xref: /rk3399_rockchip-uboot/include/linux/mtd/spinand.h (revision f143afc2c5fe25515c8d3be25ce5ce68203fdedb)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2016-2017 Micron Technology, Inc.
4  *
5  *  Authors:
6  *	Peter Pan <peterpandong@micron.com>
7  */
8 #ifndef __LINUX_MTD_SPINAND_H
9 #define __LINUX_MTD_SPINAND_H
10 
11 #ifndef __UBOOT__
12 #include <linux/mutex.h>
13 #include <linux/bitops.h>
14 #include <linux/device.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/spi/spi.h>
18 #include <linux/spi/spi-mem.h>
19 #else
20 #include <common.h>
21 #include <spi.h>
22 #include <spi-mem.h>
23 #include <linux/mtd/nand.h>
24 #endif
25 
26 /**
27  * Standard SPI NAND flash operations
28  */
29 
30 #define SPINAND_RESET_OP						\
31 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1),				\
32 		   SPI_MEM_OP_NO_ADDR,					\
33 		   SPI_MEM_OP_NO_DUMMY,					\
34 		   SPI_MEM_OP_NO_DATA)
35 
36 #define SPINAND_WR_EN_DIS_OP(enable)					\
37 	SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1),		\
38 		   SPI_MEM_OP_NO_ADDR,					\
39 		   SPI_MEM_OP_NO_DUMMY,					\
40 		   SPI_MEM_OP_NO_DATA)
41 
42 #define SPINAND_READID_OP(naddr, ndummy, buf, len)			\
43 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1),				\
44 		   SPI_MEM_OP_ADDR(naddr, 0, 1),			\
45 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
46 		   SPI_MEM_OP_DATA_IN(len, buf, 1))
47 
48 #define SPINAND_SET_FEATURE_OP(reg, valptr)				\
49 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1),				\
50 		   SPI_MEM_OP_ADDR(1, reg, 1),				\
51 		   SPI_MEM_OP_NO_DUMMY,					\
52 		   SPI_MEM_OP_DATA_OUT(1, valptr, 1))
53 
54 #define SPINAND_GET_FEATURE_OP(reg, valptr)				\
55 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1),				\
56 		   SPI_MEM_OP_ADDR(1, reg, 1),				\
57 		   SPI_MEM_OP_NO_DUMMY,					\
58 		   SPI_MEM_OP_DATA_IN(1, valptr, 1))
59 
60 #define SPINAND_BLK_ERASE_OP(addr)					\
61 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1),				\
62 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
63 		   SPI_MEM_OP_NO_DUMMY,					\
64 		   SPI_MEM_OP_NO_DATA)
65 
66 #define SPINAND_PAGE_READ_OP(addr)					\
67 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1),				\
68 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
69 		   SPI_MEM_OP_NO_DUMMY,					\
70 		   SPI_MEM_OP_NO_DATA)
71 
72 #define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len)	\
73 	SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1),		\
74 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
75 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
76 		   SPI_MEM_OP_DATA_IN(len, buf, 1))
77 
78 #define SPINAND_PAGE_READ_FROM_CACHE_OP_3A(fast, addr, ndummy, buf, len) \
79 	SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1),		\
80 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
81 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
82 		   SPI_MEM_OP_DATA_IN(len, buf, 1))
83 
84 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len)	\
85 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1),				\
86 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
87 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
88 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
89 
90 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A(addr, ndummy, buf, len)	\
91 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1),				\
92 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
93 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
94 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
95 
96 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len)	\
97 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1),				\
98 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
99 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
100 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
101 
102 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A(addr, ndummy, buf, len)	\
103 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1),				\
104 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
105 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
106 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
107 
108 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len)	\
109 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1),				\
110 		   SPI_MEM_OP_ADDR(2, addr, 2),				\
111 		   SPI_MEM_OP_DUMMY(ndummy, 2),				\
112 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
113 
114 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP_3A(addr, ndummy, buf, len) \
115 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1),				\
116 		   SPI_MEM_OP_ADDR(3, addr, 2),				\
117 		   SPI_MEM_OP_DUMMY(ndummy, 2),				\
118 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
119 
120 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len)	\
121 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1),				\
122 		   SPI_MEM_OP_ADDR(2, addr, 4),				\
123 		   SPI_MEM_OP_DUMMY(ndummy, 4),				\
124 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
125 
126 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP_3A(addr, ndummy, buf, len) \
127 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1),				\
128 		   SPI_MEM_OP_ADDR(3, addr, 4),				\
129 		   SPI_MEM_OP_DUMMY(ndummy, 4),				\
130 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
131 
132 #define SPINAND_PROG_EXEC_OP(addr)					\
133 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1),				\
134 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
135 		   SPI_MEM_OP_NO_DUMMY,					\
136 		   SPI_MEM_OP_NO_DATA)
137 
138 #define SPINAND_PROG_LOAD(reset, addr, buf, len)			\
139 	SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1),		\
140 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
141 		   SPI_MEM_OP_NO_DUMMY,					\
142 		   SPI_MEM_OP_DATA_OUT(len, buf, 1))
143 
144 #define SPINAND_PROG_LOAD_X4(reset, addr, buf, len)			\
145 	SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1),		\
146 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
147 		   SPI_MEM_OP_NO_DUMMY,					\
148 		   SPI_MEM_OP_DATA_OUT(len, buf, 4))
149 
150 /**
151  * Standard SPI NAND flash commands
152  */
153 #define SPINAND_CMD_PROG_LOAD_X4		0x32
154 #define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4	0x34
155 
156 /* feature register */
157 #define REG_BLOCK_LOCK		0xa0
158 #define BL_ALL_UNLOCKED		0x00
159 
160 /* configuration register */
161 #define REG_CFG			0xb0
162 #define CFG_OTP_ENABLE		BIT(6)
163 #define CFG_ECC_ENABLE		BIT(4)
164 #define CFG_QUAD_ENABLE		BIT(0)
165 
166 /* status register */
167 #define REG_STATUS		0xc0
168 #define STATUS_BUSY		BIT(0)
169 #define STATUS_ERASE_FAILED	BIT(2)
170 #define STATUS_PROG_FAILED	BIT(3)
171 #define STATUS_ECC_MASK		GENMASK(5, 4)
172 #define STATUS_ECC_NO_BITFLIPS	(0 << 4)
173 #define STATUS_ECC_HAS_BITFLIPS	(1 << 4)
174 #define STATUS_ECC_UNCOR_ERROR	(2 << 4)
175 
176 struct spinand_op;
177 struct spinand_device;
178 
179 #define SPINAND_MAX_ID_LEN	4
180 
181 /**
182  * struct spinand_id - SPI NAND id structure
183  * @data: buffer containing the id bytes. Currently 4 bytes large, but can
184  *	  be extended if required
185  * @len: ID length
186  */
187 struct spinand_id {
188 	u8 data[SPINAND_MAX_ID_LEN];
189 	int len;
190 };
191 
192 enum spinand_readid_method {
193 	SPINAND_READID_METHOD_OPCODE,
194 	SPINAND_READID_METHOD_OPCODE_ADDR,
195 	SPINAND_READID_METHOD_OPCODE_DUMMY,
196 };
197 
198 /**
199  * struct spinand_devid - SPI NAND device id structure
200  * @id: device id of current chip
201  * @len: number of bytes in device id
202  * @method: method to read chip id
203  *	    There are 3 possible variants:
204  *	    SPINAND_READID_METHOD_OPCODE: chip id is returned immediately
205  *	    after read_id opcode.
206  *	    SPINAND_READID_METHOD_OPCODE_ADDR: chip id is returned after
207  *	    read_id opcode + 1-byte address.
208  *	    SPINAND_READID_METHOD_OPCODE_DUMMY: chip id is returned after
209  *	    read_id opcode + 1 dummy byte.
210  */
211 struct spinand_devid {
212 	const u8 *id;
213 	const u8 len;
214 	const enum spinand_readid_method method;
215 };
216 
217 /**
218  * struct manufacurer_ops - SPI NAND manufacturer specific operations
219  * @init: initialize a SPI NAND device
220  * @cleanup: cleanup a SPI NAND device
221  *
222  * Each SPI NAND manufacturer driver should implement this interface so that
223  * NAND chips coming from this vendor can be initialized properly.
224  */
225 struct spinand_manufacturer_ops {
226 	int (*init)(struct spinand_device *spinand);
227 	void (*cleanup)(struct spinand_device *spinand);
228 };
229 
230 /**
231  * struct spinand_manufacturer - SPI NAND manufacturer instance
232  * @id: manufacturer ID
233  * @name: manufacturer name
234  * @devid_len: number of bytes in device ID
235  * @chips: supported SPI NANDs under current manufacturer
236  * @nchips: number of SPI NANDs available in chips array
237  * @ops: manufacturer operations
238  */
239 struct spinand_manufacturer {
240 	u8 id;
241 	char *name;
242 	const struct spinand_info *chips;
243 	const size_t nchips;
244 	const struct spinand_manufacturer_ops *ops;
245 };
246 
247 /* SPI NAND manufacturers */
248 extern const struct spinand_manufacturer gigadevice_spinand_manufacturer;
249 extern const struct spinand_manufacturer macronix_spinand_manufacturer;
250 extern const struct spinand_manufacturer micron_spinand_manufacturer;
251 extern const struct spinand_manufacturer toshiba_spinand_manufacturer;
252 extern const struct spinand_manufacturer winbond_spinand_manufacturer;
253 extern const struct spinand_manufacturer dosilicon_spinand_manufacturer;
254 extern const struct spinand_manufacturer esmt_spinand_manufacturer;
255 extern const struct spinand_manufacturer xtx_spinand_manufacturer;
256 extern const struct spinand_manufacturer hyf_spinand_manufacturer;
257 extern const struct spinand_manufacturer fmsh_spinand_manufacturer;
258 extern const struct spinand_manufacturer foresee_spinand_manufacturer;
259 extern const struct spinand_manufacturer biwin_spinand_manufacturer;
260 extern const struct spinand_manufacturer etron_spinand_manufacturer;
261 extern const struct spinand_manufacturer jsc_spinand_manufacturer;
262 extern const struct spinand_manufacturer silicongo_spinand_manufacturer;
263 extern const struct spinand_manufacturer unim_spinand_manufacturer;
264 extern const struct spinand_manufacturer skyhigh_spinand_manufacturer;
265 
266 /**
267  * struct spinand_op_variants - SPI NAND operation variants
268  * @ops: the list of variants for a given operation
269  * @nops: the number of variants
270  *
271  * Some operations like read-from-cache/write-to-cache have several variants
272  * depending on the number of IO lines you use to transfer data or address
273  * cycles. This structure is a way to describe the different variants supported
274  * by a chip and let the core pick the best one based on the SPI mem controller
275  * capabilities.
276  */
277 struct spinand_op_variants {
278 	const struct spi_mem_op *ops;
279 	unsigned int nops;
280 };
281 
282 #define SPINAND_OP_VARIANTS(name, ...)					\
283 	const struct spinand_op_variants name = {			\
284 		.ops = (struct spi_mem_op[]) { __VA_ARGS__ },		\
285 		.nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) /	\
286 			sizeof(struct spi_mem_op),			\
287 	}
288 
289 /**
290  * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND
291  *		      chip
292  * @get_status: get the ECC status. Should return a positive number encoding
293  *		the number of corrected bitflips if correction was possible or
294  *		-EBADMSG if there are uncorrectable errors. I can also return
295  *		other negative error codes if the error is not caused by
296  *		uncorrectable bitflips
297  * @ooblayout: the OOB layout used by the on-die ECC implementation
298  */
299 struct spinand_ecc_info {
300 	int (*get_status)(struct spinand_device *spinand, u8 status);
301 	const struct mtd_ooblayout_ops *ooblayout;
302 };
303 
304 #define SPINAND_HAS_QE_BIT		BIT(0)
305 
306 /**
307  * struct spinand_info - Structure used to describe SPI NAND chips
308  * @model: model name
309  * @devid: device ID
310  * @flags: OR-ing of the SPINAND_XXX flags
311  * @memorg: memory organization
312  * @eccreq: ECC requirements
313  * @eccinfo: on-die ECC info
314  * @op_variants: operations variants
315  * @op_variants.read_cache: variants of the read-cache operation
316  * @op_variants.write_cache: variants of the write-cache operation
317  * @op_variants.update_cache: variants of the update-cache operation
318  * @select_target: function used to select a target/die. Required only for
319  *		   multi-die chips
320  *
321  * Each SPI NAND manufacturer driver should have a spinand_info table
322  * describing all the chips supported by the driver.
323  */
324 struct spinand_info {
325 	const char *model;
326 	struct spinand_devid devid;
327 	u32 flags;
328 	struct nand_memory_organization memorg;
329 	struct nand_ecc_req eccreq;
330 	struct spinand_ecc_info eccinfo;
331 	struct {
332 		const struct spinand_op_variants *read_cache;
333 		const struct spinand_op_variants *write_cache;
334 		const struct spinand_op_variants *update_cache;
335 	} op_variants;
336 	int (*select_target)(struct spinand_device *spinand,
337 			     unsigned int target);
338 };
339 
340 #define SPINAND_ID(__method, ...)					\
341 	{								\
342 		.id = (const u8[]){ __VA_ARGS__ },			\
343 		.len = sizeof((u8[]){ __VA_ARGS__ }),			\
344 		.method = __method,					\
345 	}
346 
347 #define SPINAND_INFO_OP_VARIANTS(__read, __write, __update)		\
348 	{								\
349 		.read_cache = __read,					\
350 		.write_cache = __write,					\
351 		.update_cache = __update,				\
352 	}
353 
354 #define SPINAND_ECCINFO(__ooblayout, __get_status)			\
355 	.eccinfo = {							\
356 		.ooblayout = __ooblayout,				\
357 		.get_status = __get_status,				\
358 	}
359 
360 #define SPINAND_SELECT_TARGET(__func)					\
361 	.select_target = __func,
362 
363 #define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants,	\
364 		     __flags, ...)					\
365 	{								\
366 		.model = __model,					\
367 		.devid = __id,						\
368 		.memorg = __memorg,					\
369 		.eccreq = __eccreq,					\
370 		.op_variants = __op_variants,				\
371 		.flags = __flags,					\
372 		__VA_ARGS__						\
373 	}
374 
375 /**
376  * struct spinand_device - SPI NAND device instance
377  * @base: NAND device instance
378  * @slave: pointer to the SPI slave object
379  * @lock: lock used to serialize accesses to the NAND
380  * @id: NAND ID as returned by READ_ID
381  * @flags: NAND flags
382  * @op_templates: various SPI mem op templates
383  * @op_templates.read_cache: read cache op template
384  * @op_templates.write_cache: write cache op template
385  * @op_templates.update_cache: update cache op template
386  * @select_target: select a specific target/die. Usually called before sending
387  *		   a command addressing a page or an eraseblock embedded in
388  *		   this die. Only required if your chip exposes several dies
389  * @cur_target: currently selected target/die
390  * @eccinfo: on-die ECC information
391  * @cfg_cache: config register cache. One entry per die
392  * @databuf: bounce buffer for data
393  * @oobbuf: bounce buffer for OOB data
394  * @scratchbuf: buffer used for everything but page accesses. This is needed
395  *		because the spi-mem interface explicitly requests that buffers
396  *		passed in spi_mem_op be DMA-able, so we can't based the bufs on
397  *		the stack
398  * @manufacturer: SPI NAND manufacturer information
399  * @priv: manufacturer private data
400  */
401 struct spinand_device {
402 	struct nand_device base;
403 #ifndef __UBOOT__
404 	struct spi_mem *spimem;
405 	struct mutex lock;
406 #else
407 	struct spi_slave *slave;
408 #endif
409 	struct spinand_id id;
410 	u32 flags;
411 
412 	struct {
413 		const struct spi_mem_op *read_cache;
414 		const struct spi_mem_op *write_cache;
415 		const struct spi_mem_op *update_cache;
416 	} op_templates;
417 
418 	int (*select_target)(struct spinand_device *spinand,
419 			     unsigned int target);
420 	unsigned int cur_target;
421 
422 	struct spinand_ecc_info eccinfo;
423 
424 	u8 *cfg_cache;
425 	u8 *databuf;
426 	u8 *oobbuf;
427 	u8 *scratchbuf;
428 	const struct spinand_manufacturer *manufacturer;
429 	void *priv;
430 };
431 
432 /**
433  * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance
434  * @mtd: MTD instance
435  *
436  * Return: the SPI NAND device attached to @mtd.
437  */
438 static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd)
439 {
440 	return container_of(mtd_to_nanddev(mtd), struct spinand_device, base);
441 }
442 
443 /**
444  * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device
445  * @spinand: SPI NAND device
446  *
447  * Return: the MTD device embedded in @spinand.
448  */
449 static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand)
450 {
451 	return nanddev_to_mtd(&spinand->base);
452 }
453 
454 /**
455  * nand_to_spinand() - Get the SPI NAND device embedding an NAND object
456  * @nand: NAND object
457  *
458  * Return: the SPI NAND device embedding @nand.
459  */
460 static inline struct spinand_device *nand_to_spinand(struct nand_device *nand)
461 {
462 	return container_of(nand, struct spinand_device, base);
463 }
464 
465 /**
466  * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object
467  * @spinand: SPI NAND device
468  *
469  * Return: the NAND device embedded in @spinand.
470  */
471 static inline struct nand_device *
472 spinand_to_nand(struct spinand_device *spinand)
473 {
474 	return &spinand->base;
475 }
476 
477 /**
478  * spinand_set_of_node - Attach a DT node to a SPI NAND device
479  * @spinand: SPI NAND device
480  * @np: DT node
481  *
482  * Attach a DT node to a SPI NAND device.
483  */
484 static inline void spinand_set_of_node(struct spinand_device *spinand,
485 				       const struct device_node *np)
486 {
487 	nanddev_set_of_node(&spinand->base, np);
488 }
489 
490 int spinand_match_and_init(struct spinand_device *spinand,
491 			   const struct spinand_info *table,
492 			   unsigned int table_size,
493 			   enum spinand_readid_method rdid_method);
494 
495 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val);
496 int spinand_select_target(struct spinand_device *spinand, unsigned int target);
497 
498 #endif /* __LINUX_MTD_SPINAND_H */
499