1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright 2017 - Free Electrons 4 * 5 * Authors: 6 * Boris Brezillon <boris.brezillon@free-electrons.com> 7 * Peter Pan <peterpandong@micron.com> 8 */ 9 10 #ifndef __LINUX_MTD_NAND_H 11 #define __LINUX_MTD_NAND_H 12 13 #include <linux/mtd/mtd.h> 14 15 /** 16 * struct nand_memory_organization - Memory organization structure 17 * @bits_per_cell: number of bits per NAND cell 18 * @pagesize: page size 19 * @oobsize: OOB area size 20 * @pages_per_eraseblock: number of pages per eraseblock 21 * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number) 22 * @planes_per_lun: number of planes per LUN 23 * @luns_per_target: number of LUN per target (target is a synonym for die) 24 * @ntargets: total number of targets exposed by the NAND device 25 */ 26 struct nand_memory_organization { 27 unsigned int bits_per_cell; 28 unsigned int pagesize; 29 unsigned int oobsize; 30 unsigned int pages_per_eraseblock; 31 unsigned int eraseblocks_per_lun; 32 unsigned int planes_per_lun; 33 unsigned int luns_per_target; 34 unsigned int ntargets; 35 }; 36 37 #define NAND_MEMORG(bpc, ps, os, ppe, epl, ppl, lpt, nt) \ 38 { \ 39 .bits_per_cell = (bpc), \ 40 .pagesize = (ps), \ 41 .oobsize = (os), \ 42 .pages_per_eraseblock = (ppe), \ 43 .eraseblocks_per_lun = (epl), \ 44 .planes_per_lun = (ppl), \ 45 .luns_per_target = (lpt), \ 46 .ntargets = (nt), \ 47 } 48 49 /** 50 * struct nand_row_converter - Information needed to convert an absolute offset 51 * into a row address 52 * @lun_addr_shift: position of the LUN identifier in the row address 53 * @eraseblock_addr_shift: position of the eraseblock identifier in the row 54 * address 55 */ 56 struct nand_row_converter { 57 unsigned int lun_addr_shift; 58 unsigned int eraseblock_addr_shift; 59 }; 60 61 /** 62 * struct nand_pos - NAND position object 63 * @target: the NAND target/die 64 * @lun: the LUN identifier 65 * @plane: the plane within the LUN 66 * @eraseblock: the eraseblock within the LUN 67 * @page: the page within the LUN 68 * 69 * These information are usually used by specific sub-layers to select the 70 * appropriate target/die and generate a row address to pass to the device. 71 */ 72 struct nand_pos { 73 unsigned int target; 74 unsigned int lun; 75 unsigned int plane; 76 unsigned int eraseblock; 77 unsigned int page; 78 }; 79 80 /** 81 * struct nand_page_io_req - NAND I/O request object 82 * @pos: the position this I/O request is targeting 83 * @dataoffs: the offset within the page 84 * @datalen: number of data bytes to read from/write to this page 85 * @databuf: buffer to store data in or get data from 86 * @ooboffs: the OOB offset within the page 87 * @ooblen: the number of OOB bytes to read from/write to this page 88 * @oobbuf: buffer to store OOB data in or get OOB data from 89 * @mode: one of the %MTD_OPS_XXX mode 90 * 91 * This object is used to pass per-page I/O requests to NAND sub-layers. This 92 * way all useful information are already formatted in a useful way and 93 * specific NAND layers can focus on translating these information into 94 * specific commands/operations. 95 */ 96 struct nand_page_io_req { 97 struct nand_pos pos; 98 unsigned int dataoffs; 99 unsigned int datalen; 100 union { 101 const void *out; 102 void *in; 103 } databuf; 104 unsigned int ooboffs; 105 unsigned int ooblen; 106 union { 107 const void *out; 108 void *in; 109 } oobbuf; 110 int mode; 111 }; 112 113 /** 114 * struct nand_ecc_req - NAND ECC requirements 115 * @strength: ECC strength 116 * @step_size: ECC step/block size 117 */ 118 struct nand_ecc_req { 119 unsigned int strength; 120 unsigned int step_size; 121 }; 122 123 #define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) } 124 125 /* nand_bbt option */ 126 #define NANDDEV_BBT_USE_FLASH BIT(0) 127 #define NANDDEV_BBT_SCANNED BIT(1) 128 129 /* The maximum number of blocks to scan for a bbt */ 130 #define NANDDEV_BBT_SCAN_MAXBLOCKS 4 131 132 /** 133 * struct nand_bbt - bad block table object 134 * @cache: in memory BBT cache 135 * @option: the option of BBT 136 * @version: current memory BBT cache version 137 */ 138 struct nand_bbt { 139 unsigned long *cache; 140 unsigned int option; 141 unsigned int version; 142 }; 143 144 struct nand_device; 145 146 /** 147 * struct nand_ops - NAND operations 148 * @erase: erase a specific block. No need to check if the block is bad before 149 * erasing, this has been taken care of by the generic NAND layer 150 * @markbad: mark a specific block bad. No need to check if the block is 151 * already marked bad, this has been taken care of by the generic 152 * NAND layer. This method should just write the BBM (Bad Block 153 * Marker) so that future call to struct_nand_ops->isbad() return 154 * true 155 * @isbad: check whether a block is bad or not. This method should just read 156 * the BBM and return whether the block is bad or not based on what it 157 * reads 158 * 159 * These are all low level operations that should be implemented by specialized 160 * NAND layers (SPI NAND, raw NAND, ...). 161 */ 162 struct nand_ops { 163 int (*erase)(struct nand_device *nand, const struct nand_pos *pos); 164 int (*markbad)(struct nand_device *nand, const struct nand_pos *pos); 165 bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos); 166 }; 167 168 /** 169 * struct nand_device - NAND device 170 * @mtd: MTD instance attached to the NAND device 171 * @memorg: memory layout 172 * @eccreq: ECC requirements 173 * @rowconv: position to row address converter 174 * @bbt: bad block table info 175 * @ops: NAND operations attached to the NAND device 176 * 177 * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND) 178 * should declare their own NAND object embedding a nand_device struct (that's 179 * how inheritance is done). 180 * struct_nand_device->memorg and struct_nand_device->eccreq should be filled 181 * at device detection time to reflect the NAND device 182 * capabilities/requirements. Once this is done nanddev_init() can be called. 183 * It will take care of converting NAND information into MTD ones, which means 184 * the specialized NAND layers should never manually tweak 185 * struct_nand_device->mtd except for the ->_read/write() hooks. 186 */ 187 struct nand_device { 188 struct mtd_info *mtd; 189 struct nand_memory_organization memorg; 190 struct nand_ecc_req eccreq; 191 struct nand_row_converter rowconv; 192 struct nand_bbt bbt; 193 const struct nand_ops *ops; 194 }; 195 196 /** 197 * struct nand_io_iter - NAND I/O iterator 198 * @req: current I/O request 199 * @oobbytes_per_page: maximum number of OOB bytes per page 200 * @dataleft: remaining number of data bytes to read/write 201 * @oobleft: remaining number of OOB bytes to read/write 202 * 203 * Can be used by specialized NAND layers to iterate over all pages covered 204 * by an MTD I/O request, which should greatly simplifies the boiler-plate 205 * code needed to read/write data from/to a NAND device. 206 */ 207 struct nand_io_iter { 208 struct nand_page_io_req req; 209 unsigned int oobbytes_per_page; 210 unsigned int dataleft; 211 unsigned int oobleft; 212 }; 213 214 /** 215 * mtd_to_nanddev() - Get the NAND device attached to the MTD instance 216 * @mtd: MTD instance 217 * 218 * Return: the NAND device embedding @mtd. 219 */ 220 static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd) 221 { 222 return mtd->priv; 223 } 224 225 /** 226 * nanddev_to_mtd() - Get the MTD device attached to a NAND device 227 * @nand: NAND device 228 * 229 * Return: the MTD device embedded in @nand. 230 */ 231 static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand) 232 { 233 return nand->mtd; 234 } 235 236 /* 237 * nanddev_bits_per_cell() - Get the number of bits per cell 238 * @nand: NAND device 239 * 240 * Return: the number of bits per cell. 241 */ 242 static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand) 243 { 244 return nand->memorg.bits_per_cell; 245 } 246 247 /** 248 * nanddev_page_size() - Get NAND page size 249 * @nand: NAND device 250 * 251 * Return: the page size. 252 */ 253 static inline size_t nanddev_page_size(const struct nand_device *nand) 254 { 255 return nand->memorg.pagesize; 256 } 257 258 /** 259 * nanddev_per_page_oobsize() - Get NAND OOB size 260 * @nand: NAND device 261 * 262 * Return: the OOB size. 263 */ 264 static inline unsigned int 265 nanddev_per_page_oobsize(const struct nand_device *nand) 266 { 267 return nand->memorg.oobsize; 268 } 269 270 /** 271 * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock 272 * @nand: NAND device 273 * 274 * Return: the number of pages per eraseblock. 275 */ 276 static inline unsigned int 277 nanddev_pages_per_eraseblock(const struct nand_device *nand) 278 { 279 return nand->memorg.pages_per_eraseblock; 280 } 281 282 /** 283 * nanddev_per_page_oobsize() - Get NAND erase block size 284 * @nand: NAND device 285 * 286 * Return: the eraseblock size. 287 */ 288 static inline size_t nanddev_eraseblock_size(const struct nand_device *nand) 289 { 290 return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock; 291 } 292 293 /** 294 * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN 295 * @nand: NAND device 296 * 297 * Return: the number of eraseblocks per LUN. 298 */ 299 static inline unsigned int 300 nanddev_eraseblocks_per_lun(const struct nand_device *nand) 301 { 302 return nand->memorg.eraseblocks_per_lun; 303 } 304 305 /** 306 * nanddev_target_size() - Get the total size provided by a single target/die 307 * @nand: NAND device 308 * 309 * Return: the total size exposed by a single target/die in bytes. 310 */ 311 static inline u64 nanddev_target_size(const struct nand_device *nand) 312 { 313 return (u64)nand->memorg.luns_per_target * 314 nand->memorg.eraseblocks_per_lun * 315 nand->memorg.pages_per_eraseblock * 316 nand->memorg.pagesize; 317 } 318 319 /** 320 * nanddev_ntarget() - Get the total of targets 321 * @nand: NAND device 322 * 323 * Return: the number of targets/dies exposed by @nand. 324 */ 325 static inline unsigned int nanddev_ntargets(const struct nand_device *nand) 326 { 327 return nand->memorg.ntargets; 328 } 329 330 /** 331 * nanddev_neraseblocks() - Get the total number of erasablocks 332 * @nand: NAND device 333 * 334 * Return: the total number of eraseblocks exposed by @nand. 335 */ 336 static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand) 337 { 338 return nand->memorg.ntargets * nand->memorg.luns_per_target * 339 nand->memorg.eraseblocks_per_lun; 340 } 341 342 /** 343 * nanddev_size() - Get NAND size 344 * @nand: NAND device 345 * 346 * Return: the total size (in bytes) exposed by @nand. 347 */ 348 static inline u64 nanddev_size(const struct nand_device *nand) 349 { 350 return nanddev_target_size(nand) * nanddev_ntargets(nand); 351 } 352 353 /** 354 * nanddev_get_memorg() - Extract memory organization info from a NAND device 355 * @nand: NAND device 356 * 357 * This can be used by the upper layer to fill the memorg info before calling 358 * nanddev_init(). 359 * 360 * Return: the memorg object embedded in the NAND device. 361 */ 362 static inline struct nand_memory_organization * 363 nanddev_get_memorg(struct nand_device *nand) 364 { 365 return &nand->memorg; 366 } 367 368 int nanddev_init(struct nand_device *nand, const struct nand_ops *ops, 369 struct module *owner); 370 void nanddev_cleanup(struct nand_device *nand); 371 372 /** 373 * nanddev_register() - Register a NAND device 374 * @nand: NAND device 375 * 376 * Register a NAND device. 377 * This function is just a wrapper around mtd_device_register() 378 * registering the MTD device embedded in @nand. 379 * 380 * Return: 0 in case of success, a negative error code otherwise. 381 */ 382 static inline int nanddev_register(struct nand_device *nand) 383 { 384 return mtd_device_register(nand->mtd, NULL, 0); 385 } 386 387 /** 388 * nanddev_unregister() - Unregister a NAND device 389 * @nand: NAND device 390 * 391 * Unregister a NAND device. 392 * This function is just a wrapper around mtd_device_unregister() 393 * unregistering the MTD device embedded in @nand. 394 * 395 * Return: 0 in case of success, a negative error code otherwise. 396 */ 397 static inline int nanddev_unregister(struct nand_device *nand) 398 { 399 return mtd_device_unregister(nand->mtd); 400 } 401 402 /** 403 * nanddev_set_of_node() - Attach a DT node to a NAND device 404 * @nand: NAND device 405 * @np: DT node 406 * 407 * Attach a DT node to a NAND device. 408 */ 409 static inline void nanddev_set_of_node(struct nand_device *nand, 410 const struct device_node *np) 411 { 412 mtd_set_of_node(nand->mtd, np); 413 } 414 415 /** 416 * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device 417 * @nand: NAND device 418 * 419 * Return: the DT node attached to @nand. 420 */ 421 static inline const struct device_node *nanddev_get_of_node(struct nand_device *nand) 422 { 423 return mtd_get_of_node(nand->mtd); 424 } 425 426 /** 427 * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position 428 * @nand: NAND device 429 * @offs: absolute NAND offset (usually passed by the MTD layer) 430 * @pos: a NAND position object to fill in 431 * 432 * Converts @offs into a nand_pos representation. 433 * 434 * Return: the offset within the NAND page pointed by @pos. 435 */ 436 static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand, 437 loff_t offs, 438 struct nand_pos *pos) 439 { 440 unsigned int pageoffs; 441 u64 tmp = offs; 442 443 pageoffs = do_div(tmp, nand->memorg.pagesize); 444 pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock); 445 pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun); 446 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun; 447 pos->lun = do_div(tmp, nand->memorg.luns_per_target); 448 pos->target = tmp; 449 450 return pageoffs; 451 } 452 453 /** 454 * nanddev_pos_cmp() - Compare two NAND positions 455 * @a: First NAND position 456 * @b: Second NAND position 457 * 458 * Compares two NAND positions. 459 * 460 * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b. 461 */ 462 static inline int nanddev_pos_cmp(const struct nand_pos *a, 463 const struct nand_pos *b) 464 { 465 if (a->target != b->target) 466 return a->target < b->target ? -1 : 1; 467 468 if (a->lun != b->lun) 469 return a->lun < b->lun ? -1 : 1; 470 471 if (a->eraseblock != b->eraseblock) 472 return a->eraseblock < b->eraseblock ? -1 : 1; 473 474 if (a->page != b->page) 475 return a->page < b->page ? -1 : 1; 476 477 return 0; 478 } 479 480 /** 481 * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset 482 * @nand: NAND device 483 * @pos: the NAND position to convert 484 * 485 * Converts @pos NAND position into an absolute offset. 486 * 487 * Return: the absolute offset. Note that @pos points to the beginning of a 488 * page, if one wants to point to a specific offset within this page 489 * the returned offset has to be adjusted manually. 490 */ 491 static inline loff_t nanddev_pos_to_offs(struct nand_device *nand, 492 const struct nand_pos *pos) 493 { 494 unsigned int npages; 495 496 npages = pos->page + 497 ((pos->eraseblock + 498 (pos->lun + 499 (pos->target * nand->memorg.luns_per_target)) * 500 nand->memorg.eraseblocks_per_lun) * 501 nand->memorg.pages_per_eraseblock); 502 503 return (loff_t)npages * nand->memorg.pagesize; 504 } 505 506 /** 507 * nanddev_pos_to_row() - Extract a row address from a NAND position 508 * @nand: NAND device 509 * @pos: the position to convert 510 * 511 * Converts a NAND position into a row address that can then be passed to the 512 * device. 513 * 514 * Return: the row address extracted from @pos. 515 */ 516 static inline unsigned int nanddev_pos_to_row(struct nand_device *nand, 517 const struct nand_pos *pos) 518 { 519 return (pos->lun << nand->rowconv.lun_addr_shift) | 520 (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) | 521 pos->page; 522 } 523 524 /** 525 * nanddev_pos_next_target() - Move a position to the next target/die 526 * @nand: NAND device 527 * @pos: the position to update 528 * 529 * Updates @pos to point to the start of the next target/die. Useful when you 530 * want to iterate over all targets/dies of a NAND device. 531 */ 532 static inline void nanddev_pos_next_target(struct nand_device *nand, 533 struct nand_pos *pos) 534 { 535 pos->page = 0; 536 pos->plane = 0; 537 pos->eraseblock = 0; 538 pos->lun = 0; 539 pos->target++; 540 } 541 542 /** 543 * nanddev_pos_next_lun() - Move a position to the next LUN 544 * @nand: NAND device 545 * @pos: the position to update 546 * 547 * Updates @pos to point to the start of the next LUN. Useful when you want to 548 * iterate over all LUNs of a NAND device. 549 */ 550 static inline void nanddev_pos_next_lun(struct nand_device *nand, 551 struct nand_pos *pos) 552 { 553 if (pos->lun >= nand->memorg.luns_per_target - 1) 554 return nanddev_pos_next_target(nand, pos); 555 556 pos->lun++; 557 pos->page = 0; 558 pos->plane = 0; 559 pos->eraseblock = 0; 560 } 561 562 /** 563 * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock 564 * @nand: NAND device 565 * @pos: the position to update 566 * 567 * Updates @pos to point to the start of the next eraseblock. Useful when you 568 * want to iterate over all eraseblocks of a NAND device. 569 */ 570 static inline void nanddev_pos_next_eraseblock(struct nand_device *nand, 571 struct nand_pos *pos) 572 { 573 if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1) 574 return nanddev_pos_next_lun(nand, pos); 575 576 pos->eraseblock++; 577 pos->page = 0; 578 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun; 579 } 580 581 /** 582 * nanddev_pos_next_eraseblock() - Move a position to the next page 583 * @nand: NAND device 584 * @pos: the position to update 585 * 586 * Updates @pos to point to the start of the next page. Useful when you want to 587 * iterate over all pages of a NAND device. 588 */ 589 static inline void nanddev_pos_next_page(struct nand_device *nand, 590 struct nand_pos *pos) 591 { 592 if (pos->page >= nand->memorg.pages_per_eraseblock - 1) 593 return nanddev_pos_next_eraseblock(nand, pos); 594 595 pos->page++; 596 } 597 598 /** 599 * nand_io_iter_init - Initialize a NAND I/O iterator 600 * @nand: NAND device 601 * @offs: absolute offset 602 * @req: MTD request 603 * @iter: NAND I/O iterator 604 * 605 * Initializes a NAND iterator based on the information passed by the MTD 606 * layer. 607 */ 608 static inline void nanddev_io_iter_init(struct nand_device *nand, 609 loff_t offs, struct mtd_oob_ops *req, 610 struct nand_io_iter *iter) 611 { 612 struct mtd_info *mtd = nanddev_to_mtd(nand); 613 614 iter->req.mode = req->mode; 615 iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos); 616 iter->req.ooboffs = req->ooboffs; 617 iter->oobbytes_per_page = mtd_oobavail(mtd, req); 618 iter->dataleft = req->len; 619 iter->oobleft = req->ooblen; 620 iter->req.databuf.in = req->datbuf; 621 iter->req.datalen = min_t(unsigned int, 622 nand->memorg.pagesize - iter->req.dataoffs, 623 iter->dataleft); 624 iter->req.oobbuf.in = req->oobbuf; 625 iter->req.ooblen = min_t(unsigned int, 626 iter->oobbytes_per_page - iter->req.ooboffs, 627 iter->oobleft); 628 } 629 630 /** 631 * nand_io_iter_next_page - Move to the next page 632 * @nand: NAND device 633 * @iter: NAND I/O iterator 634 * 635 * Updates the @iter to point to the next page. 636 */ 637 static inline void nanddev_io_iter_next_page(struct nand_device *nand, 638 struct nand_io_iter *iter) 639 { 640 nanddev_pos_next_page(nand, &iter->req.pos); 641 iter->dataleft -= iter->req.datalen; 642 iter->req.databuf.in += iter->req.datalen; 643 iter->oobleft -= iter->req.ooblen; 644 iter->req.oobbuf.in += iter->req.ooblen; 645 iter->req.dataoffs = 0; 646 iter->req.ooboffs = 0; 647 iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize, 648 iter->dataleft); 649 iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page, 650 iter->oobleft); 651 } 652 653 /** 654 * nand_io_iter_end - Should end iteration or not 655 * @nand: NAND device 656 * @iter: NAND I/O iterator 657 * 658 * Check whether @iter has reached the end of the NAND portion it was asked to 659 * iterate on or not. 660 * 661 * Return: true if @iter has reached the end of the iteration request, false 662 * otherwise. 663 */ 664 static inline bool nanddev_io_iter_end(struct nand_device *nand, 665 const struct nand_io_iter *iter) 666 { 667 if (iter->dataleft || iter->oobleft) 668 return false; 669 670 return true; 671 } 672 673 /** 674 * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O 675 * request 676 * @nand: NAND device 677 * @start: start address to read/write from 678 * @req: MTD I/O request 679 * @iter: NAND I/O iterator 680 * 681 * Should be used for iterate over pages that are contained in an MTD request. 682 */ 683 #define nanddev_io_for_each_page(nand, start, req, iter) \ 684 for (nanddev_io_iter_init(nand, start, req, iter); \ 685 !nanddev_io_iter_end(nand, iter); \ 686 nanddev_io_iter_next_page(nand, iter)) 687 688 bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos); 689 bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos); 690 int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos); 691 int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos); 692 693 /* BBT related functions */ 694 enum nand_bbt_block_status { 695 NAND_BBT_BLOCK_STATUS_UNKNOWN, 696 NAND_BBT_BLOCK_GOOD, 697 NAND_BBT_BLOCK_WORN, 698 NAND_BBT_BLOCK_RESERVED, 699 NAND_BBT_BLOCK_FACTORY_BAD, 700 NAND_BBT_BLOCK_NUM_STATUS, 701 }; 702 703 int nanddev_bbt_init(struct nand_device *nand); 704 void nanddev_bbt_cleanup(struct nand_device *nand); 705 int nanddev_bbt_update(struct nand_device *nand); 706 int nanddev_bbt_get_block_status(const struct nand_device *nand, 707 unsigned int entry); 708 int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry, 709 enum nand_bbt_block_status status); 710 int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block); 711 712 /** 713 * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry 714 * @nand: NAND device 715 * @pos: the NAND position we want to get BBT entry for 716 * 717 * Return the BBT entry used to store information about the eraseblock pointed 718 * by @pos. 719 * 720 * Return: the BBT entry storing information about eraseblock pointed by @pos. 721 */ 722 static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand, 723 const struct nand_pos *pos) 724 { 725 return pos->eraseblock + 726 ((pos->lun + (pos->target * nand->memorg.luns_per_target)) * 727 nand->memorg.eraseblocks_per_lun); 728 } 729 730 /** 731 * nanddev_bbt_is_initialized() - Check if the BBT has been initialized 732 * @nand: NAND device 733 * 734 * Return: true if the BBT has been initialized, false otherwise. 735 */ 736 static inline bool nanddev_bbt_is_initialized(struct nand_device *nand) 737 { 738 return !!nand->bbt.cache; 739 } 740 741 /* MTD -> NAND helper functions. */ 742 int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo); 743 744 #endif /* __LINUX_MTD_NAND_H */ 745