1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2016-2017 Micron Technology, Inc. 4 * 5 * Authors: 6 * Peter Pan <peterpandong@micron.com> 7 */ 8 #ifndef __LINUX_MTD_SPINAND_H 9 #define __LINUX_MTD_SPINAND_H 10 11 #ifndef __UBOOT__ 12 #include <linux/mutex.h> 13 #include <linux/bitops.h> 14 #include <linux/device.h> 15 #include <linux/mtd/mtd.h> 16 #include <linux/mtd/nand.h> 17 #include <linux/spi/spi.h> 18 #include <linux/spi/spi-mem.h> 19 #else 20 #include <common.h> 21 #include <spi.h> 22 #include <spi-mem.h> 23 #include <linux/mtd/nand.h> 24 #endif 25 26 /** 27 * Standard SPI NAND flash operations 28 */ 29 30 #define SPINAND_RESET_OP \ 31 SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1), \ 32 SPI_MEM_OP_NO_ADDR, \ 33 SPI_MEM_OP_NO_DUMMY, \ 34 SPI_MEM_OP_NO_DATA) 35 36 #define SPINAND_WR_EN_DIS_OP(enable) \ 37 SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1), \ 38 SPI_MEM_OP_NO_ADDR, \ 39 SPI_MEM_OP_NO_DUMMY, \ 40 SPI_MEM_OP_NO_DATA) 41 42 #define SPINAND_READID_OP(naddr, ndummy, buf, len) \ 43 SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1), \ 44 SPI_MEM_OP_ADDR(naddr, 0, 1), \ 45 SPI_MEM_OP_DUMMY(ndummy, 1), \ 46 SPI_MEM_OP_DATA_IN(len, buf, 1)) 47 48 #define SPINAND_SET_FEATURE_OP(reg, valptr) \ 49 SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1), \ 50 SPI_MEM_OP_ADDR(1, reg, 1), \ 51 SPI_MEM_OP_NO_DUMMY, \ 52 SPI_MEM_OP_DATA_OUT(1, valptr, 1)) 53 54 #define SPINAND_GET_FEATURE_OP(reg, valptr) \ 55 SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1), \ 56 SPI_MEM_OP_ADDR(1, reg, 1), \ 57 SPI_MEM_OP_NO_DUMMY, \ 58 SPI_MEM_OP_DATA_IN(1, valptr, 1)) 59 60 #define SPINAND_BLK_ERASE_OP(addr) \ 61 SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1), \ 62 SPI_MEM_OP_ADDR(3, addr, 1), \ 63 SPI_MEM_OP_NO_DUMMY, \ 64 SPI_MEM_OP_NO_DATA) 65 66 #define SPINAND_PAGE_READ_OP(addr) \ 67 SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1), \ 68 SPI_MEM_OP_ADDR(3, addr, 1), \ 69 SPI_MEM_OP_NO_DUMMY, \ 70 SPI_MEM_OP_NO_DATA) 71 72 #define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len) \ 73 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \ 74 SPI_MEM_OP_ADDR(2, addr, 1), \ 75 SPI_MEM_OP_DUMMY(ndummy, 1), \ 76 SPI_MEM_OP_DATA_IN(len, buf, 1)) 77 78 #define SPINAND_PAGE_READ_FROM_CACHE_OP_3A(fast, addr, ndummy, buf, len) \ 79 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \ 80 SPI_MEM_OP_ADDR(3, addr, 1), \ 81 SPI_MEM_OP_DUMMY(ndummy, 1), \ 82 SPI_MEM_OP_DATA_IN(len, buf, 1)) 83 84 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len) \ 85 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \ 86 SPI_MEM_OP_ADDR(2, addr, 1), \ 87 SPI_MEM_OP_DUMMY(ndummy, 1), \ 88 SPI_MEM_OP_DATA_IN(len, buf, 2)) 89 90 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A(addr, ndummy, buf, len) \ 91 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \ 92 SPI_MEM_OP_ADDR(3, addr, 1), \ 93 SPI_MEM_OP_DUMMY(ndummy, 1), \ 94 SPI_MEM_OP_DATA_IN(len, buf, 2)) 95 96 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len) \ 97 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \ 98 SPI_MEM_OP_ADDR(2, addr, 1), \ 99 SPI_MEM_OP_DUMMY(ndummy, 1), \ 100 SPI_MEM_OP_DATA_IN(len, buf, 4)) 101 102 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A(addr, ndummy, buf, len) \ 103 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \ 104 SPI_MEM_OP_ADDR(3, addr, 1), \ 105 SPI_MEM_OP_DUMMY(ndummy, 1), \ 106 SPI_MEM_OP_DATA_IN(len, buf, 4)) 107 108 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len) \ 109 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \ 110 SPI_MEM_OP_ADDR(2, addr, 2), \ 111 SPI_MEM_OP_DUMMY(ndummy, 2), \ 112 SPI_MEM_OP_DATA_IN(len, buf, 2)) 113 114 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP_3A(addr, ndummy, buf, len) \ 115 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \ 116 SPI_MEM_OP_ADDR(3, addr, 2), \ 117 SPI_MEM_OP_DUMMY(ndummy, 2), \ 118 SPI_MEM_OP_DATA_IN(len, buf, 2)) 119 120 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len) \ 121 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \ 122 SPI_MEM_OP_ADDR(2, addr, 4), \ 123 SPI_MEM_OP_DUMMY(ndummy, 4), \ 124 SPI_MEM_OP_DATA_IN(len, buf, 4)) 125 126 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP_3A(addr, ndummy, buf, len) \ 127 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \ 128 SPI_MEM_OP_ADDR(3, addr, 4), \ 129 SPI_MEM_OP_DUMMY(ndummy, 4), \ 130 SPI_MEM_OP_DATA_IN(len, buf, 4)) 131 132 #define SPINAND_PROG_EXEC_OP(addr) \ 133 SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1), \ 134 SPI_MEM_OP_ADDR(3, addr, 1), \ 135 SPI_MEM_OP_NO_DUMMY, \ 136 SPI_MEM_OP_NO_DATA) 137 138 #define SPINAND_PROG_LOAD(reset, addr, buf, len) \ 139 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1), \ 140 SPI_MEM_OP_ADDR(2, addr, 1), \ 141 SPI_MEM_OP_NO_DUMMY, \ 142 SPI_MEM_OP_DATA_OUT(len, buf, 1)) 143 144 #define SPINAND_PROG_LOAD_X4(reset, addr, buf, len) \ 145 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1), \ 146 SPI_MEM_OP_ADDR(2, addr, 1), \ 147 SPI_MEM_OP_NO_DUMMY, \ 148 SPI_MEM_OP_DATA_OUT(len, buf, 4)) 149 150 /** 151 * Standard SPI NAND flash commands 152 */ 153 #define SPINAND_CMD_PROG_LOAD_X4 0x32 154 #define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4 0x34 155 156 /* feature register */ 157 #define REG_BLOCK_LOCK 0xa0 158 #define BL_ALL_UNLOCKED 0x00 159 160 /* configuration register */ 161 #define REG_CFG 0xb0 162 #define CFG_OTP_ENABLE BIT(6) 163 #define CFG_ECC_ENABLE BIT(4) 164 #define CFG_QUAD_ENABLE BIT(0) 165 166 /* status register */ 167 #define REG_STATUS 0xc0 168 #define STATUS_BUSY BIT(0) 169 #define STATUS_ERASE_FAILED BIT(2) 170 #define STATUS_PROG_FAILED BIT(3) 171 #define STATUS_ECC_MASK GENMASK(5, 4) 172 #define STATUS_ECC_NO_BITFLIPS (0 << 4) 173 #define STATUS_ECC_HAS_BITFLIPS (1 << 4) 174 #define STATUS_ECC_UNCOR_ERROR (2 << 4) 175 176 struct spinand_op; 177 struct spinand_device; 178 179 #define SPINAND_MAX_ID_LEN 4 180 181 /** 182 * struct spinand_id - SPI NAND id structure 183 * @data: buffer containing the id bytes. Currently 4 bytes large, but can 184 * be extended if required 185 * @len: ID length 186 */ 187 struct spinand_id { 188 u8 data[SPINAND_MAX_ID_LEN]; 189 int len; 190 }; 191 192 enum spinand_readid_method { 193 SPINAND_READID_METHOD_OPCODE, 194 SPINAND_READID_METHOD_OPCODE_ADDR, 195 SPINAND_READID_METHOD_OPCODE_DUMMY, 196 }; 197 198 /** 199 * struct spinand_devid - SPI NAND device id structure 200 * @id: device id of current chip 201 * @len: number of bytes in device id 202 * @method: method to read chip id 203 * There are 3 possible variants: 204 * SPINAND_READID_METHOD_OPCODE: chip id is returned immediately 205 * after read_id opcode. 206 * SPINAND_READID_METHOD_OPCODE_ADDR: chip id is returned after 207 * read_id opcode + 1-byte address. 208 * SPINAND_READID_METHOD_OPCODE_DUMMY: chip id is returned after 209 * read_id opcode + 1 dummy byte. 210 */ 211 struct spinand_devid { 212 const u8 *id; 213 const u8 len; 214 const enum spinand_readid_method method; 215 }; 216 217 /** 218 * struct manufacurer_ops - SPI NAND manufacturer specific operations 219 * @init: initialize a SPI NAND device 220 * @cleanup: cleanup a SPI NAND device 221 * 222 * Each SPI NAND manufacturer driver should implement this interface so that 223 * NAND chips coming from this vendor can be initialized properly. 224 */ 225 struct spinand_manufacturer_ops { 226 int (*init)(struct spinand_device *spinand); 227 void (*cleanup)(struct spinand_device *spinand); 228 }; 229 230 /** 231 * struct spinand_manufacturer - SPI NAND manufacturer instance 232 * @id: manufacturer ID 233 * @name: manufacturer name 234 * @devid_len: number of bytes in device ID 235 * @chips: supported SPI NANDs under current manufacturer 236 * @nchips: number of SPI NANDs available in chips array 237 * @ops: manufacturer operations 238 */ 239 struct spinand_manufacturer { 240 u8 id; 241 char *name; 242 const struct spinand_info *chips; 243 const size_t nchips; 244 const struct spinand_manufacturer_ops *ops; 245 }; 246 247 /* SPI NAND manufacturers */ 248 extern const struct spinand_manufacturer gigadevice_spinand_manufacturer; 249 extern const struct spinand_manufacturer macronix_spinand_manufacturer; 250 extern const struct spinand_manufacturer micron_spinand_manufacturer; 251 extern const struct spinand_manufacturer toshiba_spinand_manufacturer; 252 extern const struct spinand_manufacturer winbond_spinand_manufacturer; 253 extern const struct spinand_manufacturer dosilicon_spinand_manufacturer; 254 extern const struct spinand_manufacturer esmt_spinand_manufacturer; 255 extern const struct spinand_manufacturer xtx_spinand_manufacturer; 256 extern const struct spinand_manufacturer hyf_spinand_manufacturer; 257 extern const struct spinand_manufacturer fmsh_spinand_manufacturer; 258 extern const struct spinand_manufacturer foresee_spinand_manufacturer; 259 extern const struct spinand_manufacturer biwin_spinand_manufacturer; 260 extern const struct spinand_manufacturer etron_spinand_manufacturer; 261 extern const struct spinand_manufacturer jsc_spinand_manufacturer; 262 extern const struct spinand_manufacturer silicongo_spinand_manufacturer; 263 extern const struct spinand_manufacturer unim_spinand_manufacturer; 264 265 /** 266 * struct spinand_op_variants - SPI NAND operation variants 267 * @ops: the list of variants for a given operation 268 * @nops: the number of variants 269 * 270 * Some operations like read-from-cache/write-to-cache have several variants 271 * depending on the number of IO lines you use to transfer data or address 272 * cycles. This structure is a way to describe the different variants supported 273 * by a chip and let the core pick the best one based on the SPI mem controller 274 * capabilities. 275 */ 276 struct spinand_op_variants { 277 const struct spi_mem_op *ops; 278 unsigned int nops; 279 }; 280 281 #define SPINAND_OP_VARIANTS(name, ...) \ 282 const struct spinand_op_variants name = { \ 283 .ops = (struct spi_mem_op[]) { __VA_ARGS__ }, \ 284 .nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) / \ 285 sizeof(struct spi_mem_op), \ 286 } 287 288 /** 289 * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND 290 * chip 291 * @get_status: get the ECC status. Should return a positive number encoding 292 * the number of corrected bitflips if correction was possible or 293 * -EBADMSG if there are uncorrectable errors. I can also return 294 * other negative error codes if the error is not caused by 295 * uncorrectable bitflips 296 * @ooblayout: the OOB layout used by the on-die ECC implementation 297 */ 298 struct spinand_ecc_info { 299 int (*get_status)(struct spinand_device *spinand, u8 status); 300 const struct mtd_ooblayout_ops *ooblayout; 301 }; 302 303 #define SPINAND_HAS_QE_BIT BIT(0) 304 305 /** 306 * struct spinand_info - Structure used to describe SPI NAND chips 307 * @model: model name 308 * @devid: device ID 309 * @flags: OR-ing of the SPINAND_XXX flags 310 * @memorg: memory organization 311 * @eccreq: ECC requirements 312 * @eccinfo: on-die ECC info 313 * @op_variants: operations variants 314 * @op_variants.read_cache: variants of the read-cache operation 315 * @op_variants.write_cache: variants of the write-cache operation 316 * @op_variants.update_cache: variants of the update-cache operation 317 * @select_target: function used to select a target/die. Required only for 318 * multi-die chips 319 * 320 * Each SPI NAND manufacturer driver should have a spinand_info table 321 * describing all the chips supported by the driver. 322 */ 323 struct spinand_info { 324 const char *model; 325 struct spinand_devid devid; 326 u32 flags; 327 struct nand_memory_organization memorg; 328 struct nand_ecc_req eccreq; 329 struct spinand_ecc_info eccinfo; 330 struct { 331 const struct spinand_op_variants *read_cache; 332 const struct spinand_op_variants *write_cache; 333 const struct spinand_op_variants *update_cache; 334 } op_variants; 335 int (*select_target)(struct spinand_device *spinand, 336 unsigned int target); 337 }; 338 339 #define SPINAND_ID(__method, ...) \ 340 { \ 341 .id = (const u8[]){ __VA_ARGS__ }, \ 342 .len = sizeof((u8[]){ __VA_ARGS__ }), \ 343 .method = __method, \ 344 } 345 346 #define SPINAND_INFO_OP_VARIANTS(__read, __write, __update) \ 347 { \ 348 .read_cache = __read, \ 349 .write_cache = __write, \ 350 .update_cache = __update, \ 351 } 352 353 #define SPINAND_ECCINFO(__ooblayout, __get_status) \ 354 .eccinfo = { \ 355 .ooblayout = __ooblayout, \ 356 .get_status = __get_status, \ 357 } 358 359 #define SPINAND_SELECT_TARGET(__func) \ 360 .select_target = __func, 361 362 #define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants, \ 363 __flags, ...) \ 364 { \ 365 .model = __model, \ 366 .devid = __id, \ 367 .memorg = __memorg, \ 368 .eccreq = __eccreq, \ 369 .op_variants = __op_variants, \ 370 .flags = __flags, \ 371 __VA_ARGS__ \ 372 } 373 374 /** 375 * struct spinand_device - SPI NAND device instance 376 * @base: NAND device instance 377 * @slave: pointer to the SPI slave object 378 * @lock: lock used to serialize accesses to the NAND 379 * @id: NAND ID as returned by READ_ID 380 * @flags: NAND flags 381 * @op_templates: various SPI mem op templates 382 * @op_templates.read_cache: read cache op template 383 * @op_templates.write_cache: write cache op template 384 * @op_templates.update_cache: update cache op template 385 * @select_target: select a specific target/die. Usually called before sending 386 * a command addressing a page or an eraseblock embedded in 387 * this die. Only required if your chip exposes several dies 388 * @cur_target: currently selected target/die 389 * @eccinfo: on-die ECC information 390 * @cfg_cache: config register cache. One entry per die 391 * @databuf: bounce buffer for data 392 * @oobbuf: bounce buffer for OOB data 393 * @scratchbuf: buffer used for everything but page accesses. This is needed 394 * because the spi-mem interface explicitly requests that buffers 395 * passed in spi_mem_op be DMA-able, so we can't based the bufs on 396 * the stack 397 * @manufacturer: SPI NAND manufacturer information 398 * @priv: manufacturer private data 399 */ 400 struct spinand_device { 401 struct nand_device base; 402 #ifndef __UBOOT__ 403 struct spi_mem *spimem; 404 struct mutex lock; 405 #else 406 struct spi_slave *slave; 407 #endif 408 struct spinand_id id; 409 u32 flags; 410 411 struct { 412 const struct spi_mem_op *read_cache; 413 const struct spi_mem_op *write_cache; 414 const struct spi_mem_op *update_cache; 415 } op_templates; 416 417 int (*select_target)(struct spinand_device *spinand, 418 unsigned int target); 419 unsigned int cur_target; 420 421 struct spinand_ecc_info eccinfo; 422 423 u8 *cfg_cache; 424 u8 *databuf; 425 u8 *oobbuf; 426 u8 *scratchbuf; 427 const struct spinand_manufacturer *manufacturer; 428 void *priv; 429 }; 430 431 /** 432 * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance 433 * @mtd: MTD instance 434 * 435 * Return: the SPI NAND device attached to @mtd. 436 */ 437 static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd) 438 { 439 return container_of(mtd_to_nanddev(mtd), struct spinand_device, base); 440 } 441 442 /** 443 * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device 444 * @spinand: SPI NAND device 445 * 446 * Return: the MTD device embedded in @spinand. 447 */ 448 static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand) 449 { 450 return nanddev_to_mtd(&spinand->base); 451 } 452 453 /** 454 * nand_to_spinand() - Get the SPI NAND device embedding an NAND object 455 * @nand: NAND object 456 * 457 * Return: the SPI NAND device embedding @nand. 458 */ 459 static inline struct spinand_device *nand_to_spinand(struct nand_device *nand) 460 { 461 return container_of(nand, struct spinand_device, base); 462 } 463 464 /** 465 * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object 466 * @spinand: SPI NAND device 467 * 468 * Return: the NAND device embedded in @spinand. 469 */ 470 static inline struct nand_device * 471 spinand_to_nand(struct spinand_device *spinand) 472 { 473 return &spinand->base; 474 } 475 476 /** 477 * spinand_set_of_node - Attach a DT node to a SPI NAND device 478 * @spinand: SPI NAND device 479 * @np: DT node 480 * 481 * Attach a DT node to a SPI NAND device. 482 */ 483 static inline void spinand_set_of_node(struct spinand_device *spinand, 484 const struct device_node *np) 485 { 486 nanddev_set_of_node(&spinand->base, np); 487 } 488 489 int spinand_match_and_init(struct spinand_device *spinand, 490 const struct spinand_info *table, 491 unsigned int table_size, 492 enum spinand_readid_method rdid_method); 493 494 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val); 495 int spinand_select_target(struct spinand_device *spinand, unsigned int target); 496 497 #endif /* __LINUX_MTD_SPINAND_H */ 498