (decimal 26)
1780     // 2'b11 200mV ' GCR_ICON_CHx[5:0]=2'h10 (decimal 16)
1781     // =========
1782     switch(pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET)
1783     {
1784         default:
1785         case 0:
1786             u8ibcal = 0x15;
1787         break;
1788         case 1:
1789             u8ibcal = 0x1F;
1790         break;
1791         case 2:
1792             u8ibcal = 0x1A;
1793         break;
1794         case 3:
1795             u8ibcal = 0x10;
1796         break;
1797     }
1798     u16Cus_value = (u16Swing_Level) * (pPNLResourcePrivate->sthalPNL._u8MOD_CALI_VALUE + 4)/(u8ibcal + 4);
1799     u16AfterCal_value = (u16Cus_value-40)/10+2;
1800 
1801     HAL_MOD_CAL_DBG(printf("\r\n--Swing value after refactor = %d\n", u16AfterCal_value));
1802 
1803     return u16AfterCal_value;
1804 }
1805 
MHal_PNL_MODSwingRegToRealLevelValue(void * pInstance,MS_U16 u16SwingRegValue)1806 MS_U16 MHal_PNL_MODSwingRegToRealLevelValue(void *pInstance, MS_U16 u16SwingRegValue)
1807 {
1808     MS_U8 u8ibcal = 0x00;
1809     MS_U16 u16SwingRealLevelValue = 0;
1810     MS_U16 u16CusValue = 0;
1811     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1812     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1813     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1814     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1815     // =========
1816     // GCR_CAL_LEVEL[1:0] : REG_MOD_A_BK00_70_L =>
1817     // 2'b00 250mV ' GCR_ICON_CHx[5:0]=2'h15 (decimal 21)
1818     // 2'b01 350mV ' GCR_ICON_CHx[5:0]=2'h1F (decimal 31)
1819     // 2'b10 300mV ' GCR_ICON_CHx[5:0]=2'h1A (decimal 26)
1820     // 2'b11 200mV ' GCR_ICON_CHx[5:0]=2'h10 (decimal 16)
1821     // =========
1822     switch(pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET)
1823     {
1824         default:
1825         case 0:
1826             u8ibcal = 0x15;
1827         break;
1828         case 1:
1829             u8ibcal = 0x1F;
1830         break;
1831         case 2:
1832             u8ibcal = 0x1A;
1833         break;
1834         case 3:
1835             u8ibcal = 0x10;
1836         break;
1837     }
1838 
1839     u16CusValue =  ((u16SwingRegValue-2)*10)+40;
1840     u16SwingRealLevelValue=(u16CusValue*(u8ibcal + 4))/(pPNLResourcePrivate->sthalPNL._u8MOD_CALI_VALUE + 4);
1841 
1842     HAL_MOD_CAL_DBG(printf("\r\n--Swing Real Level Value = %d\n", u16SwingRealLevelValue));
1843 
1844     return u16SwingRealLevelValue;
1845 }
1846 
MHal_PNL_MOD_Control_Out_Swing(void * pInstance,MS_U16 u16Swing_Level)1847 MS_BOOL MHal_PNL_MOD_Control_Out_Swing(void *pInstance, MS_U16 u16Swing_Level)
1848 {
1849     MS_BOOL bStatus = FALSE;
1850 
1851     MS_U16 u16ValidSwing = 0;
1852     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
1853     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
1854     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
1855     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
1856 
1857     if((pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_LVDS)||
1858       (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_HS_LVDS))
1859     {
1860         if(u16Swing_Level>600)
1861             u16Swing_Level=600;
1862         if(u16Swing_Level<40)
1863             u16Swing_Level=40;
1864 
1865         u16ValidSwing = _MHal_PNL_MOD_Swing_Refactor_AfterCAL(pInstance, u16Swing_Level);
1866     }
1867     else
1868     {
1869         u16ValidSwing = u16Swing_Level;
1870     }
1871 
1872     // Disable HW calibration keep mode first, to make SW icon value can write into register.
1873     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0, BIT(15));
1874 
1875     if((pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type >= E_PNL_LPLL_VBY1_10BIT_4LANE)&&
1876        (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type <= E_PNL_LPLL_VBY1_8BIT_8LANE))
1877     {
1878         u16ValidSwing &=0x0F;
1879         // vby1 vreg
1880         // ch0+ch1+ch2+ch3
1881         MOD_A_W2BYTE(REG_MOD_A_BK00_20_L, (u16ValidSwing << 12 | u16ValidSwing << 8 | u16ValidSwing << 4 | u16ValidSwing));
1882         // ch4+ch5+ch6+ch7
1883         MOD_A_W2BYTE(REG_MOD_A_BK00_21_L, (u16ValidSwing << 12 | u16ValidSwing << 8 | u16ValidSwing << 4 | u16ValidSwing));
1884         // ch8+ch9+ch10+ch11
1885         MOD_A_W2BYTE(REG_MOD_A_BK00_22_L, (u16ValidSwing << 12 | u16ValidSwing << 8 | u16ValidSwing << 4 | u16ValidSwing));
1886         // ch12+ch13
1887         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_23_L, (u16ValidSwing << 4 | u16ValidSwing), 0x00ff);
1888     }
1889     else
1890     {
1891         u16ValidSwing &=0xFF;
1892         // LVDS fill ICON
1893         // ch0+ch1
1894         MOD_A_W2BYTE(REG_MOD_A_BK00_08_L, (u16ValidSwing << 8 | u16ValidSwing));
1895         // ch2+ch3
1896         MOD_A_W2BYTE(REG_MOD_A_BK00_09_L, (u16ValidSwing << 8 | u16ValidSwing));
1897         // ch4+ch5
1898         MOD_A_W2BYTE(REG_MOD_A_BK00_0A_L, (u16ValidSwing << 8 | u16ValidSwing));
1899         // ch6+ch7
1900         MOD_A_W2BYTE(REG_MOD_A_BK00_0B_L, (u16ValidSwing << 8 | u16ValidSwing));
1901         // ch8+ch9
1902         MOD_A_W2BYTE(REG_MOD_A_BK00_0C_L, (u16ValidSwing << 8 | u16ValidSwing));
1903         // ch10+ch11
1904         MOD_A_W2BYTE(REG_MOD_A_BK00_0D_L, (u16ValidSwing << 8 | u16ValidSwing));
1905         // ch12+ch13
1906         MOD_A_W2BYTE(REG_MOD_A_BK00_0E_L, (u16ValidSwing << 8 | u16ValidSwing));
1907     }
1908     bStatus = TRUE;
1909 
1910     return bStatus;
1911 }
1912 
1913 ////////////////////////////////////////////////////////////////////////
1914 // Turn Pre-Emphasis Current function
1915 ////////////////////////////////////////////////////////////////////////
MHal_PNL_MOD_Control_Out_PE_Current(void * pInstance,MS_U16 u16Current_Level)1916 MS_BOOL MHal_PNL_MOD_Control_Out_PE_Current (void *pInstance, MS_U16 u16Current_Level)
1917 {
1918     MS_BOOL bStatus = FALSE;
1919     MS_U16 u16ValidCurrent = u16Current_Level & 0x0F;
1920 
1921     MOD_A_W2BYTE(REG_MOD_A_BK00_18_L,
1922         ( (u16ValidCurrent  ) |(u16ValidCurrent << 4 )|(u16ValidCurrent << 8 )
1923         |(u16ValidCurrent << 12 )));
1924 
1925     MOD_A_W2BYTE(REG_MOD_A_BK00_19_L,
1926         ( (u16ValidCurrent  ) |(u16ValidCurrent << 4 )|(u16ValidCurrent << 8 )
1927         |(u16ValidCurrent << 12 )));
1928 
1929     MOD_A_W2BYTE(REG_MOD_A_BK00_1A_L,
1930         ( (u16ValidCurrent  ) |(u16ValidCurrent << 4 )|(u16ValidCurrent << 8 )
1931         |(u16ValidCurrent << 12 )));
1932 
1933     MOD_A_W2BYTE(REG_MOD_A_BK00_1B_L,
1934         ( (u16ValidCurrent  ) |(u16ValidCurrent << 4 )|(u16ValidCurrent << 8 )
1935         |(u16ValidCurrent << 12 )));
1936 
1937     bStatus = TRUE;
1938 
1939     return bStatus;
1940 }
1941 
MHal_PNL_MOD_PECurrent_Setting(void * pInstance,MS_U16 u16Current_Level,MS_U16 u16Channel_Select)1942 void MHal_PNL_MOD_PECurrent_Setting(void *pInstance, MS_U16 u16Current_Level, MS_U16 u16Channel_Select)
1943 {
1944     MS_U16 u16ValidCurrent = u16Current_Level & 0x0F;
1945     MS_U16 u16Ch00_03_mask,u16Ch04_07_mask,u16Ch08_11_mask,u16Ch12_15_mask  = 0;
1946 
1947     u16Ch00_03_mask = (((u16Channel_Select & BIT(0))? 0x000F:0x00)|((u16Channel_Select & BIT(1))? 0x00F0:0x00)
1948                      |((u16Channel_Select & BIT(2))? 0x0F00:0x00)|((u16Channel_Select & BIT(3))? 0xF000:0x00));
1949     u16Ch04_07_mask = (((u16Channel_Select & BIT(4))? 0x000F:0x00)|((u16Channel_Select & BIT(5))? 0x00F0:0x00)
1950                      |((u16Channel_Select & BIT(6))? 0x0F00:0x00)|((u16Channel_Select & BIT(7))? 0xF000:0x00));
1951     u16Ch08_11_mask = (((u16Channel_Select & BIT(8))? 0x000F:0x00)|((u16Channel_Select & BIT(9))? 0x00F0:0x00)
1952                      |((u16Channel_Select & BIT(10))? 0x0F00:0x00)|((u16Channel_Select & BIT(11))? 0xF000:0x00));
1953     u16Ch12_15_mask = (((u16Channel_Select & BIT(12))? 0x000F:0x00)|((u16Channel_Select & BIT(13))? 0x00F0:0x00)
1954                      |((u16Channel_Select & BIT(14))? 0x0F00:0x00)|((u16Channel_Select & BIT(15))? 0xF000:0x00));
1955 
1956     if(u16Ch00_03_mask)
1957     {
1958         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_18_L,
1959             ((u16ValidCurrent)|(u16ValidCurrent << 4)|(u16ValidCurrent << 8)|(u16ValidCurrent << 12 )), u16Ch00_03_mask);
1960     }
1961     else
1962     {
1963         MOD_A_W2BYTE(REG_MOD_A_BK00_18_L,0x00);
1964     }
1965 
1966     if(u16Ch04_07_mask)
1967     {
1968         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_19_L,
1969             ((u16ValidCurrent)|(u16ValidCurrent << 4)|(u16ValidCurrent << 8)|(u16ValidCurrent << 12 )), u16Ch04_07_mask);
1970     }
1971     else
1972     {
1973         MOD_A_W2BYTE(REG_MOD_A_BK00_19_L,0x00);
1974     }
1975 
1976     if(u16Ch08_11_mask)
1977     {
1978         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_1A_L,
1979             ((u16ValidCurrent)|(u16ValidCurrent << 4)|(u16ValidCurrent << 8)|(u16ValidCurrent << 12 )), u16Ch08_11_mask);
1980     }
1981     else
1982     {
1983         MOD_A_W2BYTE(REG_MOD_A_BK00_1A_L,0x00);
1984     }
1985 
1986     if(u16Ch12_15_mask)
1987     {
1988         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_1B_L,
1989             ((u16ValidCurrent)|(u16ValidCurrent << 4)|(u16ValidCurrent << 8)|(u16ValidCurrent << 12 )), u16Ch12_15_mask);
1990     }
1991     else
1992     {
1993         MOD_A_W2BYTE(REG_MOD_A_BK00_1B_L,0x00);
1994     }
1995 }
1996 
1997 ////////////////////////////////////////////////////////////////////////
1998 // 1.Turn TTL low-power mode function
1999 // 2.Turn internal termination function
2000 // 3.Turn DRIVER BIAS OP function
2001 ////////////////////////////////////////////////////////////////////////
MHal_PNL_MOD_Control_Out_TTL_Resistor_OP(void * pInstance,MS_BOOL bEnble)2002 MS_BOOL MHal_PNL_MOD_Control_Out_TTL_Resistor_OP (void *pInstance, MS_BOOL bEnble)
2003 {
2004     MS_BOOL bStatus = FALSE;
2005     if(bEnble)
2006     {
2007         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_34_L, 0xFFFF, 0xFFFF); //Enable TTL low-power mode
2008 //        MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, 0x001E, 0x001E);
2009 
2010         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_32_L, 0xFFFF, 0xFFFF); //GCR_EN_RINT (internal termination open)
2011         MOD_W2BYTEMSK(REG_MOD_BK00_76_L, 0x003F, 0x003F);
2012 
2013         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3C_L, 0xFFFF, 0xFFFF); //Disable DRIVER BIAS OP
2014         MOD_W2BYTEMSK(REG_MOD_BK00_7A_L, 0x003F, 0x003F);
2015     }
2016     else
2017     {
2018         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_34_L, 0x0000, 0xFFFF); //Disable TTL low-power mode
2019 //        MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, 0x0000, 0x001E);
2020 
2021         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_32_L, 0x0000, 0xFFFF); //GCR_EN_RINT (internal termination close)
2022         MOD_W2BYTEMSK(REG_MOD_BK00_76_L, 0x0000, 0x003F);
2023 
2024         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3C_L, 0x0000, 0xFFFF); //Enable DRIVER BIAS OP
2025         MOD_W2BYTEMSK(REG_MOD_BK00_7A_L, 0x0000, 0x003F);
2026     }
2027 
2028     bStatus = TRUE;
2029     return bStatus;
2030 }
2031 
MHal_PNL_PreInit(void * pInstance,PNL_OUTPUT_MODE eParam)2032 void MHal_PNL_PreInit(void *pInstance, PNL_OUTPUT_MODE eParam)
2033 {
2034     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2035     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2036     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2037     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2038     pPNLResourcePrivate->sthalPNL._eDrvPnlInitOptions = eParam;
2039 }
2040 
MHal_PNL_Get_Output_MODE(void * pInstance)2041 PNL_OUTPUT_MODE MHal_PNL_Get_Output_MODE(void *pInstance)
2042 {
2043     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2044     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2045     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2046     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2047     PNL_OUTPUT_MODE eParam = pPNLResourcePrivate->sthalPNL._eDrvPnlInitOptions;
2048 
2049     return eParam;
2050 }
2051 
msReadEfuse(void * pInstance,MS_U8 u8Bank,MS_U32 u32Mask)2052 MS_U32 msReadEfuse(void *pInstance, MS_U8 u8Bank, MS_U32 u32Mask)
2053 {
2054     MS_U32 u32Result = 0;
2055     MS_U8 u8Count = 0;
2056 
2057     W2BYTEMSK(0x2050, u8Bank<<2, BMASK(8:2));  /// reg28[8:2]Addr 6~0
2058     W2BYTEMSK(0x2050, BIT(13), BIT(13));       /// Reg28[13] Margin Read
2059     while(R2BYTEMSK(0x2050, BIT(13)) == BIT(13))
2060     {
2061         MsOS_DelayTask(1);
2062         u8Count ++;
2063 
2064         if (u8Count >10)
2065             break;
2066     }
2067 
2068     u32Result = (R4BYTE(0x2058)& u32Mask);    /// reg2C,2D read value
2069     printf("[%s][%d]u32Result=%tx, after mask u32Result=%tx\n", __FUNCTION__, __LINE__,(ptrdiff_t) R4BYTE(0x2058), (ptrdiff_t)u32Result);
2070     return u32Result;
2071 
2072 }
2073 
msSetVBY1RconValue(void * pInstance)2074 void msSetVBY1RconValue(void *pInstance)
2075 {
2076     MS_U16 u16DefaultICON_Max = 40, u16DefaultICON_Min = 7;
2077     MS_U16 u16DefaultICON = 18;
2078     MS_U32 u32Mask = 0x3F;
2079     MS_BOOL bEfuseMode = FALSE;
2080     MS_U16 u16SwingOffset = 0;  // by HW RD request
2081     MS_U16 u16temp = 0;
2082     if(!(_Hal_MOD_External_eFuse()))
2083     {
2084         if (msReadEfuse(pInstance, 0x4E, BIT(6)) == BIT(6))
2085             bEfuseMode = TRUE;
2086 
2087 
2088         // Disable HW calibration keep mode first, to make SW icon value can write into register.
2089         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0, BIT(15));
2090 
2091         if (bEfuseMode)
2092         {
2093             if(((MS_U16)msReadEfuse(pInstance, 0x4E, u32Mask) + u16SwingOffset) > u16DefaultICON_Max)
2094                 u16temp = u16DefaultICON;
2095             else if(((MS_U16)msReadEfuse(pInstance, 0x4E, u32Mask) + u16SwingOffset) < u16DefaultICON_Min)
2096                 u16temp = u16DefaultICON;
2097             else
2098                 u16temp = (MS_U16)msReadEfuse(pInstance, 0x4E, u32Mask) + u16SwingOffset;
2099         }
2100         else
2101         {
2102             u16temp = u16DefaultICON;
2103         }
2104 
2105         //ch0~ch13 rcon setting
2106         u16temp &= (u16temp&(MS_U16)u32Mask);
2107         printf("[%s][%d]u16temp= %x\n", __FUNCTION__, __LINE__, u16temp);
2108 
2109         MOD_A_W2BYTE(REG_MOD_A_BK00_10_L, (u16temp<<8|u16temp));
2110         MOD_A_W2BYTE(REG_MOD_A_BK00_11_L, (u16temp<<8|u16temp));
2111         MOD_A_W2BYTE(REG_MOD_A_BK00_12_L, (u16temp<<8|u16temp));
2112         MOD_A_W2BYTE(REG_MOD_A_BK00_13_L, (u16temp<<8|u16temp));
2113         MOD_A_W2BYTE(REG_MOD_A_BK00_14_L, (u16temp<<8|u16temp));
2114         MOD_A_W2BYTE(REG_MOD_A_BK00_15_L, (u16temp<<8|u16temp));
2115         MOD_A_W2BYTE(REG_MOD_A_BK00_16_L, (u16temp<<8|u16temp));
2116     }
2117 }
2118 
MHal_PNL_SetOutputType(void * pInstance,PNL_OUTPUT_MODE eOutputMode,PNL_TYPE eLPLL_Type)2119 void MHal_PNL_SetOutputType(void *pInstance, PNL_OUTPUT_MODE eOutputMode, PNL_TYPE eLPLL_Type)
2120 {
2121     MS_U16 u16ValidSwing2 = 0;
2122     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2123     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2124     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2125     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2126     if( eLPLL_Type == E_PNL_TYPE_TTL)
2127     {
2128         // select pair output to be TTL
2129         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0020,0x0020);
2130         MsOS_DelayTask(1);
2131         MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x0000);
2132         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0000);
2133         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0000,0x0020);
2134 
2135         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, 0x0000, (BIT(7) | BIT(6))); // shift_lvds_pair
2136 
2137         // other TTL setting
2138         MOD_A_W2BYTE(REG_MOD_A_BK00_68_L, 0x0000);     // TTL output enable
2139 
2140         MOD_A_W2BYTE(REG_MOD_A_BK00_40_L, 0x0000);
2141         MOD_A_W2BYTE(REG_MOD_A_BK00_41_L, 0x0000);
2142         MOD_W2BYTEMSK(REG_MOD_BK00_7E_L, 0x0000, 0xE000);
2143 
2144         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, 0x3FF, 0x3FF);       // TTL skew
2145 
2146         // GPO gating
2147         MOD_W2BYTEMSK(REG_MOD_BK00_4A_L, BIT(8), BIT(8));         // GPO gating
2148     }
2149     else if(( eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_8LANE)||
2150             ( eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_4LANE)||
2151             ( eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_2LANE))
2152     {
2153         MOD_W2BYTEMSK(REG_MOD_BK00_34_L, 0xF000, 0xF000);  //[15:14]datax[13:12]data_format3,2
2154 
2155         // rcon
2156         if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.u32PNL_MISC & (MS_U32)E_APIPNL_MISC_SKIP_ICONVALUE)
2157         {
2158             HAL_MOD_CAL_DBG(printf("User define Swing Value=%u\n", __FUNCTION__, __LINE__, pPNLResourcePrivate->sthalPNL._u16PnlDefault_SwingLevel));
2159             MHal_PNL_MOD_Control_Out_Swing(pInstance, pPNLResourcePrivate->sthalPNL._u16PnlDefault_SwingLevel);
2160         }
2161         else
2162         {
2163             HAL_MOD_CAL_DBG(printf("Use RconValue\n", __FUNCTION__, __LINE__));
2164             msSetVBY1RconValue(pInstance);
2165         }
2166 
2167         // rint
2168         MOD_A_W2BYTE(REG_MOD_A_BK00_32_L, 0x0000);
2169 
2170         MOD_A_W2BYTE(REG_MOD_A_BK00_68_L, 0x003f);
2171 
2172         //-------------------------------------
2173         //## pe
2174 //        MOD_A_W2BYTE(REG_MOD_A_BK00_30_L, 0x3fff);
2175 //        MOD_W2BYTE(REG_MOD_BK00_23_L, 0x7000);
2176 //        MOD_W2BYTE(REG_MOD_BK00_24_L, 0x7fff);
2177 //        MOD_W2BYTE(REG_MOD_BK00_25_L, 0x003f);
2178 
2179         // VBY1 setting
2180         MOD_A_W2BYTE(REG_MOD_A_BK00_71_L, 0xFFFF);
2181 
2182         MOD_W2BYTE(REG_MOD_BK00_61_L, 0x8F3F); //[15]all dk scr[13:8]aln_de_cnt [7:0] aln_pix_cnt
2183 //        MOD_W2BYTEMSK(REG_MOD_BK00_62_L, 0xA040, 0xFDCF); //[15]proc_st[13:12]byte_mode 4 byte mode[6]4ch_vby1[9]swap
2184 
2185         MOD_A_W2BYTE(REG_MOD_A_BK00_40_L, 0xFFFF);
2186         MOD_A_W2BYTE(REG_MOD_A_BK00_41_L, 0xFFFF);
2187         MOD_A_W2BYTE(REG_MOD_A_BK00_48_L, 0xFFFF);
2188         MOD_A_W2BYTE(REG_MOD_A_BK00_49_L, 0xFFFF);
2189         MOD_A_W2BYTE(REG_MOD_A_BK00_42_L, 0xFFFF);
2190         MOD_A_W2BYTE(REG_MOD_A_BK00_43_L, 0xFFFF);
2191 
2192         switch(eOutputMode)
2193         {
2194             case E_PNL_OUTPUT_NO_OUTPUT:
2195                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0020,0x0020);
2196                 MsOS_DelayTask(1);
2197                 MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x0000);
2198                 MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0000);
2199                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0000,0x0020);
2200                 if(1)//( eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_4LANE)
2201                 {
2202                     //-------------------------------------
2203                     //## icon (Swing)
2204                     MOD_A_W2BYTE(REG_MOD_A_BK00_08_L, 0x0000);
2205                     MOD_A_W2BYTE(REG_MOD_A_BK00_09_L, 0x0000);
2206 
2207                     //-------------------------------------
2208                     //vby1
2209                     MOD_W2BYTE(REG_MOD_BK00_61_L, 0x8f3f); //[15]all dk scr[13:8]aln_de_cnt [7:0] aln_pix_cnt
2210                     //MOD_W2BYTEMSK(REG_MOD_BK00_62_L, 0xa040, 0xFDCF); //[15]proc_st[13:12]byte_mode 4 byte mode[6]4ch_vby1[9]swap
2211                 }
2212                 else if( eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_2LANE)
2213                 {
2214                     //-------------------------------------
2215                     //## icon (Swing)
2216                     MOD_A_W2BYTE(REG_MOD_A_BK00_08_L, 0x0000);
2217                     MOD_A_W2BYTE(REG_MOD_A_BK00_09_L, 0x0000);
2218 
2219                     //vby1
2220                     MOD_W2BYTE(REG_MOD_BK00_61_L, 0x8f3f);
2221                     //MOD_W2BYTEMSK(REG_MOD_BK00_62_L, 0xa040, 0xFDCF);
2222                 }
2223                 break;
2224 
2225             case E_PNL_OUTPUT_CLK_ONLY:
2226             case E_PNL_OUTPUT_DATA_ONLY:
2227             case E_PNL_OUTPUT_CLK_DATA:
2228             default:
2229                 if(eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_8LANE)
2230                 {
2231                     //MOD_A_W2BYTE(REG_MOD_A_BK00_3A_L, 0xC100);
2232                     if( APIPNL_OUTPUT_CHANNEL_ORDER_USER == pPNLResourcePrivate->stdrvPNL._stPnlInitData.u8OutputOrderType )
2233                     {
2234                         _MHal_PNL_Auto_Set_Config(pInstance,
2235                                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder0_3,
2236                                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder4_7,
2237                                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder8_11,
2238                                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder12_13);
2239                     }
2240                     else
2241                     {
2242                         MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x5555); //[15:0]reg_output_conf[15:0]
2243                         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0000); //[15:0]reg_output_conf[15:0]
2244                     }
2245                 }
2246                 else if( eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_4LANE)
2247                 {
2248                     //MOD_A_W2BYTE(REG_MOD_A_BK00_3A_L, 0xC000);
2249                     MOD_W2BYTE(REG_MOD_BK00_4A_L, 0x0002); //[1]reg_dualmode[0]abswitch
2250                     MOD_A_W2BYTE(REG_MOD_A_BK00_0A_L, 0x7f7f);
2251                     MOD_A_W2BYTE(REG_MOD_A_BK00_0B_L, 0x7f7f);
2252 
2253                     if( APIPNL_OUTPUT_CHANNEL_ORDER_USER == pPNLResourcePrivate->stdrvPNL._stPnlInitData.u8OutputOrderType )
2254                     {
2255                         _MHal_PNL_Auto_Set_Config(pInstance,
2256                                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder0_3,
2257                                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder4_7,
2258                                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder8_11,
2259                                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder12_13);
2260                     }
2261                     else
2262                     {
2263                         MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x5500); //[15:0]reg_output_conf[15:0]
2264                         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0000); //[15:0]reg_output_conf[15:0]
2265                     }
2266                 }
2267                 else if( eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_2LANE)
2268                 {
2269                     //MOD_A_W2BYTE(REG_MOD_A_BK00_3A_L, 0xC000);
2270                     MOD_W2BYTE(REG_MOD_BK00_4A_L, 0x0000);
2271                     MOD_A_W2BYTE(REG_MOD_A_BK00_0A_L, 0x7f7f);
2272                     MOD_A_W2BYTE(REG_MOD_A_BK00_0B_L, 0x0000);
2273 
2274                     if( APIPNL_OUTPUT_CHANNEL_ORDER_USER == pPNLResourcePrivate->stdrvPNL._stPnlInitData.u8OutputOrderType )
2275                     {
2276                         _MHal_PNL_Auto_Set_Config(pInstance,
2277                                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder0_3,
2278                                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder4_7,
2279                                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder8_11,
2280                                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder12_13);
2281                     }
2282                     else
2283                     {
2284                         MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x0500);
2285                         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0000); //[15:0]reg_output_conf[15:0]
2286                     }
2287                 }
2288                 break;
2289         }
2290     }
2291     //// for osd dedicated output port, 1 port for video and 1 port for osd
2292     else if((eLPLL_Type == E_PNL_TYPE_HS_LVDS)&&
2293             (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Mode == E_PNL_MODE_SINGLE))
2294     {
2295         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0xC01F , 0xFFFF); // enable clk_dot_mini_pre_osd & clk_dot_mini_osd
2296         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, BIT(3), 0xFFFF ); // enable osd lvds path
2297         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, BIT(15), BIT(15)); //[15]sw_rst
2298         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0xC000 , 0xF000); // enable clk_dot_mini_pre_osd & clk_dot_mini_osd
2299     }
2300     else
2301     {
2302         switch(eOutputMode)
2303         {
2304             case E_PNL_OUTPUT_NO_OUTPUT:
2305                 // if MOD_45[5:0] = 0x3F && XC_MOD_EXT_DATA_EN_L = 0x0,
2306                 // then if XC_MOD_OUTPUT_CONF_L = 0x0 ---> output TTL as tri-state
2307                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0020,0x0020);
2308                 MsOS_DelayTask(1);
2309                 MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x0000);
2310                 MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0000);
2311                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0000,0x0020);
2312 
2313                 //----------------------------------
2314                 // Purpose: Set the output to be the GPO, and let it's level to Low
2315                 // 1. External Enable, Pair 0~5
2316                 // 2. GPIO Enable, pair 0~5
2317                 // 3. GPIO Output data : All low, pair 0~5
2318                 // 4. GPIO OEZ: output piar 0~5
2319                 //----------------------------------
2320 
2321                 //1.External Enable, Pair 0~5
2322                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_40_L, 0x0FFF, 0x0FFF);
2323                 //2.GPIO Enable, pair 0~5
2324                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_48_L, 0x0FFF, 0x0FFF);
2325                 //3.GPIO Output data : All low, pair 0~5
2326                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_44_L, 0x0000, 0x0FFF);
2327                 //4.GPIO OEZ: output piar 0~5
2328                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_42_L, 0x0000, 0x0FFF);
2329 
2330                 //1.External Enable, Pair 6~15
2331                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_40_L, 0xF000, 0xF000);
2332                 MOD_A_W2BYTE(REG_MOD_A_BK00_41_L, 0xFFFF);
2333                 //2.GPIO Enable, pair 6~15
2334                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_48_L, 0xF000, 0xF000);
2335                 MOD_A_W2BYTE(REG_MOD_A_BK00_49_L, 0xFFFF);
2336                 //3.GPIO Output data : All low, pair 6~15
2337                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_44_L, 0x0000, 0xF000);
2338                 MOD_A_W2BYTE(REG_MOD_A_BK00_45_L, 0x0000);
2339                 //4.GPIO OEZ: output piar 6~15
2340                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_42_L, 0x0000, 0xF000);
2341                 MOD_A_W2BYTE(REG_MOD_A_BK00_43_L, 0x0000);
2342 
2343                 //1234.External Enable, Pair 16~17
2344                 MOD_W2BYTE(REG_MOD_BK00_7E_L, 0xFF00);
2345 
2346                 //1.External Enable, Pair 18~20, 2.GPIO Enable, pair 18~20
2347                 MOD_W2BYTEMSK(REG_MOD_BK00_7C_L, 0x3F3F, 0x3F3F);
2348                 //3.GPIO Output data : All low, pair 18~20
2349                 MOD_W2BYTEMSK(REG_MOD_BK00_7A_L, 0x0000, 0x3F00);
2350                 //4.GPIO OEZ: output piar 18~20
2351                 MOD_W2BYTEMSK(REG_MOD_BK00_7F_L, 0x0000, 0xFC00);
2352                 break;
2353 
2354             case E_PNL_OUTPUT_CLK_ONLY:
2355                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_00_L, 0, 0xF000);
2356                 MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x4004);
2357                 break;
2358 
2359             case E_PNL_OUTPUT_DATA_ONLY:
2360             case E_PNL_OUTPUT_CLK_DATA:
2361             default:
2362 
2363                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_48_L, 0x0000, 0xF000);
2364                 MOD_A_W2BYTE(REG_MOD_A_BK00_49_L, 0x0000);
2365                 //1. set GCR_PVDD_2P5=1¡¦b1;           MOD PVDD power:    1: 2.5V
2366                 //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, 0, BIT(6));
2367                 //2. set PD_IB_MOD=1¡¦b0;
2368                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0x00, BIT(0));
2369                 //  save ch6 init value
2370                 u16ValidSwing2 = (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_0B_L, 0x3F00)>>8);
2371                 //3. set Desired Pairs: GCR_ICON[5:0]=6h3f (current all open);
2372                 MHal_PNL_MOD_Control_Out_Swing(pInstance, MHal_PNL_MODSwingRegToRealLevelValue(pInstance, 0x3F));
2373                 //4. set Desired Pairs: GCR_PE_ADJ[2:0]=3h7 (pre-emphasis current all open )
2374                 MHal_PNL_MOD_Control_Out_PE_Current (pInstance, 0x07);
2375 
2376                 //Should not execute this task while output config is enabled, otherwise it causes clk pull down for 3ms.
2377                 if((MOD_A_R2BYTE(REG_MOD_A_BK00_00_L)==0x0000)&&(MOD_A_R2BYTE(REG_MOD_A_BK00_01_L)==0x0000))
2378                 {
2379                     //5. Enable low-power modeinternal termination Open, Enable OP
2380                     MHal_PNL_MOD_Control_Out_TTL_Resistor_OP (pInstance, 1);
2381                 }
2382                 MsOS_DelayTask(1);
2383 
2384                 //6. Enable low-power modeinternal termination Open, Enable OP
2385                 MHal_Output_LVDS_Pair_Setting(pInstance,
2386                                               pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type,
2387                                               pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7,
2388                                               pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15,
2389                                               pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21);
2390                 MHal_Shift_LVDS_Pair(pInstance, pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Shift);
2391 
2392                 //7. set Desired Pairs: GCR_PE_ADJ[2:0]=3¡¦h0 (pre-emphasis current all Close)
2393                 MHal_PNL_MOD_Control_Out_PE_Current (pInstance, 0x00);
2394                 //8. set Desired Pairs: GCR_ICON[5:0]    (current all init);
2395                 MHal_PNL_MOD_Control_Out_Swing(pInstance, MHal_PNL_MODSwingRegToRealLevelValue(pInstance, u16ValidSwing2));
2396                 //9. Disable low-power modeinternal termination Close, Disable OP
2397                 MHal_PNL_MOD_Control_Out_TTL_Resistor_OP (pInstance, 0);
2398 
2399                 // other TTL setting
2400                 MOD_A_W2BYTE(REG_MOD_A_BK00_68_L, 0x003F);     // LVDS output enable, [5:4] Output enable: PANEL_LVDS/ PANEL_miniLVDS/ PANEL_RSDS
2401 
2402                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_40_L, 0x0000, 0xF000);
2403                 MOD_A_W2BYTE(REG_MOD_A_BK00_41_L, 0x0000);
2404                 MOD_W2BYTEMSK(REG_MOD_BK00_7E_L, 0x0000, 0x000F);
2405 
2406                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, 0x000, 0x3FF);    // TTL skew
2407 
2408                 // GPO gating
2409                 MOD_W2BYTEMSK(REG_MOD_BK00_4A_L, 0x0, BIT(8));     // GPO gating
2410 
2411                 break;
2412         }
2413     }
2414 
2415 //    MHal_PNL_Bringup(pInstance);
2416 }
2417 
Mhal_PNL_Flock_LPLLSet(void * pInstance,MS_U64 ldHz)2418 void Mhal_PNL_Flock_LPLLSet(void *pInstance, MS_U64 ldHz)
2419 {
2420     UNUSED(ldHz);
2421 }
2422 
MHal_PNL_MISC_Control(void * pInstance,MS_U32 u32PNL_MISC)2423 void MHal_PNL_MISC_Control(void *pInstance, MS_U32 u32PNL_MISC)
2424 {
2425     if(u32PNL_MISC & E_DRVPNL_MISC_MFC_ENABLE)
2426     {
2427         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, BIT(7), BIT(7));       // shift LVDS pair
2428     }
2429 }
2430 
MHal_PNL_Init_XC_Clk(void * pInstance,PNL_InitData * pstPanelInitData)2431 void MHal_PNL_Init_XC_Clk(void *pInstance, PNL_InitData *pstPanelInitData)
2432 {
2433     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2434     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2435     MS_U16 u16_fifo_odclk_mask = 0;
2436     MS_U16 u16_fifo_odclk_data = 0;
2437 
2438     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2439     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2440 
2441     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__);
2442 
2443     // setup output dot clock
2444     if((pstPanelInitData->eLPLL_Type == E_PNL_TYPE_LVDS)&&(pstPanelInitData->eLPLL_Mode == E_PNL_MODE_SINGLE))
2445         W2BYTEMSK(L_CLKGEN0(0x53), CKG_ODCLK_CLK_LPLL_DIV_2, CKG_ODCLK_MASK);      // select source tobe LPLL clock
2446     else
2447         W2BYTEMSK(L_CLKGEN0(0x53), CKG_ODCLK_CLK_LPLL, CKG_ODCLK_MASK);      // select source tobe LPLL clock
2448     W2BYTEMSK(L_CLKGEN0(0x53), DISABLE, CKG_ODCLK_INVERT);               // clock not invert
2449     W2BYTEMSK(L_CLKGEN0(0x53), DISABLE, CKG_ODCLK_GATED);                // enable clock
2450     W2BYTEMSK(L_CLKGEN0(0x53), 0xC0, 0xF0);      //  reg_ckg_odclk_mft
2451 
2452     W2BYTE(L_CLKGEN0(0x58),0x0000); //[3:0]ckg_tx_mod
2453     W2BYTE(L_CLKGEN1(0x31), 0x0000); //[11:8]ckg_odclk_frc
2454 
2455     if((pstPanelInitData->eLPLL_Type >= E_PNL_LPLL_VBY1_10BIT_4LANE)&&
2456        (pstPanelInitData->eLPLL_Type <= E_PNL_LPLL_VBY1_8BIT_8LANE))
2457     {
2458 
2459         W2BYTE(REG_CLKGEN0_57_L,0x0008); //[3:0]ckg_fifo
2460         W2BYTE(L_CLKGEN0(0x63), 0x0001);   //[11:8]ckg_tx_mod_osd[4:0]osd2mod
2461         W2BYTE(REG_RVD_09_L, 0x0100); //[12:8]ckg_vby1_fifo_osd [3:0]clk_vby1_fifo
2462         W2BYTEMSK(L_CLKGEN0(0x55), 0x00, 0xF00); //[11:8] reg_ckg_osdc
2463 
2464         // merge clk (1)
2465         // 7A[3:0]:Vby1 LPLL_CLK replace by LPLL_FIFO
2466         // 1. for vby1 10 bit mode ( 4 bytes mode ), not vby1 3 bytes mode
2467         // 2. replace process start toggle
2468 
2469         // merge clk (2)
2470         // 7A[7:4]:CLK_ODCLK_A clock setting
2471         // separate mod analog clk
2472         // default follow odclk_mft
2473         // be used in TTL
2474 
2475         // merge clk (3)
2476         // 7A[11:8]:reg_ckg_nossc_odclk
2477         // be used in TCON
2478         u16_fifo_odclk_mask = (CKG_VBY1_VMODE_MASK | CKG_ODCLK_A_GATED | CKG_NOSSC_ODCLK_GATED);
2479         if( E_PNL_LPLL_VBY1_10BIT_8LANE == pstPanelInitData->eLPLL_Type)
2480         {
2481             u16_fifo_odclk_data = (CKG_VBY1_VMODE_LPLL_FIFO | CKG_ODCLK_A_GATED | CKG_NOSSC_ODCLK_GATED);
2482             W2BYTEMSK(REG_CKG_VBY1_VMODE, u16_fifo_odclk_data, u16_fifo_odclk_mask);
2483         }
2484         else if( E_PNL_LPLL_VBY1_10BIT_4LANE == pstPanelInitData->eLPLL_Type)
2485         {
2486             u16_fifo_odclk_data = (CKG_VBY1_VMODE_LPLL_FIFO_DIV2 | CKG_ODCLK_A_GATED | CKG_NOSSC_ODCLK_GATED);
2487             W2BYTEMSK(REG_CKG_VBY1_VMODE, u16_fifo_odclk_data, u16_fifo_odclk_mask);
2488         }
2489         else if( E_PNL_LPLL_VBY1_10BIT_2LANE == pstPanelInitData->eLPLL_Type)
2490         {
2491             u16_fifo_odclk_data = (CKG_VBY1_VMODE_LPLL_FIFO_DIV4 | CKG_ODCLK_A_GATED | CKG_NOSSC_ODCLK_GATED);
2492             W2BYTEMSK(REG_CKG_VBY1_VMODE, u16_fifo_odclk_data, u16_fifo_odclk_mask);
2493         }
2494         else
2495         {
2496             // 7A[3:0]:Vby1 LPLL_CLK replace by LPLL_FIFO, default clk from scaler
2497             u16_fifo_odclk_data = (CKG_VBY1_VMODE_LPLL_CLK | CKG_ODCLK_A_GATED | CKG_NOSSC_ODCLK_GATED);
2498             W2BYTEMSK(REG_CKG_VBY1_VMODE, u16_fifo_odclk_data, u16_fifo_odclk_mask);
2499         }
2500     }
2501     else
2502     {
2503         if(pstPanelInitData->eLPLL_Type == E_PNL_LPLL_ISP_8BIT_12P)
2504         {
2505             W2BYTE(REG_CLKGEN0_57_L,0x0008);
2506             W2BYTE(0x101EA0,0x0010);
2507             W2BYTE(L_CLKGEN0(0x7A),0x01C0);
2508         }
2509         else
2510         {
2511             W2BYTE(REG_CLKGEN0_57_L,0x0000); //[3:0]ckg_fifo
2512         }
2513 
2514         if((pstPanelInitData->eLPLL_Type == E_PNL_TYPE_HS_LVDS)&&(pstPanelInitData->eLPLL_Mode == E_PNL_MODE_SINGLE))
2515         {
2516             W2BYTE(L_CLKGEN0(0x63), 0x0410);   //[11:8]ckg_tx_mod_osd[4:0]osd2mod
2517             W2BYTE(REG_RVD_09_L, 0x1000); //[12:8]ckg_vby1_fifo_osd [3:0]clk_vby1_fifo+
2518         }
2519         else
2520         {
2521             W2BYTE(L_CLKGEN0(0x63),0x0001); //[11:8]ckg_tx_mod [3:0]ckg_osd2mod
2522             W2BYTE(REG_RVD_09_L, 0x0000); //[12:8]ckg_vby1_fifo_osd [3:0]clk_vby1_fifo
2523         }
2524     }
2525 }
2526 
MHal_PNL_Init_MOD(void * pInstance,PNL_InitData * pstPanelInitData)2527 void MHal_PNL_Init_MOD(void *pInstance, PNL_InitData *pstPanelInitData)
2528 {
2529     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2530     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2531     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2532     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2533 
2534     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__);
2535 
2536     //------------------------------------------------------------------------
2537 
2538     PNL_DBG(PNL_DBGLEVEL_INIT, "u16MOD_CTRL0 = %x\n", pstPanelInitData->u16MOD_CTRL0);
2539     PNL_DBG(PNL_DBGLEVEL_INIT, "u16MOD_CTRL9 = %x\n", pstPanelInitData->u16MOD_CTRL9);
2540     PNL_DBG(PNL_DBGLEVEL_INIT, "u16MOD_CTRLA = %x\n", pstPanelInitData->u16MOD_CTRLA);
2541     PNL_DBG(PNL_DBGLEVEL_INIT, "u8MOD_CTRLB  = %x\n", pstPanelInitData->u8MOD_CTRLB);
2542 
2543     //-------------------------------------------------------------------------
2544     // Set MOD registers
2545     //-------------------------------------------------------------------------
2546 
2547     MOD_W2BYTEMSK(REG_MOD_BK00_40_L, pstPanelInitData->u16MOD_CTRL0, LBMASK);
2548 
2549     //    GPIO is controlled in drvPadConf.c
2550     //    MDrv_Write2Byte(L_BK_MOD(0x46), 0x0000);    //EXT GPO disable
2551     //    MDrv_Write2Byte(L_BK_MOD(0x47), 0x0000);    //EXT GPO disable
2552     if(((pstPanelInitData->eLPLL_Type_Ext>= E_PNL_LPLL_VBY1_10BIT_4LANE)&&
2553         (pstPanelInitData->eLPLL_Type_Ext<= E_PNL_LPLL_VBY1_8BIT_8LANE)))
2554     {
2555         ///u16MOD_CTRL9 [6] : 62[9]reg_vby1_pair_swap
2556         ///u16MOD_CTRL9 [12:11] : 62[5:4]reg_vby1_pair_mirror
2557         MOD_W2BYTEMSK(REG_MOD_BK00_62_L, 0xA000, 0xFD8F); //[15]proc_st[13:12]byte_mode 4 byte mode[6]4ch_vby1[9]swap
2558 
2559         // SC4 reg62[6]reg_vby1_4ch:enable 4ch vx1mode
2560         if((pstPanelInitData->eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_2LANE)||(pstPanelInitData->eLPLL_Type_Ext == E_PNL_LPLL_VBY1_8BIT_2LANE))
2561             MOD_W2BYTEMSK(REG_MOD_BK00_62_L, 0x00, BIT(6)); //[6]4ch_vby1
2562         else
2563             MOD_W2BYTEMSK(REG_MOD_BK00_62_L, BIT(6), BIT(6)); //[6]4ch_vby1
2564 
2565         MOD_W2BYTEMSK(REG_MOD_BK00_62_L, (pstPanelInitData->u16MOD_CTRL9 & BIT(6))<<3, BIT(9));
2566         MOD_W2BYTEMSK(REG_MOD_BK00_62_L, (pstPanelInitData->u16MOD_CTRL9 & (BIT(12)|BIT(11)))>>7, BIT(5)|BIT(4));
2567 
2568         if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16MOD_CTRLA & BIT(1))  // use Dual port to decide the Vx1 1 or 2 devision config
2569         {
2570             if(pstPanelInitData->eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_8LANE)
2571             {
2572                 // 2 divison just be supported in monet vby1 8 lane
2573                 printf("\n[%s][%d]Vx1 2 division\n", __FUNCTION__, __LINE__);
2574                 MOD_W2BYTEMSK(REG_MOD_BK00_20_L, 0x0002, 0x0007);//[2:0]reg_mft_mode
2575 
2576                 MOD_W2BYTEMSK(REG_MOD_BK00_21_L, 0x1002, 0xFFFF); //[11:0]reg_dly_value
2577                 MOD_W2BYTEMSK(REG_MOD_BK00_22_L, 0x0F00, 0xFFFF); //[12:0]reg_hsize
2578                 MOD_W2BYTEMSK(REG_MOD_BK00_26_L, 0x0780, 0xFFFF); //[12:0]reg_div_len
2579                 MOD_W2BYTEMSK(REG_MOD_BK00_7F_L, 0x0002, 0xFFFF); //[2:0]reg_sram_usage
2580                 MOD_W2BYTEMSK(REG_MOD_BK00_53_L, 0x4000, 0xFFFF); //[14]reg_vfde_mask
2581             }
2582             else
2583             {
2584                 MOD_W2BYTEMSK(REG_MOD_BK00_20_L, 0x0000, 0x0007);//[2:0]reg_mft_mode
2585             }
2586         }
2587         else
2588         {
2589             printf("\n[%s][%d]Vx1 1 division\n", __FUNCTION__, __LINE__);
2590             if((pstPanelInitData->eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_1LANE)||
2591                 (pstPanelInitData->eLPLL_Type_Ext == E_PNL_LPLL_VBY1_8BIT_1LANE))
2592             {
2593                 MOD_W2BYTEMSK(REG_MOD_BK00_20_L, 0x0001, 0x0007);
2594             }
2595             else
2596             {
2597             MOD_W2BYTEMSK(REG_MOD_BK00_20_L, 0x0000, 0x0007);
2598             }
2599 
2600             MOD_W2BYTEMSK(REG_MOD_BK00_53_L, 0x0000, 0xFFFF); //[14]reg_vfde_mask
2601         }
2602 
2603 
2604 
2605 
2606         ///u16MOD_CTRL9 [7] : 63[13]reg_vby1_pair_swap_osd
2607         ///u16MOD_CTRL9 [14:13] : 63[11:10]reg_vby1_pair_mirror2
2608         MOD_W2BYTEMSK(REG_MOD_BK00_63_L, (pstPanelInitData->u16MOD_CTRL9 & BIT(7))<<6, BIT(13));
2609         MOD_W2BYTEMSK(REG_MOD_BK00_63_L, (pstPanelInitData->u16MOD_CTRL9 & (BIT(14)|BIT(13)))>>3, BIT(11)|BIT(10));
2610 
2611         if((pstPanelInitData->eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_8LANE)||(pstPanelInitData->eLPLL_Type_Ext == E_PNL_LPLL_VBY1_8BIT_8LANE))
2612         {
2613             MOD_W2BYTEMSK(REG_MOD_BK00_63_L, BIT(12), BIT(12)); // [12] enable 8ch vx1 mode : 1
2614 
2615             if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16MOD_CTRLA & BIT(1))
2616             {
2617                 // 2 Divisoin
2618                 MOD_W2BYTEMSK(REG_MOD_BK00_63_L, BIT(11), BIT(11)); // [11:10]reg_vby1_pair_mirror2
2619             }
2620             else
2621             {
2622                 // 1 Division
2623                 MOD_W2BYTEMSK(REG_MOD_BK00_63_L, 0x00, BIT(11)); // [11:10]reg_vby1_pair_mirror2
2624             }
2625         }
2626         else //if   ///E_PNL_LPLL_VBY1_10BIT_4LANE, E_PNL_LPLL_VBY1_10BIT_2LANE
2627         {
2628             MOD_W2BYTEMSK(REG_MOD_BK00_63_L, 0x0000, BIT(12)); // [12] enable 8ch vx1 mode : 0
2629         }
2630 
2631         MHal_Output_Channel_Order(pInstance,
2632                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u8OutputOrderType,
2633                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder0_3,
2634                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder4_7,
2635                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder8_11,
2636                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder12_13);
2637 
2638 
2639         if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16MOD_CTRLA & BIT(1))  // use Dual port to decide the Vx1 1 or 2 devision config
2640         {
2641             printf("\n[%s][%d]Vx1 2 division\n", __FUNCTION__, __LINE__);
2642         }
2643         else
2644         {
2645             printf("\n[%s][%d]Vx1 1 division\n", __FUNCTION__, __LINE__);
2646         }
2647 
2648         ////per RD's suggestion ---Start
2649         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_30_L, 0x3FFF, 0x3FFF);   //reg_gcr_pe_en_ch
2650         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_32_L, 0x0000, 0x3FFF);   //reg_gcr_en_rint_ch
2651         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3C_L, 0x0FFF, 0x3FFF);   //reg_gcr_test_ch
2652 
2653         /// reg_gcr_pe_adj ch0~ch13
2654         MOD_A_W2BYTE(REG_MOD_A_BK00_18_L,0x2222);
2655         MOD_A_W2BYTE(REG_MOD_A_BK00_19_L,0x2222);
2656         MOD_A_W2BYTE(REG_MOD_A_BK00_1A_L,0x2222);
2657         MOD_A_W2BYTE(REG_MOD_A_BK00_1B_L,0x2222);
2658 
2659         // [0] reg_vby1_8v4o_mode, [3]reg_vby1_ext_ptr_en
2660         // [4] reg_vby1_8vlo_mode: vby1 8 video + hslvds osd mode
2661         // [5] reg_vby1_proc_auto_fix: vby1 hw auto gen proc_st trig
2662         // [6] reg_vby1_ext_fsm_en: config each vby1 set use same FSM state (split video/osd path)
2663         // [7] reg_vby1_hw_lock: set Vby1 lock sequence by HW mode
2664         // [8] reg_vby1_fifo_rptr_align: When toggle proc_st, Rptr run to Byte mode boundary, then jump to ini value.
2665         // [15] reg_vby1_disparity_mode
2666         MOD_W2BYTEMSK(REG_MOD_BK00_67_L, BIT(3), BIT(0)|BIT(3));
2667         MOD_W2BYTEMSK(REG_MOD_BK00_67_L, (BIT(5)|BIT(6)|BIT(7)), (BIT(4)|BIT(5)|BIT(6)|BIT(7)) );
2668         MOD_W2BYTEMSK(REG_MOD_BK00_67_L, 0x0000, BIT(8) );
2669         MOD_W2BYTEMSK(REG_MOD_BK00_67_L, BIT(15), BIT(15));
2670 
2671         //The threshold value be set too strict ( ori: MOD_5C =0x0 )
2672         //And this reg should be set before enable serializer function
2673         //[15]reg_sw_rptr_fix_en: pointer fix by sw mode enable
2674         //[14:12]reg_sw_wptr_check: sw mode to decision write point check point
2675         //[10:8]reg_sw_rptr_fix_ini: sw mode to decision read point initial value
2676         //[6:4]reg_sw_rptr_fix_hi_th: sw mode to decision read pointer hi boundary
2677         //[2:0]reg_sw_rptr_fix_lo_th: sw mode to decision read pointer low boundary
2678         MOD_W2BYTEMSK(REG_MOD_BK00_5C_L,0x8142,0xFFFF);
2679         MOD_W2BYTEMSK(REG_MOD_BK00_5E_L,0x8142,0xFFFF);
2680 
2681         MOD_W2BYTE(REG_MOD_BK00_5B_L, 0x0087); //[0]enable serializer function ,
2682                                                //[1]enable serializer auto fix read/write point mis-balance
2683                                                //[2]enable osd serializer auto fix read/write point mis-balance
2684                                                //[7]for OSD, switch chanel 8~13 as OSD path
2685     }
2686     else
2687     {
2688         if((pstPanelInitData->eLPLL_Type == E_PNL_TYPE_LVDS)&&(pstPanelInitData->eLPLL_Mode == E_PNL_MODE_SINGLE))
2689         {
2690             MOD_W2BYTEMSK(REG_MOD_BK00_20_L, 0x0001, 0x0007);//[2:0]reg_mft_mode, 2p to 1p mode
2691         }
2692         else
2693         {
2694             MOD_W2BYTEMSK(REG_MOD_BK00_20_L, 0x0000, 0x0007);//[2:0]reg_mft_mode
2695         }
2696 
2697         MOD_W2BYTE(REG_MOD_BK00_49_L, pstPanelInitData->u16MOD_CTRL9); //{L_BK_MOD(0x49), 0x00}, // [7,6] : output formate selction 10: 8bit, 01: 6bit :other 10bit, bit shift
2698         MHal_Output_Channel_Order(pInstance,
2699                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u8OutputOrderType,
2700                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder0_3,
2701                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder4_7,
2702                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder8_11,
2703                                   pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder12_13);
2704     }
2705 
2706     MOD_W2BYTE(REG_MOD_BK00_4A_L, pstPanelInitData->u16MOD_CTRLA);
2707     MOD_W2BYTE(REG_MOD_BK00_4B_L,  pstPanelInitData->u8MOD_CTRLB);  //[1:0]ti_bitmode 10:8bit  11:6bit  0x:10bit
2708 
2709     //dual port lvds _start_//
2710     // output configure for 26 pair output 00: TTL, 01: LVDS/RSDS/mini-LVDS data differential pair, 10: mini-LVDS clock output, 11: RSDS clock output
2711     _MHal_PNL_Set_Clk(pInstance,
2712                       pPNLResourcePrivate->stdrvPNL._stPnlInitData.u8OutputOrderType,
2713                       pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder0_3,
2714                       pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder4_7,
2715                       pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder8_11,
2716                       pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder12_13);
2717     //dual port lvds _end_//
2718 
2719     //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, (_u8PnlDiffSwingLevel << 1), 0xFE);       //differential output swing level
2720     if(((pstPanelInitData->eLPLL_Type_Ext>= E_PNL_LPLL_VBY1_10BIT_4LANE)&&
2721         (pstPanelInitData->eLPLL_Type_Ext<= E_PNL_LPLL_VBY1_8BIT_8LANE)))
2722         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0x0000, 0xF000);       //bank selection for skew clock
2723 
2724     //if(!MHal_PNL_MOD_Control_Out_Swing(_u8PnlDiffSwingLevel))
2725     //    printf(">>Swing Level setting error!!\n");
2726     if(pstPanelInitData->eLPLL_Type != E_PNL_TYPE_MINILVDS)
2727     {
2728         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_70_L, 0x7, 0x07);
2729     }
2730 
2731     //// Patch for Vx1 and it should be control by panel ini
2732     if(((pstPanelInitData->eLPLL_Type_Ext>= E_PNL_LPLL_VBY1_10BIT_4LANE)&&
2733         (pstPanelInitData->eLPLL_Type_Ext<= E_PNL_LPLL_VBY1_8BIT_8LANE)))
2734     {
2735         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_31_L, 0x0FFF, 0x3FFF);
2736     }
2737     else
2738     {
2739         MOD_A_W2BYTE(REG_MOD_A_BK00_31_L, pstPanelInitData->u16LVDSTxSwapValue);
2740     }
2741 
2742 
2743     // TODO: move from MDrv_Scaler_Init(), need to double check!
2744     MOD_W2BYTEMSK(REG_MOD_BK00_53_L, BIT(0), BIT(0));
2745 
2746 
2747     //--------------------------------------------------------------
2748     //Depend On Bitmode to set Dither
2749     //--------------------------------------------------------------
2750 
2751 
2752     // always enable noise dither and disable TAILCUT
2753     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, ((pstPanelInitData->u8PanelNoiseDith ? XC_PAFRC_DITH_NOISEDITH_EN : (1 - XC_PAFRC_DITH_NOISEDITH_EN)) <<3) , BIT(3));
2754     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, XC_PAFRC_DITH_TAILCUT_DISABLE, BIT(4));
2755 
2756     switch(pstPanelInitData->u8MOD_CTRLB & 0x03)//[1:0]ti_bitmode b'10:8bit  11:6bit  0x:10bit
2757     {
2758         case HAL_TI_6BIT_MODE:
2759             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, BIT(0), BIT(0));
2760             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, BIT(2), BIT(2));
2761             break;
2762 
2763         case HAL_TI_8BIT_MODE:
2764             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, BIT(0), BIT(0));
2765             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, 0x00, BIT(2));
2766             break;
2767 
2768         case HAL_TI_10BIT_MODE:
2769         default:
2770             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, 0x00, BIT(0));
2771             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, 0x00, BIT(2));
2772             break;
2773     }
2774 
2775 
2776     //-----depend on bitmode to set Dither------------------------------
2777     MHal_PNL_SetOutputType(pInstance, pPNLResourcePrivate->sthalPNL._eDrvPnlInitOptions, pstPanelInitData->eLPLL_Type);     // TTL to Ursa
2778     //MHal_PNL_Bringup(pInstance);
2779 
2780     MHal_PNL_MISC_Control(pInstance, pstPanelInitData->u32PNL_MISC);
2781 
2782     PNL_DBG(PNL_DBGLEVEL_INIT, "OutputType  = %x, eLPLL_Type = %x\n", pPNLResourcePrivate->sthalPNL._eDrvPnlInitOptions, pstPanelInitData->eLPLL_Type);
2783     PNL_DBG(PNL_DBGLEVEL_INIT, "u32PNL_MISC  = %tx\n", (ptrdiff_t)pstPanelInitData->u32PNL_MISC);
2784 
2785 }
2786 
MHal_PNL_DumpMODReg(void * pInstance,MS_U32 u32Addr,MS_U16 u16Value,MS_BOOL bHiByte,MS_U16 u16Mask)2787 void MHal_PNL_DumpMODReg(void *pInstance, MS_U32 u32Addr, MS_U16 u16Value, MS_BOOL bHiByte, MS_U16 u16Mask)
2788 {
2789     if (bHiByte)
2790     {
2791         MOD_W2BYTEMSK(u32Addr, (u16Value << 8), (u16Mask << 8));
2792     }
2793     else
2794     {
2795         MOD_W2BYTEMSK(u32Addr, u16Value, u16Mask);
2796     }
2797 }
2798 
MHal_MOD_Calibration_Init(void * pInstance,PNL_ModCali_InitData * pstModCaliInitData)2799 void MHal_MOD_Calibration_Init(void *pInstance, PNL_ModCali_InitData *pstModCaliInitData)
2800 {
2801     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2802     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2803     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2804     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2805     // Setup the default swing level
2806     pPNLResourcePrivate->sthalPNL._u16PnlDefault_SwingLevel = pstModCaliInitData->u16ExpectSwingLevel;   //mv
2807 #if 0
2808 	// Pair setting
2809 	// =========
2810 	// Select calibration source pair, 00: ch2, 01: ch6, 10:ch8, 11:ch12
2811 	//MOD_7D_L[3:2]
2812 	// =========
2813 	//in msModCurrentCalibration, it will transfer to the real data
2814 
2815     switch(pstModCaliInitData->u8ModCaliPairSel)
2816     {
2817         default:
2818         case 0:
2819         //ch 2
2820             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_PAIR_SEL = 0x00; // ch2
2821         break;
2822         case 1:
2823         //ch 6
2824             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_PAIR_SEL = 0x01; // ch6, calibration initialized value
2825         break;
2826         case 2:
2827         //ch 8
2828             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_PAIR_SEL = 0x02;
2829         break;
2830         case 3:
2831         //ch 12
2832             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_PAIR_SEL = 0x03;
2833         break;
2834     }
2835 #endif
2836     // Target setting
2837     // =========
2838     // GCR_CAL_LEVEL[1:0] : REG_MOD_A_BK00_70_L =>
2839     // =========
2840     //in msModCurrentCalibration, it will transfer to the real data
2841     switch(pstModCaliInitData->u8ModCaliTarget)
2842     {
2843         default:
2844         case 0:
2845             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET = 0;
2846         break;
2847         case 1:
2848             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET = 1;
2849         break;
2850         case 2:
2851             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET = 2;
2852         break;
2853         case 3:
2854             pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET = 3;
2855         break;
2856     }
2857     // Offset setting, for fine tune
2858     //_usMOD_CALI_OFFSET = pstModCaliInitData->s8ModCaliOffset;
2859     // _u8MOD_CALI_VALUE is a real value; the _u8MOD_CALI_VALUE is an idea value
2860     // Target value should be the same with _u8MOD_CALI_VALUE to be a default value
2861     pPNLResourcePrivate->sthalPNL._u8MOD_CALI_VALUE= pstModCaliInitData->u8ModCaliTarget;
2862     // PVDD setting
2863     pPNLResourcePrivate->sthalPNL._bPVDD_2V5 = pstModCaliInitData->bPVDD_2V5;
2864 
2865     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__);
2866     PNL_DBG(PNL_DBGLEVEL_INIT, "u16ExpectSwingLevel = %u\n", pstModCaliInitData->u16ExpectSwingLevel);
2867     PNL_DBG(PNL_DBGLEVEL_INIT, "u8ModCaliTarget     = %x\n", pstModCaliInitData->u8ModCaliTarget);
2868     PNL_DBG(PNL_DBGLEVEL_INIT, "_u8MOD_CALI_TARGET  = %x\n", pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET);
2869     PNL_DBG(PNL_DBGLEVEL_INIT, "_u8MOD_CALI_VALUE   = %x\n", pPNLResourcePrivate->sthalPNL._u8MOD_CALI_VALUE);
2870     PNL_DBG(PNL_DBGLEVEL_INIT, "bPVDD_2V5           = %x\n", pstModCaliInitData->bPVDD_2V5);
2871 
2872 }
2873 
MHal_BD_LVDS_Output_Type(void * pInstance,MS_U16 Type)2874 void MHal_BD_LVDS_Output_Type(void *pInstance, MS_U16 Type)
2875 {
2876     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2877     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2878     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2879     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2880     if(Type == LVDS_DUAL_OUTPUT_SPECIAL )
2881     {
2882         pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Shift = LVDS_DUAL_OUTPUT_SPECIAL;
2883         pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type = 1;
2884     }
2885     else
2886     {
2887         pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type  = Type;
2888     }
2889     PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__);
2890     PNL_DBG(PNL_DBGLEVEL_INIT, "_u8MOD_LVDS_Pair_Type = %u\n", pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type);
2891 
2892 }
2893 
msModCalDDAOUT(void)2894 MS_BOOL msModCalDDAOUT(void)
2895 {
2896    // W2BYTEMSK(BK_MOD(0x7D), ENABLE, 8:8);
2897    // MsOS_DelayTask(10);  //10ms
2898     return (MS_BOOL)((MOD_R2BYTEMSK(REG_MOD_A_BK00_74_L, BIT(8))) >> 8);
2899 }
2900 
msModCurrentCalibration(void * pInstance)2901 MS_U8 msModCurrentCalibration(void *pInstance)
2902 {
2903 #if MOD_CAL_TIMER
2904         MS_U32 delay_start_time;
2905         delay_start_time=MsOS_GetSystemTime();
2906 #endif
2907 
2908 #if (!ENABLE_Auto_ModCurrentCalibration)
2909         return 0x60;
2910 #else
2911     MS_U8 u8cur_ibcal=0;
2912     MS_U16 u16reg_32da = 0, u16reg_32dc = 0;
2913     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
2914     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
2915     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
2916     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
2917     u16reg_32da = MOD_A_R2BYTE(REG_MOD_A_BK00_00_L);
2918     u16reg_32dc = MOD_A_R2BYTE(REG_MOD_A_BK00_01_L);
2919 
2920     PNL_DBG(PNL_DBGLEVEL_CALIBRATION, "[%s][%d]\n", __FUNCTION__, __LINE__);
2921 
2922     // (1) Set keep mode to auto write calibration result into register.
2923     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, BIT(15), BIT(15));
2924 
2925     // (2) Set calibration step waiting time
2926     MOD_A_W2BYTE(REG_MOD_A_BK00_71_L, 0x0080); // (about 5us)
2927     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0x0000, 0x00FF);
2928 
2929     // (3) Set calibration toggle time
2930     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0x0500, 0x0F00);
2931 
2932     // (4) Select calibration level (LVDS is 250mV)
2933     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_70_L, pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET, BIT(2)|BIT(1)|BIT(0));    // Select calibration target voltage, 00: 250mV, 01:350mV, 10: 300mV, 11: 200mV
2934 
2935     // (5) Enable Calibration mode
2936     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_70_L, BIT(7), BIT(7));         // Enable calibration function
2937 
2938     // (6) Store output configuration value and Enable each pair test mode
2939     MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0xFFFF);
2940     MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0FFF);
2941 
2942     MS_U8 u8CheckTimes = 0;
2943     while(1)
2944     {
2945         // (7) Enable Hardware calibration
2946         MOD_W2BYTEMSK(REG_MOD_BK00_3D_L, BIT(15), BIT(15));
2947 
2948         // (8) Wait 2ms
2949         MsOS_DelayTask(2);
2950 
2951         // (10) Disable Hardware calibration
2952         MOD_W2BYTEMSK(REG_MOD_BK00_3D_L, 0x00, BIT(15));
2953 
2954         // (9)Check Finish and Fail flag bit
2955         //BK1032, 0x3D[14], Finish flag=1
2956         //BK1032, 0x3D[13], Fail flag=0
2957         if (MOD_R2BYTEMSK(REG_MOD_BK00_3D_L, 0x6000) == 0x4000)
2958         {
2959             //printf("\033[0;31m [%s][%d] cal ok, break  \033[0m\n", __FUNCTION__, __LINE__);
2960             MS_U16 u16ICONtempCH0_1 = 0;
2961             MS_U16 u16ICONtempCH2_3 = 0;
2962             MS_U16 u16ICONtempCH4_5 = 0;
2963             MS_U16 u16ICONtempCH6_7 = 0;
2964             MS_U16 u16ICONtempCH8_9 = 0;
2965             MS_U16 u16ICONtempCH10_11 = 0;
2966             MS_U16 u16ICONtempCH12_13 = 0;
2967 
2968             u16ICONtempCH0_1   = _Hal_MOD_Refine_ICON( MOD_A_R2BYTEMSK(REG_MOD_A_BK00_08_L, 0xFFFF) );
2969             u16ICONtempCH2_3   = _Hal_MOD_Refine_ICON( MOD_A_R2BYTEMSK(REG_MOD_A_BK00_09_L, 0xFFFF) );
2970             u16ICONtempCH4_5   = _Hal_MOD_Refine_ICON( MOD_A_R2BYTEMSK(REG_MOD_A_BK00_0A_L, 0xFFFF) );
2971             u16ICONtempCH6_7   = _Hal_MOD_Refine_ICON( MOD_A_R2BYTEMSK(REG_MOD_A_BK00_0B_L, 0xFFFF) );
2972             u16ICONtempCH8_9   = _Hal_MOD_Refine_ICON( MOD_A_R2BYTEMSK(REG_MOD_A_BK00_0C_L, 0xFFFF) );
2973             u16ICONtempCH10_11 = _Hal_MOD_Refine_ICON( MOD_A_R2BYTEMSK(REG_MOD_A_BK00_0D_L, 0xFFFF) );
2974             u16ICONtempCH12_13 = _Hal_MOD_Refine_ICON( MOD_A_R2BYTEMSK(REG_MOD_A_BK00_0E_L, 0xFFFF) );
2975 
2976             //close reg_keep_cal_value
2977             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0x0000, BIT(15));
2978 
2979             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_08_L, u16ICONtempCH0_1, 0xFFFF);
2980             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_09_L, u16ICONtempCH2_3, 0xFFFF);
2981             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0A_L, u16ICONtempCH4_5, 0xFFFF);
2982             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0B_L, u16ICONtempCH6_7, 0xFFFF);
2983             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0C_L, u16ICONtempCH8_9, 0xFFFF);
2984             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0D_L, u16ICONtempCH10_11, 0xFFFF);
2985             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0E_L, u16ICONtempCH12_13, 0xFFFF);
2986 
2987             break;
2988         }
2989         else
2990         {
2991             u8CheckTimes ++;
2992             //printf("\033[0;31m [%s][%d] cal ng, u8CheckTimes: %d  \033[0m\n", __FUNCTION__, __LINE__, u8CheckTimes);
2993         }
2994 
2995         if (u8CheckTimes > MOD_LVDS_HW_CALI_TIME_OUT)
2996         {
2997             // (13) If 3 times all fail, set all pair to nominal value by disable keep mode
2998             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0x00, BIT(15));
2999 
3000             MS_U16 u16ICONtempDefault = ( (MOD_LVDS_ICON_DEFAULT<<8) | (MOD_LVDS_ICON_DEFAULT) );
3001             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_08_L, u16ICONtempDefault, 0xFFFF);
3002             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_09_L, u16ICONtempDefault, 0xFFFF);
3003             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0A_L, u16ICONtempDefault, 0xFFFF);
3004             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0B_L, u16ICONtempDefault, 0xFFFF);
3005             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0C_L, u16ICONtempDefault, 0xFFFF);
3006             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0D_L, u16ICONtempDefault, 0xFFFF);
3007             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0E_L, u16ICONtempDefault, 0xFFFF);
3008             //printf("\033[0;31m [%s][%d] If 3 times all fail, set all pair to nominal value by disable keep mode  \033[0m\n", __FUNCTION__, __LINE__);
3009             break;
3010         }
3011     }
3012 
3013     if (u8CheckTimes <=MOD_LVDS_HW_CALI_TIME_OUT)
3014     {
3015          PNL_DBG(PNL_DBGLEVEL_CALIBRATION, "\r\n----- Calibration ok \n");
3016     }
3017     else
3018     {
3019         PNL_DBG(PNL_DBGLEVEL_CALIBRATION, "\r\n----- Calibration fail: 0x%x \n", MOD_R2BYTEMSK(REG_MOD_BK00_3D_L, 0x6000));
3020     }
3021 
3022     // Wait 2ms to make sure HW auto write calibration result into register
3023     MsOS_DelayTask(2);
3024 
3025     // (14) Restore each pair output configuration
3026     MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, u16reg_32da);
3027     MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, u16reg_32dc);
3028 
3029     // (15) Disable calibration mode
3030     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_70_L, 0x00, BIT(7));         // Disable calibration function
3031 
3032     // With HW calibration mode, HW would cal for each channel, and each channel would get different value
3033     // Return channel 2 vaule
3034     u8cur_ibcal = MOD_A_R2BYTEMSK(REG_MOD_A_BK00_09_L, 0x007F); // return ch2 calibration result
3035 
3036 #if MOD_CAL_TIMER
3037     PNL_DBG(PNL_DBGLEVEL_CALIBRATION, "[%s] takes %ld ms\n", __FUNCTION__, (MsOS_GetSystemTime()-delay_start_time));
3038 #endif
3039     PNL_DBG(PNL_DBGLEVEL_CALIBRATION, "\r\n Calibration result= %x\n", u8cur_ibcal);
3040 
3041     return (u8cur_ibcal&0x7F);//MOD_A_R2BYTEMSK(REG_MOD_A_BK00_0D_L, 0x003F);
3042 #endif
3043 }
3044 
MHal_PNL_MOD_Calibration(void * pInstance)3045 PNL_Result MHal_PNL_MOD_Calibration(void *pInstance)
3046 {
3047     MS_U8 u8Cab;
3048     MS_U8 u8BackUSBPwrStatus;
3049     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
3050     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
3051     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
3052     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
3053 
3054     u8BackUSBPwrStatus = R2BYTEMSK(L_BK_UTMI1(0x04), BIT(7));
3055 
3056     W2BYTEMSK(L_BK_UTMI1(0x04), 0x00, BIT(7));
3057 
3058     u8Cab = msModCurrentCalibration(pInstance);
3059 
3060     W2BYTEMSK(L_BK_UTMI1(0x04), u8BackUSBPwrStatus, BIT(7));
3061 
3062     if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type !=E_PNL_TYPE_MINILVDS)
3063         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_70_L, u8Cab, 0x07);
3064 
3065     return E_PNL_OK;
3066 
3067 }
3068 
MHal_PNL_PowerDownLPLL(void * pInstance,MS_BOOL bEnable)3069 static void MHal_PNL_PowerDownLPLL(void *pInstance, MS_BOOL bEnable)
3070 {
3071     if(bEnable)
3072     {
3073         W2BYTEMSK(L_BK_LPLL(0x03), BIT(5), BIT(5));
3074     }
3075     else
3076     {
3077         W2BYTEMSK(L_BK_LPLL(0x03), FALSE, BIT(5));
3078     }
3079 }
3080 
MHal_PNL_En(void * pInstance,MS_BOOL bPanelOn,MS_BOOL bCalEn)3081 PNL_Result MHal_PNL_En(void *pInstance, MS_BOOL bPanelOn, MS_BOOL bCalEn)
3082 {
3083     MS_U8 u8Cab;
3084     MS_U8 u8BackUSBPwrStatus;
3085     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
3086     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
3087     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
3088     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
3089 
3090     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "[%s][%d]\n", __FUNCTION__, __LINE__);
3091 
3092     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u32PNL_MISC = %tx\n", (ptrdiff_t)pPNLResourcePrivate->stdrvPNL._stPnlInitData.u32PNL_MISC);
3093     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "bPanelOn = %x\n", bPanelOn);
3094     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "eLPLL_Type            = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type);
3095     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "_u8MOD_LVDS_Pair_Type = %x\n", pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type);
3096     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG0_7       = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7);
3097     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG8_15      = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15);
3098     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG16_21     = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21);
3099 
3100     MS_U16 u16PortA = MOD_A_R2BYTE(REG_MOD_A_BK00_00_L);
3101     MS_U16 u16PortB = MOD_A_R2BYTE(REG_MOD_A_BK00_01_L);
3102 
3103     if(u16PortA!=0)
3104         pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7   = MOD_A_R2BYTE(REG_MOD_A_BK00_00_L);
3105     if(u16PortB!=0)
3106         pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15  = MOD_A_R2BYTE(REG_MOD_A_BK00_01_L);
3107 
3108     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "==========================\n\n");
3109     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG0_7       = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7);
3110     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG8_15      = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15);
3111     PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG16_21     = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21);
3112 
3113 
3114     if(bPanelOn)
3115     {
3116         // The order is PanelVCC -> delay pnlGetOnTiming1() -> VOP -> MOD
3117         // VOP
3118         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_46_L, 0x4000, HBMASK);
3119 
3120         // For Napoli compatible
3121         // need to wait 1ms to wait LDO stable before MOD power on
3122         MsOS_DelayTask(1);
3123 
3124         // turn on LPLL
3125         MHal_PNL_PowerDownLPLL(pInstance, FALSE);
3126 
3127         // mod power on
3128         MHal_MOD_PowerOn(pInstance
3129                         , ENABLE
3130                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type
3131                         , pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type
3132                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7
3133                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15
3134                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21);
3135 
3136         if(bCalEn)
3137         {
3138 
3139             u8BackUSBPwrStatus = R2BYTEMSK(L_BK_UTMI1(0x04), BIT(7));
3140 
3141             W2BYTEMSK(L_BK_UTMI1(0x04), 0x00, BIT(7));
3142 
3143             u8Cab = msModCurrentCalibration(pInstance);
3144 
3145             W2BYTEMSK(L_BK_UTMI1(0x04), u8BackUSBPwrStatus, BIT(7));
3146 
3147         }
3148         else
3149         {
3150             if((pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type>=E_PNL_LPLL_VBY1_10BIT_4LANE)&&
3151                 (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type<=E_PNL_LPLL_VBY1_8BIT_8LANE) &&
3152                 ((pPNLResourcePrivate->stdrvPNL._stPnlInitData.u32PNL_MISC & (MS_U32)E_APIPNL_MISC_SKIP_ICONVALUE) == FALSE))
3153             {
3154                 HAL_MOD_CAL_DBG(printf("Use RCON value \n", __FUNCTION__, __LINE__));
3155                 msSetVBY1RconValue(pInstance);
3156             }
3157             else
3158             {
3159                 HAL_MOD_CAL_DBG(printf("User define Swing Value=%u\n", __FUNCTION__, __LINE__, pPNLResourcePrivate->sthalPNL._u16PnlDefault_SwingLevel));
3160 
3161                 if(!MHal_PNL_MOD_Control_Out_Swing(pInstance, pPNLResourcePrivate->sthalPNL._u16PnlDefault_SwingLevel))
3162                     printf(">>Swing Level setting error!!\n");
3163             }
3164         }
3165 
3166         if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.bVideo_HW_Training_En)
3167             MHal_PNL_VBY1_Hardware_TrainingMode_En(pInstance, TRUE, ENABLE);
3168     }
3169     else
3170     {
3171         // The order is LPLL -> MOD -> VOP -> delay for MOD power off -> turn off VCC
3172 
3173         // LPLL
3174         // MHal_PNL_PowerDownLPLL(TRUE); //Remove to keep op vsync if panel off
3175 
3176         MHal_MOD_PowerOn(pInstance
3177                         , DISABLE
3178                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type
3179                         , pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type
3180                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7
3181                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15
3182                         , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21);
3183         // VOP
3184         if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_LVDS ||
3185             pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_DAC_I ||
3186             pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_DAC_P)//(bIsLVDS)
3187             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_46_L, 0xFF, LBMASK);
3188         else
3189             SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_46_L, 0x00, 0xFF);
3190     }
3191 
3192     return E_PNL_OK;
3193 }
3194 
MHal_PNL_SetOutputPattern(void * pInstance,MS_BOOL bEnable,MS_U16 u16Red,MS_U16 u16Green,MS_U16 u16Blue)3195 void MHal_PNL_SetOutputPattern(void *pInstance, MS_BOOL bEnable, MS_U16 u16Red , MS_U16 u16Green, MS_U16 u16Blue)
3196 {
3197     if (bEnable)
3198     {
3199         MOD_W2BYTEMSK(REG_MOD_BK00_02_L, u16Red , 0x03FF);
3200         MOD_W2BYTEMSK(REG_MOD_BK00_03_L, u16Green , 0x03FF);
3201         MOD_W2BYTEMSK(REG_MOD_BK00_04_L, u16Blue , 0x03FF);
3202         MsOS_DelayTask(10);
3203         MOD_W2BYTEMSK(REG_MOD_BK00_01_L, BIT(15) , BIT(15));
3204     }
3205     else
3206     {
3207         MOD_W2BYTEMSK(REG_MOD_BK00_01_L, DISABLE , BIT(15));
3208     }
3209 
3210 }
3211 
MHal_PNL_Switch_LPLL_SubBank(void * pInstance,MS_U16 u16Bank)3212 void MHal_PNL_Switch_LPLL_SubBank(void *pInstance, MS_U16 u16Bank)
3213 {
3214     UNUSED(u16Bank);
3215 }
3216 
MHal_PNL_Switch_TCON_SubBank(void * pInstance,MS_U16 u16Bank)3217 void MHal_PNL_Switch_TCON_SubBank(void *pInstance, MS_U16 u16Bank)
3218 {
3219     W2BYTEMSK(L_BK_TCON(0x00), u16Bank&0xff, 0xFF);
3220 }
3221 
MHal_PNL_Read_TCON_SubBank(void * pInstance)3222 MS_U16 MHal_PNL_Read_TCON_SubBank(void *pInstance)
3223 {
3224     return (MS_U16)R2BYTEMSK(L_BK_TCON(0x00),0xFF);
3225 }
3226 
MHal_PNL_Is_VBY1_Locked(void * pInstance)3227 MS_BOOL MHal_PNL_Is_VBY1_Locked(void *pInstance)
3228 {
3229     if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_47_L, 0x0300) == 0x00)
3230     {
3231         return TRUE;
3232     }
3233     else
3234     {
3235         return FALSE;
3236     }
3237 }
3238 
MHal_PNL_Is_VBY1_LockN_Locked(void * pInstance)3239 MS_BOOL MHal_PNL_Is_VBY1_LockN_Locked(void *pInstance)
3240 {
3241     if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_47_L, 0x0100) == 0x00)
3242     {
3243         return TRUE;
3244     }
3245     else
3246     {
3247         return FALSE;
3248     }
3249 }
3250 
MHal_PNL_VBY1_Handshake(void * pInstance)3251 MS_BOOL MHal_PNL_VBY1_Handshake(void *pInstance)
3252 {
3253     MS_BOOL bIsLock = FALSE;
3254 
3255     if (MHal_PNL_Is_VBY1_Locked(pInstance) == FALSE)
3256     {
3257         MS_U16 u16CheckTimes = 0;
3258         //MS_U16 u16DeboundTimes = 0;
3259 
3260         // need to toggle vby1 packer  process start first
3261         MOD_W2BYTEMSK(REG_MOD_BK00_62_L, 0x00, BIT(11));
3262         MOD_W2BYTEMSK(REG_MOD_BK00_62_L, BIT(11), BIT(11));
3263 
3264         MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0F56); // set reg. initial value
3265         MOD_W2BYTEMSK(REG_MOD_BK00_60_L, 0xD6, 0x00FF); // after power on go to stand-by
3266         MOD_W2BYTEMSK(REG_MOD_BK00_60_L, 0x96, 0x00FF); // connection is established, go to Acquisition
3267         MOD_W2BYTEMSK(REG_MOD_BK00_60_L, 0xB6, 0x00FF); // when internal clock is stable, got to CDR training
3268         MOD_W2BYTEMSK(REG_MOD_BK00_60_L, 0xBE, 0x00FF); // enable encoder for DC blance
3269 
3270         while(u16CheckTimes < 10)
3271         {
3272 #if 0
3273             u16DeboundTimes = 2;
3274             while ((!MHal_PNL_Is_VBY1_LockN_Locked()) && (u16DeboundTimes --))
3275             {
3276                 MsOS_DelayTask(1); // can't remove
3277             }
3278 #endif
3279             if(MHal_PNL_Is_VBY1_LockN_Locked(pInstance))
3280             {
3281                 //-------------------------------------------------------------------
3282                 // step1. Toggle clock when training
3283                 MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0FAE);
3284                 //--------------------------------------------------------------------
3285                 bIsLock = TRUE;
3286                 // pass 2 times debound to make sure VBY1 is locked
3287                 break;
3288             }
3289 
3290             u16CheckTimes++;
3291             MsOS_DelayTaskUs(40);
3292         }
3293 
3294         if(bIsLock)
3295             {
3296             // step3. Disable HW check when lock done, Enable when loss lock
3297             //MOD_W2BYTEMSK(REG_MOD_BK00_33_L, 0x00, BIT15);
3298 
3299             /// Add the delay to increase time to send
3300             //MDrv_TIMER_Delayms(10);
3301         }
3302     }
3303     else
3304     {
3305         if(MOD_R2BYTEMSK(REG_MOD_BK00_60_L, 0x0FFF) != 0x0FAE)
3306         {
3307             MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0FAE);
3308         }
3309         bIsLock = TRUE;
3310             }
3311 
3312     return bIsLock;
3313 }
3314 
MHal_PNL_Is_VBY1_OC_Locked(void * pInstance)3315 MS_BOOL MHal_PNL_Is_VBY1_OC_Locked(void *pInstance)
3316 {
3317     if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_47_L, 0x0C00) == 0x00)  // MOD_BK00_56_L[11:10]        for OSD
3318             {
3319         return TRUE;
3320     }
3321     else
3322     {
3323         return FALSE;
3324             }
3325 }
3326 
MHal_PNL_Is_VBY1_OC_LockN_Locked(void * pInstance)3327 MS_BOOL MHal_PNL_Is_VBY1_OC_LockN_Locked(void *pInstance)
3328 {
3329     if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_47_L, 0x0400) == 0x00)  // MOD_BK00_56_L[11:10]        for OSD
3330             {
3331         return TRUE;
3332     }
3333     else
3334     {
3335         return FALSE;
3336             }
3337 }
3338 
MHal_PNL_VBY1_OC_Handshake(void * pInstance)3339 MS_BOOL MHal_PNL_VBY1_OC_Handshake(void *pInstance)
3340 {
3341     MS_BOOL bIsLock = FALSE;
3342 
3343     if (MHal_PNL_Is_VBY1_OC_Locked(pInstance) == FALSE)
3344     {
3345         MS_U16 u16CheckTimes = 0;
3346 //        MS_U16 u16DeboundTimes = 0;
3347 
3348         // need to toggle vby1 packer  process start first
3349         MOD_W2BYTEMSK(REG_MOD_BK00_66_L, 0x00, BIT(11));
3350         MOD_W2BYTEMSK(REG_MOD_BK00_66_L, BIT(11), BIT(11));
3351 
3352 
3353         MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0F56); // set reg. initial value
3354         MOD_W2BYTEMSK(REG_MOD_BK00_64_L, 0xD6, 0x00FF); // after power on go to stand-by
3355         MOD_W2BYTEMSK(REG_MOD_BK00_64_L, 0x96, 0x00FF); // connection is established, go to Acquisition
3356         MOD_W2BYTEMSK(REG_MOD_BK00_64_L, 0xB6, 0x00FF); // when internal clock is stable, got to CDR training
3357         MOD_W2BYTEMSK(REG_MOD_BK00_64_L, 0xBE, 0x00FF); // enable encoder for DC blance
3358 
3359         while(u16CheckTimes < 10)
3360         {
3361         #if 0
3362             u16DeboundTimes = 2;
3363             while ((!MHal_PNL_Is_VBY1_OC_LockN_Locked()) && (u16DeboundTimes --))
3364             {
3365             MsOS_DelayTask(1);
3366             }
3367         #endif
3368             if(MHal_PNL_Is_VBY1_OC_LockN_Locked(pInstance))
3369             {
3370                 //-------------------------------------------------------------------
3371                 // step1. Toggle clock when training
3372 
3373                 MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0FAE);
3374                 bIsLock = TRUE;
3375                 // pass 2 times debound to make sure VBY1 is locked
3376                 break;
3377             }
3378 
3379             u16CheckTimes++;
3380             MsOS_DelayTaskUs(40);
3381         }
3382 
3383         if(bIsLock)
3384         {
3385             // step3. Disable HW check when lock done, Enable when loss lock
3386 //            MOD_W2BYTEMSK(REG_MOD_BK00_33_L, 0x00, BIT15);
3387         }
3388     }
3389     else
3390     {
3391         if(MOD_R2BYTEMSK(REG_MOD_BK00_64_L, 0x0FFF) != 0x0FAE)
3392         {
3393             MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0FAE);
3394         }
3395         bIsLock = TRUE;
3396     }
3397 
3398     return bIsLock;
3399 }
3400 
MHal_PNL_IsYUVOutput(void * pInstance)3401 MS_BOOL MHal_PNL_IsYUVOutput(void *pInstance)
3402 {
3403    return FALSE;
3404 }
3405 
MHal_PNL_SetOutputInterlaceTiming(void * pInstance,MS_BOOL bEnable)3406 MS_BOOL MHal_PNL_SetOutputInterlaceTiming(void *pInstance, MS_BOOL bEnable)
3407 {
3408     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
3409     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
3410 
3411     if (bEnable == TRUE)
3412     {
3413         //interlace output vtotal modify
3414         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_21_L, BIT(9), BIT(9));
3415 
3416         // two different interlace information through channel A reserved bit
3417         MOD_W2BYTEMSK(REG_MOD_BK00_40_L, BIT(4) | BIT(7), BIT(4) | BIT(7));
3418         // two different interlace information through channel B reserved bit
3419         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, BIT(10)|BIT(11), BIT(10)|BIT(11));
3420     }
3421     else
3422     {
3423         SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_21_L  , 0, BIT(9));
3424         MOD_W2BYTEMSK(REG_MOD_BK00_40_L, 0, BIT(4) | BIT(7));
3425         MOD_W2BYTEMSK(REG_MOD_BK00_42_L, 0, BIT(10)|BIT(11));
3426     }
3427 
3428     return TRUE;
3429 }
3430 
MHal_PNL_GetOutputInterlaceTiming(void * pInstance)3431 MS_BOOL MHal_PNL_GetOutputInterlaceTiming(void *pInstance)
3432 {
3433     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
3434     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
3435 
3436     MS_BOOL bIsInterlaceOutput = FALSE;
3437     //interlace output vtotal modify
3438     if (SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_21_L, BIT(9)) == BIT(9))
3439     {
3440         if ((MOD_R2BYTEMSK(REG_MOD_BK00_40_L, BIT(4) | BIT(7)) == (BIT(4) | BIT(7)))
3441             || (MOD_R2BYTEMSK(REG_MOD_BK00_42_L, BIT(10) | BIT(11)) == (BIT(10)|BIT(11))))
3442         {
3443             bIsInterlaceOutput = TRUE;
3444         }
3445     }
3446     else
3447     {
3448         bIsInterlaceOutput = FALSE;
3449     }
3450     return bIsInterlaceOutput;
3451 }
3452 
3453 ////Ext LPLL setting
_MHal_PNL_Init_ExtLPLL(void * pInstance,PNL_TYPE eLPLL_Type,PNL_MODE eLPLL_Mode,MS_U64 ldHz)3454 static void _MHal_PNL_Init_ExtLPLL(void *pInstance, PNL_TYPE eLPLL_Type,PNL_MODE eLPLL_Mode,MS_U64 ldHz)
3455 {
3456     E_PNL_SUPPORTED_LPLL_EXT_TYPE u8SupportedLPLLLIndex = E_PNL_SUPPORTED_LPLL_EXT_MAX;
3457 
3458     u8SupportedLPLLLIndex = _MHal_PNL_GetSupportedLPLLIndex(pInstance, eLPLL_Type,eLPLL_Mode,ldHz, E_PNL_LPLL_OSD);
3459 
3460     if (u8SupportedLPLLLIndex == E_PNL_SUPPORTED_LPLL_EXT_MAX)
3461     {
3462         printf("Not Supported LPLL Type, skip LPLL Init\n");
3463         return;
3464     }
3465 
3466     _MHal_PNL_DumpLPLLTable(pInstance, u8SupportedLPLLLIndex, E_PNL_LPLL_OSD);
3467 }
3468 
_MHal_PNL_Get_ExtLPLL_LoopDIV(void * pInstance,MS_U8 u8LPLL_Mode,MS_U8 eLPLL_Type,MS_U64 ldHz)3469 static MS_U8 _MHal_PNL_Get_ExtLPLL_LoopDIV(void *pInstance, MS_U8 u8LPLL_Mode, MS_U8 eLPLL_Type, MS_U64 ldHz)
3470 {
3471     MS_U16 u16loop_div = 0;
3472     E_PNL_SUPPORTED_LPLL_EXT_TYPE u8SupportedLPLLLIndex = E_PNL_SUPPORTED_LPLL_EXT_MAX;
3473     u8SupportedLPLLLIndex = _MHal_PNL_GetSupportedLPLLIndex(pInstance, eLPLL_Type,u8LPLL_Mode,ldHz,E_PNL_LPLL_OSD);
3474 
3475     if (u8SupportedLPLLLIndex == E_PNL_SUPPORTED_LPLL_EXT_MAX)
3476     {
3477         u16loop_div = 0 ;
3478     }
3479     else
3480     {
3481         u16loop_div = u16EXT_LoopDiv[u8SupportedLPLLLIndex];
3482     }
3483 
3484     u16loop_div *= 2;
3485     return u16loop_div;
3486 }
3487 
_MHal_PNL_Get_ExtLPLL_LoopGain(void * pInstance,MS_U8 eLPLL_Mode,MS_U8 eLPLL_Type,MS_U64 ldHz)3488 static MS_U8 _MHal_PNL_Get_ExtLPLL_LoopGain(void *pInstance, MS_U8 eLPLL_Mode, MS_U8 eLPLL_Type, MS_U64 ldHz)
3489 {
3490     MS_U16 u16loop_gain = 0;
3491     E_PNL_SUPPORTED_LPLL_EXT_TYPE u8SupportedLPLLLIndex = E_PNL_SUPPORTED_LPLL_EXT_MAX;
3492     u8SupportedLPLLLIndex = _MHal_PNL_GetSupportedLPLLIndex(pInstance, eLPLL_Type,eLPLL_Mode,ldHz,E_PNL_LPLL_OSD);
3493 
3494     if (u8SupportedLPLLLIndex == E_PNL_SUPPORTED_LPLL_EXT_MAX)
3495     {
3496         u16loop_gain = 0 ;
3497     }
3498     else
3499     {
3500         u16loop_gain = u16EXT_LoopGain[u8SupportedLPLLLIndex];
3501     }
3502     return u16loop_gain;
3503 }
3504 
3505 
3506 // Output Dclk
MHal_PNL_CalExtLPLLSETbyDClk(void * pInstance,MS_U8 u8LPLL_Mode,MS_U8 u8LPLL_Type,MS_U64 ldHz)3507 void MHal_PNL_CalExtLPLLSETbyDClk(void *pInstance, MS_U8 u8LPLL_Mode, MS_U8 u8LPLL_Type, MS_U64 ldHz)
3508 {
3509 
3510     MS_U64 u64LdPllSet = 0;
3511     MS_U64 u64DclkFactor = 0;
3512     MS_U32 u32Div = 0;
3513     // loop div and loop gain use default parameters to avoid dclk floating out of range and getting wrong value
3514     MS_U32 u32Factor = 10;
3515 
3516     _MHal_PNL_Init_ExtLPLL(pInstance, u8LPLL_Type, u8LPLL_Mode, ldHz);
3517 
3518     //the first " *2 " is from  the dual mode
3519     u32Div=(MS_U32)(_MHal_PNL_Get_ExtLPLL_LoopDIV(pInstance, u8LPLL_Mode, u8LPLL_Type, ldHz));
3520     u64DclkFactor=((MS_U64)LVDS_MPLL_CLOCK_MHZ * (MS_U64)524288 * (MS_U64)_MHal_PNL_Get_ExtLPLL_LoopGain(pInstance, u8LPLL_Mode, u8LPLL_Type, ldHz));
3521     u64LdPllSet = (u64DclkFactor * 1000000 * u32Factor *2) + ((ldHz * u32Div) >> 1);
3522     do_div(u64LdPllSet, ldHz);
3523     do_div(u64LdPllSet, u32Div);
3524 
3525     W4BYTE(L_BK_LPLL(0x48), (MS_U32)u64LdPllSet);
3526     //printf("MHal_PNL_CalExtLPLLSETbyDClk u32KHz = %u, u32LpllSet = %x\n", ldHz, (MS_U32)u64LdPllSet);
3527 
3528 }
3529 
MHal_PNL_SetOSDCOutputType(void * pInstance,PNL_TYPE eLPLL_Type,E_PNL_OSDC_OUTPUT_FORMAT eOC_OutputFormat)3530 void MHal_PNL_SetOSDCOutputType(void *pInstance, PNL_TYPE eLPLL_Type, E_PNL_OSDC_OUTPUT_FORMAT eOC_OutputFormat)
3531 {
3532     // VBy1 co-registers
3533     if ((eLPLL_Type >= E_PNL_LPLL_VBY1_10BIT_4LANE)
3534         && (eLPLL_Type <= E_PNL_LPLL_VBY1_8BIT_8LANE))
3535     {
3536         MOD_W2BYTE(REG_MOD_BK00_42_L, 0x1008); //[3]enable osd lvds channel
3537         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, BIT(15), BIT(15)); //[15]sw_rst
3538 
3539         //-------------------------------------
3540         //## pe
3541 //        MOD_A_W2BYTE(REG_MOD_A_BK00_30_L, 0x3fff);
3542 //        MOD_W2BYTE(REG_MOD_BK00_23_L, 0x7000);
3543 //        MOD_W2BYTE(REG_MOD_BK00_24_L, 0x7fff);
3544 //        MOD_W2BYTE(REG_MOD_BK00_25_L, 0x003f);
3545 
3546         MOD_W2BYTE(REG_MOD_BK00_65_L, 0x8f3f); //[15]all dk scr[13:8]aln_de_cnt [7:0] aln_pix_cnt
3547 
3548     }
3549 
3550     if( eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_4LANE)
3551     {
3552         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, BIT(14),BIT(14)|BIT(15)); //[15]enskew_path2[14]enclk_path2[4]ck_pd[3]ck_pc[2]ck_pb[1]ck_pa[0]en_ck
3553         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0055); //[7:0]reg_output_conf[27:16]
3554         W2BYTE(REG_CLKGEN0_53_L,0x00CC); //[13:8] clk_bt656 -> clk_lpll_buf
3555         W2BYTE(REG_CLKGEN0_63_L,0x0410); //[11:8] clk_tx_mod_osd, [4:0] osd2mod
3556         W2BYTE(REG_RVD_09_L, 0x1800); //[12:8]ckg_vby1_fifo_osd [3:0]clk_vby1_fifo
3557 
3558         MOD_W2BYTE(REG_MOD_BK00_42_L, 0x1000); //[12]sw_rst, [3]enable osd lvds channel
3559         MOD_A_W2BYTE(REG_MOD_A_BK00_38_L, 0xc01f);
3560         MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x0440); //[3:0] reg_ckg_tx_mod
3561         MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x0044); //reg_ckg_dot
3562 
3563         MOD_W2BYTE(REG_MOD_BK00_71_L, 0xffff);
3564         MOD_W2BYTE(REG_MOD_BK00_5B_L, 0x0087); //[0]enable serializer function ,
3565                                                //[1]enable serializer auto fix read/write point mis-balance
3566                                                //[2]enable osd serializer auto fix read/write point mis-balance
3567                                                //[7]for OSD, switch chanel 8~13 as OSD path
3568         MOD_W2BYTE(REG_MOD_BK00_64_L, 0xd000);
3569         MOD_W2BYTE(REG_MOD_BK00_64_L, 0xd330);
3570         MOD_W2BYTE(REG_MOD_BK00_64_L, 0xd320);
3571         MOD_W2BYTE(REG_MOD_BK00_65_L, 0x8f3f);
3572         //-------------------------------------
3573         //## icon (Swing)
3574         MOD_A_W2BYTE(REG_MOD_A_BK00_0C_L, 0x7f7f);
3575         MOD_A_W2BYTE(REG_MOD_A_BK00_0D_L, 0x7f7f);
3576         MOD_A_W2BYTE(REG_MOD_A_BK00_0E_L, 0x0000);
3577 
3578         // vby1 osd 4 lane
3579         MOD_W2BYTE(REG_MOD_BK00_66_L, 0xa260); //[15]proc_st[13:12]byte_mode 4 byte mode[6]2ch_vby1_osd[9]swap
3580     }
3581     else if( eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_2LANE)
3582     {
3583         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, BIT(14) ,BIT(14)|BIT(15));
3584         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0005);
3585 
3586         //-------------------------------------
3587         //## icon (Swing)
3588         MOD_A_W2BYTE(REG_MOD_A_BK00_0C_L, 0x7f7f);
3589         MOD_A_W2BYTE(REG_MOD_A_BK00_0D_L, 0x0000);
3590         MOD_A_W2BYTE(REG_MOD_A_BK00_0E_L, 0x0000);
3591 
3592         //vby1 osd 2 lane
3593         MOD_W2BYTE(REG_MOD_BK00_66_L, 0xa240); //[15]proc_st[13:12]byte_mode 4 byte mode[6]2ch_vby1_osd[9]swap[5]vby1_osd_4ch
3594     }
3595 
3596     // Control VBY1 output format and bit orders
3597     switch(eOC_OutputFormat)
3598     {
3599         case E_PNL_OSDC_OUTPUT_FORMAT_VBY1_ARGB1:
3600             MOD_W2BYTEMSK(REG_MOD_BK00_6A_L, 0, BIT(1));
3601             break;
3602 
3603         case E_PNL_OSDC_OUTPUT_FORMAT_VBY1_ARGB2:
3604             MOD_W2BYTEMSK(REG_MOD_BK00_6A_L, BIT(1), BIT(1));
3605             break;
3606 
3607         default:
3608             printf("OSDC output format uses default value\n");
3609             MOD_W2BYTEMSK(REG_MOD_BK00_6A_L, 0, BIT(1));
3610             break;
3611     }
3612 
3613 
3614 }
3615 
MHal_PNL_SetOSDSSC(void * pInstance,MS_U16 u16Fmodulation,MS_U16 u16Rdeviation,MS_BOOL bEnable)3616 MS_BOOL MHal_PNL_SetOSDSSC(void *pInstance, MS_U16 u16Fmodulation, MS_U16 u16Rdeviation, MS_BOOL bEnable)
3617 {
3618     MS_U16 u16Span;
3619     MS_U16 u16Step;
3620     MS_U32 u32PLL_SET;/// = MDrv_Read3Byte(L_BK_LPLL(0x0F));
3621 
3622     MHal_PNL_Switch_LPLL_SubBank(pInstance, 0x00);
3623     u32PLL_SET = R4BYTE(L_BK_LPLL(0x48));
3624     // Set SPAN
3625     if(u16Fmodulation < 200 || u16Fmodulation > 400)
3626         u16Fmodulation = 300;
3627     u16Span =( ( (((MS_U32)LVDS_MPLL_CLOCK_MHZ*LVDS_SPAN_FACTOR ) / (u16Fmodulation) ) * 10000) / ((MS_U32)u32PLL_SET) ) ;
3628 
3629     // Set STEP
3630     if(u16Rdeviation > 300)
3631         u16Rdeviation = 300;
3632     u16Step = ((MS_U32)u32PLL_SET*u16Rdeviation) / ((MS_U32)u16Span*10000);
3633 
3634     W2BYTE(L_BK_LPLL(0x4E), u16Step & 0x0FFF);// LPLL_STEP
3635     W2BYTE(L_BK_LPLL(0x4F), u16Span & 0x3FFF);// LPLL_SPAN
3636     W2BYTEMSK((L_BK_LPLL(0x4E)), (bEnable << 15), BIT(15)); // Enable ssc
3637 
3638 
3639     return TRUE;
3640 }
3641 
MHal_PNL_SetOSDSSC_En(void * pInstance,MS_BOOL bEnable)3642 void MHal_PNL_SetOSDSSC_En(void *pInstance, MS_BOOL bEnable)
3643 {
3644     //printf("bEnable = %d\n", bEnable);
3645     MHal_PNL_Switch_LPLL_SubBank(pInstance, 0x00);
3646     W2BYTEMSK((L_BK_LPLL(0x4E)), (bEnable << 15), BIT(15)); // Enable ssc
3647 }
3648 
MHal_PNL_Set_T3D_Setting(void * pInstance)3649 void MHal_PNL_Set_T3D_Setting(void *pInstance)
3650 {
3651     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
3652     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
3653 
3654     SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK62_63_L, 0x00, BIT(0)); // default disable T3D SRAM
3655 }
3656 
MHal_PNL_Set_Device_Bank_Offset(void * pInstance)3657 void MHal_PNL_Set_Device_Bank_Offset(void *pInstance)
3658 {
3659     UNUSED(pInstance);
3660     memset(u32PNL_XCDeviceBankOffset, 0, sizeof(MS_U32)*E_PNL_DEVICE_ID_NUM);
3661     u32PNL_XCDeviceBankOffset[E_PNL_DEVICE_ID_0] = E_HALPNL_DEVICE0_XC_BANK_OFFSET; // Set SC0 reg bank offset
3662     u32PNL_XCDeviceBankOffset[E_PNL_DEVICE_ID_1] = E_HALPNL_DEVICE1_XC_BANK_OFFSET; // Set SC2 reg bank offset
3663 }
3664 
MHal_PNL_Init(void * pInstance)3665 void MHal_PNL_Init(void *pInstance)
3666 {
3667     // Do nothing
3668     UNUSED(pInstance);
3669 }
3670 
MHal_PNL_Bringup(void * pInstance)3671 void MHal_PNL_Bringup(void *pInstance)
3672 {
3673     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
3674     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
3675     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
3676     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
3677 
3678     ///patch for bring up
3679     if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_LVDS)
3680     {
3681     }
3682     else if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_LPLL_VBY1_10BIT_8LANE)
3683     {
3684         //==========================//
3685         //=    Setting LPLL        =//
3686         //==========================//
3687         //==========================//
3688         //=   ICON RCON PE         =//
3689         //==========================//
3690         //W2BYTE(0x111e10, 0xffff);
3691         //W2BYTE(0x111e12, 0xffff);
3692         //W2BYTE(0x111e14, 0xffff);
3693         //W2BYTE(0x111e16, 0xffff);
3694         //W2BYTE(0x111e18, 0xffff);
3695         //W2BYTE(0x111e1a, 0xffff);
3696         //W2BYTE(0x111e1c, 0xffff);
3697 
3698         //==========================//
3699         //=    Setting MOD         =//
3700         //==========================//
3701         //W2BYTE(0x103210, 0x5410);
3702         //W2BYTE(0x103212, 0x7632);
3703         W2BYTE(0x111ee2, 0xffff);
3704         W2BYTE(0x1032c0, 0xd000);
3705         W2BYTE(0x1032c0, 0xd330);
3706         W2BYTE(0x1032c0, 0xd320);
3707         W2BYTE(0x1032c2, 0x8f3f);
3708 //        W2BYTE(0x1032c4, 0xac40); //Addr:62; bit[11:10] = 2'b11; => reg_vby1_w_r_ini[1:0]
3709         //W2BYTE(0x1032cc, 0xac40); //Addr:66; bit[11:10] = 2'b11; => reg_vby1_w_r_ini_osd[1:0]
3710         //==========================//
3711         //=    GPIO                 =//
3712         //==========================//
3713         W2BYTE(0x111e80, 0xffff);
3714         W2BYTE(0x111e82, 0xffff);
3715         W2BYTE(0x111e84, 0xffff);
3716         W2BYTE(0x111e86, 0xffff);
3717         W2BYTE(0x111e90, 0xffff);
3718         W2BYTE(0x111e92, 0xffff);
3719 
3720         if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16MOD_CTRLA & BIT(1))  // use Dual port to decide the Vx1 1 or 2 devision config
3721         {
3722             printf("Vx1 2 division\n");
3723             //==========================//
3724             //=    Setting MOD         =//
3725             //==========================//
3726             W2BYTE(0x103240, 0x0002);  //[2:0]reg_mft_mode
3727             W2BYTE(0x103242, 0x1002);  //[11:0]reg_dly_value
3728             W2BYTE(0x103244, 0x0f00);  //[12:0]reg_hsize
3729             W2BYTE(0x10324c, 0x0780);  //[12:0]reg_div_len
3730             W2BYTE(0x1032fe, 0x0002);  //[2:0]reg_sram_usage
3731             W2BYTE(0x1032a6, 0x4000);  //[14]reg_vfde_mask
3732             //W2BYTE(0x103210, 0x6420);  //vby1 swap
3733             //W2BYTE(0x103212, 0x7531);
3734             //W2BYTE(0x1032c6, 0x1800);  //[12]vby1_8ch[11:10]pair_mirror2
3735         }
3736     }
3737 
3738 }
3739 
MHal_PNL_GetPanelVStart(void)3740 MS_U16 MHal_PNL_GetPanelVStart(void)
3741 {
3742     return 8;
3743 }
3744 
MHal_PNL_Check_VBY1_Handshake_Status(void * pInstance)3745 MS_BOOL MHal_PNL_Check_VBY1_Handshake_Status(void *pInstance)
3746 {
3747     if(MOD_R2BYTEMSK(REG_MOD_BK00_60_L, 0x0FFF) != 0xFAE)
3748     {
3749         //printf("VBY1 handshake return because the reg value is 0x%u, not 0xFAE.\n", MOD_R2BYTEMSK(REG_MOD_BK00_60_L, 0x0FFF));
3750         return FALSE;
3751     }
3752     else
3753     {
3754         //printf("VBY handshake check success.\n");
3755         return TRUE;
3756     }
3757 }
3758 
MHal_PNL_ChannelFIFOPointerADjust(void * pInstance)3759 void MHal_PNL_ChannelFIFOPointerADjust(void *pInstance)
3760 {
3761     // 0 to 1 then will do write and read point capture to
3762     // Read  : REG_MOD_BK00_5F_L[14:12]
3763     // write : REG_MOD_BK00_5F_L[10:8]
3764     // it takes 3 ticks to capture and riu takes 5 ticks to write
3765     // so we don't have to do any delay between rising capture and
3766     // read/write pointer recognition
3767     MsOS_DelayTaskUs(500);
3768     MOD_A_W2BYTE(REG_MOD_A_BK00_5C_L, 0x3300);
3769 
3770     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L,      0, BIT(0));
3771     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(0), BIT(0));
3772 
3773     //split Video & OSD process start bit
3774     //if (MDrv_ReadByte(REG_CHIP_REVISION) >= 1)
3775     if((R2BYTEMSK(REG_CHIP_REVISION, 0xFF00)>>8) >=1)
3776     {
3777         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_79_L,       0, BIT(14));
3778         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_79_L, BIT(14), BIT(14));
3779     }
3780 
3781     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, 0 , BIT(1));
3782     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(1), BIT(1));
3783 
3784     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, 0, BIT(2)|BIT(3));
3785     MS_U16 u16name = MOD_A_R2BYTE(REG_MOD_A_BK00_5D_L);
3786     MS_S8 u8WritePointer = (u16name & 0x0700) >> 8; // REG_MOD_BK00_5F_L[10:8]
3787     MS_S8 u8ReadPointer = (u16name & 0x7000) >> 12; // REG_MOD_BK00_5F_L[14:12]
3788 
3789     //OSD part
3790     MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(2)|BIT(3), BIT(2)|BIT(3));
3791     MS_U16 OSDu16name = MOD_A_R2BYTE(REG_MOD_A_BK00_5D_L);
3792     MS_S8 OSDu8WritePointer = (OSDu16name & 0x0700) >> 8; // REG_MOD_BK00_5F_L[10:8]
3793     MS_S8 OSDu8ReadPointer = (OSDu16name & 0x7000) >> 12; // REG_MOD_BK00_5F_L[14:12]
3794 
3795     MS_BOOL bOSDC = ((MOD_A_R2BYTE(REG_MOD_A_BK00_58_L)&0x00F0) == 0x0040)?TRUE:FALSE;
3796     while (((abs(u8WritePointer-u8ReadPointer) >4) && (abs(u8WritePointer-u8ReadPointer)<2))
3797         ||(((abs(OSDu8WritePointer-OSDu8ReadPointer) >4) && (abs(OSDu8WritePointer-OSDu8ReadPointer)<2))&&bOSDC))
3798     {
3799         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L,      0, BIT(0));
3800         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(0), BIT(0));
3801 
3802         //split Video & OSD process start bit
3803         //if (MDrv_ReadByte(REG_CHIP_REVISION) >= 1)
3804         if((R2BYTEMSK(REG_CHIP_REVISION, 0xFF00)>>8) >=1)
3805         {
3806             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_79_L,       0, BIT(14));
3807             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_79_L, BIT(14), BIT(14));
3808         }
3809 
3810         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, 0 , BIT(1));
3811         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(1), BIT(1));
3812 
3813         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, 0, BIT(2)|BIT(3));
3814                 u16name = MOD_A_R2BYTE(REG_MOD_A_BK00_5D_L);
3815         u8WritePointer = (u16name & 0x0700) >> 8; // REG_MOD_BK00_5F_L[10:8]
3816         u8ReadPointer = (u16name & 0x7000) >> 12; // REG_MOD_BK00_5F_L[14:12]
3817 
3818         MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(2)|BIT(3), BIT(2)|BIT(3));
3819         OSDu16name = MOD_A_R2BYTE(REG_MOD_A_BK00_5D_L);
3820         OSDu8WritePointer = (OSDu16name & 0x0700) >> 8; // REG_MOD_BK00_5F_L[10:8]
3821         OSDu8ReadPointer = (OSDu16name & 0x7000) >> 12; // REG_MOD_BK00_5F_L[14:12]
3822         printf("bOSDC [%d]\n",bOSDC);
3823 
3824     }
3825 
3826 }
3827 
MHal_PNL_VBY1_Hardware_TrainingMode_En(void * pInstance,MS_BOOL bIsVideoMode,MS_BOOL bEnable)3828 void MHal_PNL_VBY1_Hardware_TrainingMode_En(void *pInstance, MS_BOOL bIsVideoMode ,MS_BOOL bEnable)
3829 {
3830     if(bIsVideoMode)
3831     {
3832         if(bEnable)
3833         {
3834             MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0AAE);
3835         }
3836         else
3837         {
3838             MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0AA6);
3839         }
3840     }
3841     else
3842     {
3843         if(bEnable)
3844         {
3845             MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0AAE);
3846         }
3847         else
3848         {
3849             MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0AA6);
3850         }
3851     }
3852 }
3853 
MHal_PNL_VBY1_IsSupport_Hardware_TrainingMode(void * pInstance)3854 MS_BOOL MHal_PNL_VBY1_IsSupport_Hardware_TrainingMode(void *pInstance)
3855 {
3856     #ifdef SUPPORT_VBY1_HWTRAINING_MODE
3857         return TRUE;
3858     #else
3859         return FALSE;
3860     #endif
3861 }
3862 
MHal_PNL_TCON_Patch(void)3863 void MHal_PNL_TCON_Patch(void)
3864 {
3865     // MOD sw reset
3866     MOD_W2BYTE(REG_MOD_BK00_42_L,0x0000);
3867     MOD_W2BYTE(REG_MOD_BK00_42_L,0x1000);
3868 }
3869 
_Hal_MOD_Refine_ICON(MS_U16 u16ICON)3870 static MS_U16 _Hal_MOD_Refine_ICON(MS_U16 u16ICON)
3871 {
3872     MS_U16 u16ICON_L = (u16ICON & 0x00FF);
3873     MS_U16 u16ICON_H = ((u16ICON & 0xFF00)>>8);
3874     MS_U16 u16Result = 0;
3875     if( (u16ICON_L > MOD_LVDS_ICON_HIGH_LIMIT) || (u16ICON_L < MOD_LVDS_ICON_LOW_LIMIT) )
3876     {
3877         u16Result = MOD_LVDS_ICON_DEFAULT;
3878     }
3879     else
3880     {
3881         u16Result = u16ICON_L;
3882     }
3883 
3884     if( (u16ICON_H > MOD_LVDS_ICON_HIGH_LIMIT) || (u16ICON_H < MOD_LVDS_ICON_LOW_LIMIT) )
3885     {
3886         u16Result |= (MOD_LVDS_ICON_DEFAULT<<8);
3887     }
3888     else
3889     {
3890         u16Result |= (u16ICON_H<<8);
3891     }
3892     return u16Result;
3893 }
3894 
_Hal_MOD_External_eFuse(void)3895 static MS_BOOL _Hal_MOD_External_eFuse(void)
3896 {
3897 #ifdef MOD_EFUSE_IN_MBOOT
3898     return TRUE;
3899 #else
3900     return FALSE;
3901 #endif
3902 }
3903 
_MHal_PNL_Get_LaneNum(void * pInstance)3904 static MS_U8 _MHal_PNL_Get_LaneNum(void *pInstance)
3905 {
3906     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
3907     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
3908     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
3909     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
3910 
3911     MS_U8 u8LaneNum = 0;
3912     //check lane num
3913     if((pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_8LANE)
3914      ||(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_8BIT_8LANE))
3915     {
3916         u8LaneNum = 8;
3917     }
3918     else if((pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_4LANE)
3919           ||(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_8BIT_4LANE))
3920     {
3921         u8LaneNum = 4;
3922     }
3923     else if((pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_2LANE)
3924           ||(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_8BIT_2LANE))
3925     {
3926         u8LaneNum = 2;
3927     }
3928     else
3929     {
3930         u8LaneNum = 0;
3931     }
3932     return u8LaneNum;
3933 }
3934 
3935 
_MHal_PNL_Auto_Set_Config(void * pInstance,MS_U16 u16OutputOrder0_3,MS_U16 u16OutputOrder4_7,MS_U16 u16OutputOrder8_11,MS_U16 u16OutputOrder12_13)3936 static void _MHal_PNL_Auto_Set_Config(void *pInstance,
3937                                       MS_U16 u16OutputOrder0_3,
3938                                       MS_U16 u16OutputOrder4_7,
3939                                       MS_U16 u16OutputOrder8_11,
3940                                       MS_U16 u16OutputOrder12_13)
3941 {
3942     //attention : This function just support vby1 now.
3943     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
3944     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
3945     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
3946     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
3947 
3948 
3949     MS_U8   u8OutputConfigCount = 0;
3950     MS_U16  u16Config =0;
3951     MS_U8   u8Count = 0;
3952     MS_U8   u8LaneNum = 0;
3953     MS_BOOL bSkip = TRUE;
3954 
3955     //check lane num
3956     u8LaneNum = _MHal_PNL_Get_LaneNum(pInstance);
3957     if(u8LaneNum!=0)
3958     {
3959         bSkip = FALSE;
3960     }
3961     else
3962     {
3963         bSkip = TRUE;
3964 
3965         //use default config
3966         MHal_Output_LVDS_Pair_Setting(pInstance,
3967                                       pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type,
3968                                       pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7,
3969                                       pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15,
3970                                       pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21);
3971     }
3972 
3973     if(!bSkip)
3974     {
3975         //set output config
3976         u16Config = 0;
3977         u8OutputConfigCount = 0;
3978         for( u8Count = 0 ; u8Count < LANE_NUM_EACH_PINMAPPING_GROUP1 ; u8Count++ )
3979         {
3980             if( ( u16OutputOrder0_3 % PINMAPPING_EXP ) < u8LaneNum)
3981             {
3982                 u16Config += CONFIG_FOR_VBY1_DATA<<u8OutputConfigCount;
3983             }
3984             u16OutputOrder0_3 = u16OutputOrder0_3 / PINMAPPING_EXP;
3985             u8OutputConfigCount += CONFIG_FOR_VBY1_DATA_BIT_NUM;
3986         }
3987         for( u8Count = 0 ; u8Count < LANE_NUM_EACH_PINMAPPING_GROUP2 ; u8Count++ )
3988         {
3989             if( (u16OutputOrder4_7 % PINMAPPING_EXP ) < u8LaneNum)
3990             {
3991                 u16Config += CONFIG_FOR_VBY1_DATA<<u8OutputConfigCount;
3992             }
3993             u16OutputOrder4_7 = u16OutputOrder4_7 / PINMAPPING_EXP;
3994             u8OutputConfigCount += CONFIG_FOR_VBY1_DATA_BIT_NUM;
3995         }
3996         MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, u16Config);
3997 
3998         u16Config =0;
3999         u8OutputConfigCount = 0;
4000         for( u8Count = 0 ; u8Count < LANE_NUM_EACH_PINMAPPING_GROUP3 ; u8Count++ )
4001         {
4002             if( (u16OutputOrder8_11 % PINMAPPING_EXP ) < u8LaneNum)
4003             {
4004                 u16Config += CONFIG_FOR_VBY1_DATA<<u8OutputConfigCount;
4005             }
4006             u16OutputOrder8_11 = u16OutputOrder8_11 / PINMAPPING_EXP;
4007             u8OutputConfigCount += CONFIG_FOR_VBY1_DATA_BIT_NUM;
4008         }
4009         for( u8Count = 0 ; u8Count < LANE_NUM_EACH_PINMAPPING_GROUP4 ; u8Count++ )
4010         {
4011             if( (u16OutputOrder12_13 % PINMAPPING_EXP ) < u8LaneNum)
4012             {
4013                 u16Config += CONFIG_FOR_VBY1_DATA<<u8OutputConfigCount;
4014             }
4015             u16OutputOrder12_13 = u16OutputOrder12_13 / PINMAPPING_EXP;
4016             u8OutputConfigCount += CONFIG_FOR_VBY1_DATA_BIT_NUM;
4017         }
4018         MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, u16Config);
4019     }
4020 }
4021 
_MHal_PNL_Set_Clk(void * pInstance,MS_U8 Type,MS_U16 u16OutputOrder0_3,MS_U16 u16OutputOrder4_7,MS_U16 u16OutputOrder8_11,MS_U16 u16OutputOrder12_13)4022 static void _MHal_PNL_Set_Clk(void *pInstance,
4023                               MS_U8 Type,
4024                               MS_U16 u16OutputOrder0_3,
4025                               MS_U16 u16OutputOrder4_7,
4026                               MS_U16 u16OutputOrder8_11,
4027                               MS_U16 u16OutputOrder12_13)
4028 {
4029     PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL;
4030     PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL;
4031     UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate);
4032     UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate));
4033 
4034     if(Type == APIPNL_OUTPUT_CHANNEL_ORDER_USER )
4035     {
4036         MS_U8 u8Clk = 0;
4037         MS_U8   u8LaneNum = 0;
4038         MS_BOOL bSkip = TRUE;
4039         MS_U8   u8Count = 0;
4040         MS_U8   u8Count1 = 0;
4041         MS_U8   u8StartLane = 0;
4042 
4043         //check lane num
4044         u8LaneNum = _MHal_PNL_Get_LaneNum(pInstance);
4045         if(u8LaneNum!=0)
4046         {
4047             bSkip = FALSE;
4048         }
4049         else
4050         {
4051             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0x1F, 0x1F); //open all clk
4052             bSkip = TRUE;
4053         }
4054 
4055         //count clk
4056         if(!bSkip)
4057         {
4058             u8Clk = 0;
4059             u8StartLane = 0;
4060             for( u8Count = u8StartLane ; u8Count < (u8StartLane+LANE_NUM_EACH_PINMAPPING_GROUP1) ; u8Count++ )
4061             {//lane 0 - lane 3
4062                 if( ( u16OutputOrder0_3 % PINMAPPING_EXP ) < u8LaneNum)
4063                 {
4064                     u8Count1 = 0;
4065                     do
4066                     {
4067                         if(u8Count>=LANE_AND_CLK_TBL[u8Count1][0] && u8Count<=LANE_AND_CLK_TBL[u8Count1][1])
4068                         {
4069                             u8Clk |= LANE_AND_CLK_TBL[u8Count1][2];
4070                             u8Clk |= 0x01;//mod_a_reg38 [1]:clk enable
4071                             break;
4072                         }
4073                         u8Count1 ++;
4074                     }
4075                     while(u8Count1<VBY1_CLK_TBL_ROW);
4076                 }
4077                 u16OutputOrder0_3 /= PINMAPPING_EXP;
4078             }
4079 
4080             u8StartLane = 4;
4081             for( u8Count = u8StartLane ; u8Count < (u8StartLane+LANE_NUM_EACH_PINMAPPING_GROUP2) ; u8Count++ )
4082             {//lane 4 - lane 7
4083                 if( ( u16OutputOrder4_7 % PINMAPPING_EXP ) < u8LaneNum)
4084                 {
4085                     u8Count1 = 0;
4086                     do
4087                     {
4088                         if(u8Count>=LANE_AND_CLK_TBL[u8Count1][0] && u8Count<=LANE_AND_CLK_TBL[u8Count1][1])
4089                         {
4090                             u8Clk |= LANE_AND_CLK_TBL[u8Count1][2];
4091                             u8Clk |= 0x01;//mod_a_reg38 [1]:clk enable
4092                             break;
4093                         }
4094                         u8Count1 ++;
4095                     }
4096                     while(u8Count1<VBY1_CLK_TBL_ROW);
4097                 }
4098                 u16OutputOrder4_7 /= PINMAPPING_EXP;
4099             }
4100 
4101             u8StartLane = 8;
4102             for( u8Count = u8StartLane ; u8Count < (u8StartLane+LANE_NUM_EACH_PINMAPPING_GROUP3) ; u8Count++ )
4103             {//lane 8 - lane 11
4104                 if( ( u16OutputOrder8_11 % PINMAPPING_EXP ) < u8LaneNum)
4105                 {
4106                     u8Count1 = 0;
4107                     do
4108                     {
4109                         if(u8Count>=LANE_AND_CLK_TBL[u8Count1][0] && u8Count<=LANE_AND_CLK_TBL[u8Count1][1])
4110                         {
4111                             u8Clk |= LANE_AND_CLK_TBL[u8Count1][2];
4112                             u8Clk |= 0x01;//mod_a_reg38 [1]:clk enable
4113                             break;
4114                         }
4115                         u8Count1 ++;
4116                     }
4117                     while(u8Count1<VBY1_CLK_TBL_ROW);
4118                 }
4119                 u16OutputOrder8_11 /= PINMAPPING_EXP;
4120 
4121             }
4122 
4123             u8StartLane = 12;
4124             for( u8Count = u8StartLane ; u8Count < (u8StartLane+LANE_NUM_EACH_PINMAPPING_GROUP4) ; u8Count++ )
4125             {//lane 12 - lane 13
4126                 if( ( u16OutputOrder12_13 % PINMAPPING_EXP ) < u8LaneNum)
4127                 {
4128                     u8Count1 = 0;
4129                     do
4130                     {
4131                         if(u8Count>=LANE_AND_CLK_TBL[u8Count1][0] && u8Count<=LANE_AND_CLK_TBL[u8Count1][1])
4132                         {
4133                             u8Clk |= LANE_AND_CLK_TBL[u8Count1][2];
4134                             u8Clk |= 0x01;//mod_a_reg38 [1]:clk enable
4135                             break;
4136                         }
4137                         u8Count1 ++;
4138                     }
4139                     while(u8Count1<VBY1_CLK_TBL_ROW);
4140                 }
4141                 u16OutputOrder12_13 /= PINMAPPING_EXP;
4142             }
4143 
4144             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, u8Clk, 0x1F);
4145         }
4146     }
4147     else
4148     {
4149         if(   (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_8LANE)
4150             ||(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_8BIT_8LANE))
4151         {
4152             if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16MOD_CTRLA & BIT(1))
4153             {
4154                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0x1D, 0x1F);
4155             }
4156             else
4157             {
4158                 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0x1D, 0x1F);
4159             }
4160         }
4161         else if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_LVDS)
4162         {//LVDS
4163             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0x1F, 0x1F);
4164         }
4165         else if(   (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_4LANE)
4166                  ||(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_8BIT_4LANE))
4167         {
4168             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0x0D, 0x1F);
4169         }
4170         else if(   (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_2LANE)
4171                  ||(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_8BIT_2LANE))
4172         {
4173             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0x05, 0x1F);
4174         }
4175         else
4176         {
4177             MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0x1F, 0x1F);
4178         }
4179     }
4180 }
4181 
4182 #endif
4183 
4184