1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright 2017 - Free Electrons 4 * 5 * Authors: 6 * Boris Brezillon <boris.brezillon@free-electrons.com> 7 * Peter Pan <peterpandong@micron.com> 8 */ 9 10 #ifndef __LINUX_MTD_NAND_H 11 #define __LINUX_MTD_NAND_H 12 13 #include <linux/mtd/mtd.h> 14 15 /** 16 * struct nand_memory_organization - Memory organization structure 17 * @bits_per_cell: number of bits per NAND cell 18 * @pagesize: page size 19 * @oobsize: OOB area size 20 * @pages_per_eraseblock: number of pages per eraseblock 21 * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number) 22 * @planes_per_lun: number of planes per LUN 23 * @luns_per_target: number of LUN per target (target is a synonym for die) 24 * @ntargets: total number of targets exposed by the NAND device 25 */ 26 struct nand_memory_organization { 27 unsigned int bits_per_cell; 28 unsigned int pagesize; 29 unsigned int oobsize; 30 unsigned int pages_per_eraseblock; 31 unsigned int eraseblocks_per_lun; 32 unsigned int planes_per_lun; 33 unsigned int luns_per_target; 34 unsigned int ntargets; 35 }; 36 37 #define NAND_MEMORG(bpc, ps, os, ppe, epl, ppl, lpt, nt) \ 38 { \ 39 .bits_per_cell = (bpc), \ 40 .pagesize = (ps), \ 41 .oobsize = (os), \ 42 .pages_per_eraseblock = (ppe), \ 43 .eraseblocks_per_lun = (epl), \ 44 .planes_per_lun = (ppl), \ 45 .luns_per_target = (lpt), \ 46 .ntargets = (nt), \ 47 } 48 49 /** 50 * struct nand_row_converter - Information needed to convert an absolute offset 51 * into a row address 52 * @lun_addr_shift: position of the LUN identifier in the row address 53 * @eraseblock_addr_shift: position of the eraseblock identifier in the row 54 * address 55 */ 56 struct nand_row_converter { 57 unsigned int lun_addr_shift; 58 unsigned int eraseblock_addr_shift; 59 }; 60 61 /** 62 * struct nand_pos - NAND position object 63 * @target: the NAND target/die 64 * @lun: the LUN identifier 65 * @plane: the plane within the LUN 66 * @eraseblock: the eraseblock within the LUN 67 * @page: the page within the LUN 68 * 69 * These information are usually used by specific sub-layers to select the 70 * appropriate target/die and generate a row address to pass to the device. 71 */ 72 struct nand_pos { 73 unsigned int target; 74 unsigned int lun; 75 unsigned int plane; 76 unsigned int eraseblock; 77 unsigned int page; 78 }; 79 80 /** 81 * struct nand_page_io_req - NAND I/O request object 82 * @pos: the position this I/O request is targeting 83 * @dataoffs: the offset within the page 84 * @datalen: number of data bytes to read from/write to this page 85 * @databuf: buffer to store data in or get data from 86 * @ooboffs: the OOB offset within the page 87 * @ooblen: the number of OOB bytes to read from/write to this page 88 * @oobbuf: buffer to store OOB data in or get OOB data from 89 * 90 * This object is used to pass per-page I/O requests to NAND sub-layers. This 91 * way all useful information are already formatted in a useful way and 92 * specific NAND layers can focus on translating these information into 93 * specific commands/operations. 94 */ 95 struct nand_page_io_req { 96 struct nand_pos pos; 97 unsigned int dataoffs; 98 unsigned int datalen; 99 union { 100 const void *out; 101 void *in; 102 } databuf; 103 unsigned int ooboffs; 104 unsigned int ooblen; 105 union { 106 const void *out; 107 void *in; 108 } oobbuf; 109 }; 110 111 /** 112 * struct nand_ecc_req - NAND ECC requirements 113 * @strength: ECC strength 114 * @step_size: ECC step/block size 115 */ 116 struct nand_ecc_req { 117 unsigned int strength; 118 unsigned int step_size; 119 }; 120 121 #define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) } 122 123 /** 124 * struct nand_bbt - bad block table object 125 * @cache: in memory BBT cache 126 */ 127 struct nand_bbt { 128 unsigned long *cache; 129 }; 130 131 struct nand_device; 132 133 /** 134 * struct nand_ops - NAND operations 135 * @erase: erase a specific block. No need to check if the block is bad before 136 * erasing, this has been taken care of by the generic NAND layer 137 * @markbad: mark a specific block bad. No need to check if the block is 138 * already marked bad, this has been taken care of by the generic 139 * NAND layer. This method should just write the BBM (Bad Block 140 * Marker) so that future call to struct_nand_ops->isbad() return 141 * true 142 * @isbad: check whether a block is bad or not. This method should just read 143 * the BBM and return whether the block is bad or not based on what it 144 * reads 145 * 146 * These are all low level operations that should be implemented by specialized 147 * NAND layers (SPI NAND, raw NAND, ...). 148 */ 149 struct nand_ops { 150 int (*erase)(struct nand_device *nand, const struct nand_pos *pos); 151 int (*markbad)(struct nand_device *nand, const struct nand_pos *pos); 152 bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos); 153 }; 154 155 /** 156 * struct nand_device - NAND device 157 * @mtd: MTD instance attached to the NAND device 158 * @memorg: memory layout 159 * @eccreq: ECC requirements 160 * @rowconv: position to row address converter 161 * @bbt: bad block table info 162 * @ops: NAND operations attached to the NAND device 163 * 164 * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND) 165 * should declare their own NAND object embedding a nand_device struct (that's 166 * how inheritance is done). 167 * struct_nand_device->memorg and struct_nand_device->eccreq should be filled 168 * at device detection time to reflect the NAND device 169 * capabilities/requirements. Once this is done nanddev_init() can be called. 170 * It will take care of converting NAND information into MTD ones, which means 171 * the specialized NAND layers should never manually tweak 172 * struct_nand_device->mtd except for the ->_read/write() hooks. 173 */ 174 struct nand_device { 175 struct mtd_info *mtd; 176 struct nand_memory_organization memorg; 177 struct nand_ecc_req eccreq; 178 struct nand_row_converter rowconv; 179 struct nand_bbt bbt; 180 const struct nand_ops *ops; 181 }; 182 183 /** 184 * struct nand_io_iter - NAND I/O iterator 185 * @req: current I/O request 186 * @oobbytes_per_page: maximum number of OOB bytes per page 187 * @dataleft: remaining number of data bytes to read/write 188 * @oobleft: remaining number of OOB bytes to read/write 189 * 190 * Can be used by specialized NAND layers to iterate over all pages covered 191 * by an MTD I/O request, which should greatly simplifies the boiler-plate 192 * code needed to read/write data from/to a NAND device. 193 */ 194 struct nand_io_iter { 195 struct nand_page_io_req req; 196 unsigned int oobbytes_per_page; 197 unsigned int dataleft; 198 unsigned int oobleft; 199 }; 200 201 /** 202 * mtd_to_nanddev() - Get the NAND device attached to the MTD instance 203 * @mtd: MTD instance 204 * 205 * Return: the NAND device embedding @mtd. 206 */ 207 static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd) 208 { 209 return mtd->priv; 210 } 211 212 /** 213 * nanddev_to_mtd() - Get the MTD device attached to a NAND device 214 * @nand: NAND device 215 * 216 * Return: the MTD device embedded in @nand. 217 */ 218 static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand) 219 { 220 return nand->mtd; 221 } 222 223 /* 224 * nanddev_bits_per_cell() - Get the number of bits per cell 225 * @nand: NAND device 226 * 227 * Return: the number of bits per cell. 228 */ 229 static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand) 230 { 231 return nand->memorg.bits_per_cell; 232 } 233 234 /** 235 * nanddev_page_size() - Get NAND page size 236 * @nand: NAND device 237 * 238 * Return: the page size. 239 */ 240 static inline size_t nanddev_page_size(const struct nand_device *nand) 241 { 242 return nand->memorg.pagesize; 243 } 244 245 /** 246 * nanddev_per_page_oobsize() - Get NAND OOB size 247 * @nand: NAND device 248 * 249 * Return: the OOB size. 250 */ 251 static inline unsigned int 252 nanddev_per_page_oobsize(const struct nand_device *nand) 253 { 254 return nand->memorg.oobsize; 255 } 256 257 /** 258 * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock 259 * @nand: NAND device 260 * 261 * Return: the number of pages per eraseblock. 262 */ 263 static inline unsigned int 264 nanddev_pages_per_eraseblock(const struct nand_device *nand) 265 { 266 return nand->memorg.pages_per_eraseblock; 267 } 268 269 /** 270 * nanddev_per_page_oobsize() - Get NAND erase block size 271 * @nand: NAND device 272 * 273 * Return: the eraseblock size. 274 */ 275 static inline size_t nanddev_eraseblock_size(const struct nand_device *nand) 276 { 277 return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock; 278 } 279 280 /** 281 * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN 282 * @nand: NAND device 283 * 284 * Return: the number of eraseblocks per LUN. 285 */ 286 static inline unsigned int 287 nanddev_eraseblocks_per_lun(const struct nand_device *nand) 288 { 289 return nand->memorg.eraseblocks_per_lun; 290 } 291 292 /** 293 * nanddev_target_size() - Get the total size provided by a single target/die 294 * @nand: NAND device 295 * 296 * Return: the total size exposed by a single target/die in bytes. 297 */ 298 static inline u64 nanddev_target_size(const struct nand_device *nand) 299 { 300 return (u64)nand->memorg.luns_per_target * 301 nand->memorg.eraseblocks_per_lun * 302 nand->memorg.pages_per_eraseblock * 303 nand->memorg.pagesize; 304 } 305 306 /** 307 * nanddev_ntarget() - Get the total of targets 308 * @nand: NAND device 309 * 310 * Return: the number of targets/dies exposed by @nand. 311 */ 312 static inline unsigned int nanddev_ntargets(const struct nand_device *nand) 313 { 314 return nand->memorg.ntargets; 315 } 316 317 /** 318 * nanddev_neraseblocks() - Get the total number of erasablocks 319 * @nand: NAND device 320 * 321 * Return: the total number of eraseblocks exposed by @nand. 322 */ 323 static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand) 324 { 325 return (u64)nand->memorg.luns_per_target * 326 nand->memorg.eraseblocks_per_lun * 327 nand->memorg.pages_per_eraseblock; 328 } 329 330 /** 331 * nanddev_size() - Get NAND size 332 * @nand: NAND device 333 * 334 * Return: the total size (in bytes) exposed by @nand. 335 */ 336 static inline u64 nanddev_size(const struct nand_device *nand) 337 { 338 return nanddev_target_size(nand) * nanddev_ntargets(nand); 339 } 340 341 /** 342 * nanddev_get_memorg() - Extract memory organization info from a NAND device 343 * @nand: NAND device 344 * 345 * This can be used by the upper layer to fill the memorg info before calling 346 * nanddev_init(). 347 * 348 * Return: the memorg object embedded in the NAND device. 349 */ 350 static inline struct nand_memory_organization * 351 nanddev_get_memorg(struct nand_device *nand) 352 { 353 return &nand->memorg; 354 } 355 356 int nanddev_init(struct nand_device *nand, const struct nand_ops *ops, 357 struct module *owner); 358 void nanddev_cleanup(struct nand_device *nand); 359 360 /** 361 * nanddev_register() - Register a NAND device 362 * @nand: NAND device 363 * 364 * Register a NAND device. 365 * This function is just a wrapper around mtd_device_register() 366 * registering the MTD device embedded in @nand. 367 * 368 * Return: 0 in case of success, a negative error code otherwise. 369 */ 370 static inline int nanddev_register(struct nand_device *nand) 371 { 372 return mtd_device_register(nand->mtd, NULL, 0); 373 } 374 375 /** 376 * nanddev_unregister() - Unregister a NAND device 377 * @nand: NAND device 378 * 379 * Unregister a NAND device. 380 * This function is just a wrapper around mtd_device_unregister() 381 * unregistering the MTD device embedded in @nand. 382 * 383 * Return: 0 in case of success, a negative error code otherwise. 384 */ 385 static inline int nanddev_unregister(struct nand_device *nand) 386 { 387 return mtd_device_unregister(nand->mtd); 388 } 389 390 /** 391 * nanddev_set_of_node() - Attach a DT node to a NAND device 392 * @nand: NAND device 393 * @np: DT node 394 * 395 * Attach a DT node to a NAND device. 396 */ 397 static inline void nanddev_set_of_node(struct nand_device *nand, 398 const struct device_node *np) 399 { 400 mtd_set_of_node(nand->mtd, np); 401 } 402 403 /** 404 * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device 405 * @nand: NAND device 406 * 407 * Return: the DT node attached to @nand. 408 */ 409 static inline const struct device_node *nanddev_get_of_node(struct nand_device *nand) 410 { 411 return mtd_get_of_node(nand->mtd); 412 } 413 414 /** 415 * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position 416 * @nand: NAND device 417 * @offs: absolute NAND offset (usually passed by the MTD layer) 418 * @pos: a NAND position object to fill in 419 * 420 * Converts @offs into a nand_pos representation. 421 * 422 * Return: the offset within the NAND page pointed by @pos. 423 */ 424 static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand, 425 loff_t offs, 426 struct nand_pos *pos) 427 { 428 unsigned int pageoffs; 429 u64 tmp = offs; 430 431 pageoffs = do_div(tmp, nand->memorg.pagesize); 432 pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock); 433 pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun); 434 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun; 435 pos->lun = do_div(tmp, nand->memorg.luns_per_target); 436 pos->target = tmp; 437 438 return pageoffs; 439 } 440 441 /** 442 * nanddev_pos_cmp() - Compare two NAND positions 443 * @a: First NAND position 444 * @b: Second NAND position 445 * 446 * Compares two NAND positions. 447 * 448 * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b. 449 */ 450 static inline int nanddev_pos_cmp(const struct nand_pos *a, 451 const struct nand_pos *b) 452 { 453 if (a->target != b->target) 454 return a->target < b->target ? -1 : 1; 455 456 if (a->lun != b->lun) 457 return a->lun < b->lun ? -1 : 1; 458 459 if (a->eraseblock != b->eraseblock) 460 return a->eraseblock < b->eraseblock ? -1 : 1; 461 462 if (a->page != b->page) 463 return a->page < b->page ? -1 : 1; 464 465 return 0; 466 } 467 468 /** 469 * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset 470 * @nand: NAND device 471 * @pos: the NAND position to convert 472 * 473 * Converts @pos NAND position into an absolute offset. 474 * 475 * Return: the absolute offset. Note that @pos points to the beginning of a 476 * page, if one wants to point to a specific offset within this page 477 * the returned offset has to be adjusted manually. 478 */ 479 static inline loff_t nanddev_pos_to_offs(struct nand_device *nand, 480 const struct nand_pos *pos) 481 { 482 unsigned int npages; 483 484 npages = pos->page + 485 ((pos->eraseblock + 486 (pos->lun + 487 (pos->target * nand->memorg.luns_per_target)) * 488 nand->memorg.eraseblocks_per_lun) * 489 nand->memorg.pages_per_eraseblock); 490 491 return (loff_t)npages * nand->memorg.pagesize; 492 } 493 494 /** 495 * nanddev_pos_to_row() - Extract a row address from a NAND position 496 * @nand: NAND device 497 * @pos: the position to convert 498 * 499 * Converts a NAND position into a row address that can then be passed to the 500 * device. 501 * 502 * Return: the row address extracted from @pos. 503 */ 504 static inline unsigned int nanddev_pos_to_row(struct nand_device *nand, 505 const struct nand_pos *pos) 506 { 507 return (pos->lun << nand->rowconv.lun_addr_shift) | 508 (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) | 509 pos->page; 510 } 511 512 /** 513 * nanddev_pos_next_target() - Move a position to the next target/die 514 * @nand: NAND device 515 * @pos: the position to update 516 * 517 * Updates @pos to point to the start of the next target/die. Useful when you 518 * want to iterate over all targets/dies of a NAND device. 519 */ 520 static inline void nanddev_pos_next_target(struct nand_device *nand, 521 struct nand_pos *pos) 522 { 523 pos->page = 0; 524 pos->plane = 0; 525 pos->eraseblock = 0; 526 pos->lun = 0; 527 pos->target++; 528 } 529 530 /** 531 * nanddev_pos_next_lun() - Move a position to the next LUN 532 * @nand: NAND device 533 * @pos: the position to update 534 * 535 * Updates @pos to point to the start of the next LUN. Useful when you want to 536 * iterate over all LUNs of a NAND device. 537 */ 538 static inline void nanddev_pos_next_lun(struct nand_device *nand, 539 struct nand_pos *pos) 540 { 541 if (pos->lun >= nand->memorg.luns_per_target - 1) 542 return nanddev_pos_next_target(nand, pos); 543 544 pos->lun++; 545 pos->page = 0; 546 pos->plane = 0; 547 pos->eraseblock = 0; 548 } 549 550 /** 551 * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock 552 * @nand: NAND device 553 * @pos: the position to update 554 * 555 * Updates @pos to point to the start of the next eraseblock. Useful when you 556 * want to iterate over all eraseblocks of a NAND device. 557 */ 558 static inline void nanddev_pos_next_eraseblock(struct nand_device *nand, 559 struct nand_pos *pos) 560 { 561 if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1) 562 return nanddev_pos_next_lun(nand, pos); 563 564 pos->eraseblock++; 565 pos->page = 0; 566 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun; 567 } 568 569 /** 570 * nanddev_pos_next_eraseblock() - Move a position to the next page 571 * @nand: NAND device 572 * @pos: the position to update 573 * 574 * Updates @pos to point to the start of the next page. Useful when you want to 575 * iterate over all pages of a NAND device. 576 */ 577 static inline void nanddev_pos_next_page(struct nand_device *nand, 578 struct nand_pos *pos) 579 { 580 if (pos->page >= nand->memorg.pages_per_eraseblock - 1) 581 return nanddev_pos_next_eraseblock(nand, pos); 582 583 pos->page++; 584 } 585 586 /** 587 * nand_io_iter_init - Initialize a NAND I/O iterator 588 * @nand: NAND device 589 * @offs: absolute offset 590 * @req: MTD request 591 * @iter: NAND I/O iterator 592 * 593 * Initializes a NAND iterator based on the information passed by the MTD 594 * layer. 595 */ 596 static inline void nanddev_io_iter_init(struct nand_device *nand, 597 loff_t offs, struct mtd_oob_ops *req, 598 struct nand_io_iter *iter) 599 { 600 struct mtd_info *mtd = nanddev_to_mtd(nand); 601 602 iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos); 603 iter->req.ooboffs = req->ooboffs; 604 iter->oobbytes_per_page = mtd_oobavail(mtd, req); 605 iter->dataleft = req->len; 606 iter->oobleft = req->ooblen; 607 iter->req.databuf.in = req->datbuf; 608 iter->req.datalen = min_t(unsigned int, 609 nand->memorg.pagesize - iter->req.dataoffs, 610 iter->dataleft); 611 iter->req.oobbuf.in = req->oobbuf; 612 iter->req.ooblen = min_t(unsigned int, 613 iter->oobbytes_per_page - iter->req.ooboffs, 614 iter->oobleft); 615 } 616 617 /** 618 * nand_io_iter_next_page - Move to the next page 619 * @nand: NAND device 620 * @iter: NAND I/O iterator 621 * 622 * Updates the @iter to point to the next page. 623 */ 624 static inline void nanddev_io_iter_next_page(struct nand_device *nand, 625 struct nand_io_iter *iter) 626 { 627 nanddev_pos_next_page(nand, &iter->req.pos); 628 iter->dataleft -= iter->req.datalen; 629 iter->req.databuf.in += iter->req.datalen; 630 iter->oobleft -= iter->req.ooblen; 631 iter->req.oobbuf.in += iter->req.ooblen; 632 iter->req.dataoffs = 0; 633 iter->req.ooboffs = 0; 634 iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize, 635 iter->dataleft); 636 iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page, 637 iter->oobleft); 638 } 639 640 /** 641 * nand_io_iter_end - Should end iteration or not 642 * @nand: NAND device 643 * @iter: NAND I/O iterator 644 * 645 * Check whether @iter has reached the end of the NAND portion it was asked to 646 * iterate on or not. 647 * 648 * Return: true if @iter has reached the end of the iteration request, false 649 * otherwise. 650 */ 651 static inline bool nanddev_io_iter_end(struct nand_device *nand, 652 const struct nand_io_iter *iter) 653 { 654 if (iter->dataleft || iter->oobleft) 655 return false; 656 657 return true; 658 } 659 660 /** 661 * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O 662 * request 663 * @nand: NAND device 664 * @start: start address to read/write from 665 * @req: MTD I/O request 666 * @iter: NAND I/O iterator 667 * 668 * Should be used for iterate over pages that are contained in an MTD request. 669 */ 670 #define nanddev_io_for_each_page(nand, start, req, iter) \ 671 for (nanddev_io_iter_init(nand, start, req, iter); \ 672 !nanddev_io_iter_end(nand, iter); \ 673 nanddev_io_iter_next_page(nand, iter)) 674 675 bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos); 676 bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos); 677 int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos); 678 int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos); 679 680 /* BBT related functions */ 681 enum nand_bbt_block_status { 682 NAND_BBT_BLOCK_STATUS_UNKNOWN, 683 NAND_BBT_BLOCK_GOOD, 684 NAND_BBT_BLOCK_WORN, 685 NAND_BBT_BLOCK_RESERVED, 686 NAND_BBT_BLOCK_FACTORY_BAD, 687 NAND_BBT_BLOCK_NUM_STATUS, 688 }; 689 690 int nanddev_bbt_init(struct nand_device *nand); 691 void nanddev_bbt_cleanup(struct nand_device *nand); 692 int nanddev_bbt_update(struct nand_device *nand); 693 int nanddev_bbt_get_block_status(const struct nand_device *nand, 694 unsigned int entry); 695 int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry, 696 enum nand_bbt_block_status status); 697 int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block); 698 699 /** 700 * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry 701 * @nand: NAND device 702 * @pos: the NAND position we want to get BBT entry for 703 * 704 * Return the BBT entry used to store information about the eraseblock pointed 705 * by @pos. 706 * 707 * Return: the BBT entry storing information about eraseblock pointed by @pos. 708 */ 709 static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand, 710 const struct nand_pos *pos) 711 { 712 return pos->eraseblock + 713 ((pos->lun + (pos->target * nand->memorg.luns_per_target)) * 714 nand->memorg.eraseblocks_per_lun); 715 } 716 717 /** 718 * nanddev_bbt_is_initialized() - Check if the BBT has been initialized 719 * @nand: NAND device 720 * 721 * Return: true if the BBT has been initialized, false otherwise. 722 */ 723 static inline bool nanddev_bbt_is_initialized(struct nand_device *nand) 724 { 725 return !!nand->bbt.cache; 726 } 727 728 /* MTD -> NAND helper functions. */ 729 int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo); 730 731 #endif /* __LINUX_MTD_NAND_H */ 732