xref: /rk3399_rockchip-uboot/include/linux/mtd/nand.h (revision 8ea74120565f81f5f3f7e7fa29bb3cd5be62a91e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  Copyright 2017 - Free Electrons
4  *
5  *  Authors:
6  *	Boris Brezillon <boris.brezillon@free-electrons.com>
7  *	Peter Pan <peterpandong@micron.com>
8  */
9 
10 #ifndef __LINUX_MTD_NAND_H
11 #define __LINUX_MTD_NAND_H
12 
13 #include <linux/mtd/mtd.h>
14 
15 /**
16  * struct nand_memory_organization - Memory organization structure
17  * @bits_per_cell: number of bits per NAND cell
18  * @pagesize: page size
19  * @oobsize: OOB area size
20  * @pages_per_eraseblock: number of pages per eraseblock
21  * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
22  * @planes_per_lun: number of planes per LUN
23  * @luns_per_target: number of LUN per target (target is a synonym for die)
24  * @ntargets: total number of targets exposed by the NAND device
25  */
26 struct nand_memory_organization {
27 	unsigned int bits_per_cell;
28 	unsigned int pagesize;
29 	unsigned int oobsize;
30 	unsigned int pages_per_eraseblock;
31 	unsigned int eraseblocks_per_lun;
32 	unsigned int planes_per_lun;
33 	unsigned int luns_per_target;
34 	unsigned int ntargets;
35 };
36 
37 #define NAND_MEMORG(bpc, ps, os, ppe, epl, ppl, lpt, nt)	\
38 	{							\
39 		.bits_per_cell = (bpc),				\
40 		.pagesize = (ps),				\
41 		.oobsize = (os),				\
42 		.pages_per_eraseblock = (ppe),			\
43 		.eraseblocks_per_lun = (epl),			\
44 		.planes_per_lun = (ppl),			\
45 		.luns_per_target = (lpt),			\
46 		.ntargets = (nt),				\
47 	}
48 
49 /**
50  * struct nand_row_converter - Information needed to convert an absolute offset
51  *			       into a row address
52  * @lun_addr_shift: position of the LUN identifier in the row address
53  * @eraseblock_addr_shift: position of the eraseblock identifier in the row
54  *			   address
55  */
56 struct nand_row_converter {
57 	unsigned int lun_addr_shift;
58 	unsigned int eraseblock_addr_shift;
59 };
60 
61 /**
62  * struct nand_pos - NAND position object
63  * @target: the NAND target/die
64  * @lun: the LUN identifier
65  * @plane: the plane within the LUN
66  * @eraseblock: the eraseblock within the LUN
67  * @page: the page within the LUN
68  *
69  * These information are usually used by specific sub-layers to select the
70  * appropriate target/die and generate a row address to pass to the device.
71  */
72 struct nand_pos {
73 	unsigned int target;
74 	unsigned int lun;
75 	unsigned int plane;
76 	unsigned int eraseblock;
77 	unsigned int page;
78 };
79 
80 /**
81  * struct nand_page_io_req - NAND I/O request object
82  * @pos: the position this I/O request is targeting
83  * @dataoffs: the offset within the page
84  * @datalen: number of data bytes to read from/write to this page
85  * @databuf: buffer to store data in or get data from
86  * @ooboffs: the OOB offset within the page
87  * @ooblen: the number of OOB bytes to read from/write to this page
88  * @oobbuf: buffer to store OOB data in or get OOB data from
89  *
90  * This object is used to pass per-page I/O requests to NAND sub-layers. This
91  * way all useful information are already formatted in a useful way and
92  * specific NAND layers can focus on translating these information into
93  * specific commands/operations.
94  */
95 struct nand_page_io_req {
96 	struct nand_pos pos;
97 	unsigned int dataoffs;
98 	unsigned int datalen;
99 	union {
100 		const void *out;
101 		void *in;
102 	} databuf;
103 	unsigned int ooboffs;
104 	unsigned int ooblen;
105 	union {
106 		const void *out;
107 		void *in;
108 	} oobbuf;
109 };
110 
111 /**
112  * struct nand_ecc_req - NAND ECC requirements
113  * @strength: ECC strength
114  * @step_size: ECC step/block size
115  */
116 struct nand_ecc_req {
117 	unsigned int strength;
118 	unsigned int step_size;
119 };
120 
121 #define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
122 
123 /**
124  * struct nand_bbt - bad block table object
125  * @cache: in memory BBT cache
126  */
127 struct nand_bbt {
128 	unsigned long *cache;
129 };
130 
131 struct nand_device;
132 
133 /**
134  * struct nand_ops - NAND operations
135  * @erase: erase a specific block. No need to check if the block is bad before
136  *	   erasing, this has been taken care of by the generic NAND layer
137  * @markbad: mark a specific block bad. No need to check if the block is
138  *	     already marked bad, this has been taken care of by the generic
139  *	     NAND layer. This method should just write the BBM (Bad Block
140  *	     Marker) so that future call to struct_nand_ops->isbad() return
141  *	     true
142  * @isbad: check whether a block is bad or not. This method should just read
143  *	   the BBM and return whether the block is bad or not based on what it
144  *	   reads
145  *
146  * These are all low level operations that should be implemented by specialized
147  * NAND layers (SPI NAND, raw NAND, ...).
148  */
149 struct nand_ops {
150 	int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
151 	int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
152 	bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
153 };
154 
155 /**
156  * struct nand_device - NAND device
157  * @mtd: MTD instance attached to the NAND device
158  * @memorg: memory layout
159  * @eccreq: ECC requirements
160  * @rowconv: position to row address converter
161  * @bbt: bad block table info
162  * @ops: NAND operations attached to the NAND device
163  *
164  * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
165  * should declare their own NAND object embedding a nand_device struct (that's
166  * how inheritance is done).
167  * struct_nand_device->memorg and struct_nand_device->eccreq should be filled
168  * at device detection time to reflect the NAND device
169  * capabilities/requirements. Once this is done nanddev_init() can be called.
170  * It will take care of converting NAND information into MTD ones, which means
171  * the specialized NAND layers should never manually tweak
172  * struct_nand_device->mtd except for the ->_read/write() hooks.
173  */
174 struct nand_device {
175 	struct mtd_info *mtd;
176 	struct nand_memory_organization memorg;
177 	struct nand_ecc_req eccreq;
178 	struct nand_row_converter rowconv;
179 	struct nand_bbt bbt;
180 	const struct nand_ops *ops;
181 };
182 
183 /**
184  * struct nand_io_iter - NAND I/O iterator
185  * @req: current I/O request
186  * @oobbytes_per_page: maximum number of OOB bytes per page
187  * @dataleft: remaining number of data bytes to read/write
188  * @oobleft: remaining number of OOB bytes to read/write
189  *
190  * Can be used by specialized NAND layers to iterate over all pages covered
191  * by an MTD I/O request, which should greatly simplifies the boiler-plate
192  * code needed to read/write data from/to a NAND device.
193  */
194 struct nand_io_iter {
195 	struct nand_page_io_req req;
196 	unsigned int oobbytes_per_page;
197 	unsigned int dataleft;
198 	unsigned int oobleft;
199 };
200 
201 /**
202  * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
203  * @mtd: MTD instance
204  *
205  * Return: the NAND device embedding @mtd.
206  */
207 static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
208 {
209 	return mtd->priv;
210 }
211 
212 /**
213  * nanddev_to_mtd() - Get the MTD device attached to a NAND device
214  * @nand: NAND device
215  *
216  * Return: the MTD device embedded in @nand.
217  */
218 static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
219 {
220 	return nand->mtd;
221 }
222 
223 /*
224  * nanddev_bits_per_cell() - Get the number of bits per cell
225  * @nand: NAND device
226  *
227  * Return: the number of bits per cell.
228  */
229 static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
230 {
231 	return nand->memorg.bits_per_cell;
232 }
233 
234 /**
235  * nanddev_page_size() - Get NAND page size
236  * @nand: NAND device
237  *
238  * Return: the page size.
239  */
240 static inline size_t nanddev_page_size(const struct nand_device *nand)
241 {
242 	return nand->memorg.pagesize;
243 }
244 
245 /**
246  * nanddev_per_page_oobsize() - Get NAND OOB size
247  * @nand: NAND device
248  *
249  * Return: the OOB size.
250  */
251 static inline unsigned int
252 nanddev_per_page_oobsize(const struct nand_device *nand)
253 {
254 	return nand->memorg.oobsize;
255 }
256 
257 /**
258  * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
259  * @nand: NAND device
260  *
261  * Return: the number of pages per eraseblock.
262  */
263 static inline unsigned int
264 nanddev_pages_per_eraseblock(const struct nand_device *nand)
265 {
266 	return nand->memorg.pages_per_eraseblock;
267 }
268 
269 /**
270  * nanddev_per_page_oobsize() - Get NAND erase block size
271  * @nand: NAND device
272  *
273  * Return: the eraseblock size.
274  */
275 static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
276 {
277 	return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
278 }
279 
280 /**
281  * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
282  * @nand: NAND device
283  *
284  * Return: the number of eraseblocks per LUN.
285  */
286 static inline unsigned int
287 nanddev_eraseblocks_per_lun(const struct nand_device *nand)
288 {
289 	return nand->memorg.eraseblocks_per_lun;
290 }
291 
292 /**
293  * nanddev_target_size() - Get the total size provided by a single target/die
294  * @nand: NAND device
295  *
296  * Return: the total size exposed by a single target/die in bytes.
297  */
298 static inline u64 nanddev_target_size(const struct nand_device *nand)
299 {
300 	return (u64)nand->memorg.luns_per_target *
301 	       nand->memorg.eraseblocks_per_lun *
302 	       nand->memorg.pages_per_eraseblock *
303 	       nand->memorg.pagesize;
304 }
305 
306 /**
307  * nanddev_ntarget() - Get the total of targets
308  * @nand: NAND device
309  *
310  * Return: the number of targets/dies exposed by @nand.
311  */
312 static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
313 {
314 	return nand->memorg.ntargets;
315 }
316 
317 /**
318  * nanddev_neraseblocks() - Get the total number of erasablocks
319  * @nand: NAND device
320  *
321  * Return: the total number of eraseblocks exposed by @nand.
322  */
323 static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
324 {
325 	return (u64)nand->memorg.luns_per_target *
326 	       nand->memorg.eraseblocks_per_lun *
327 	       nand->memorg.pages_per_eraseblock;
328 }
329 
330 /**
331  * nanddev_size() - Get NAND size
332  * @nand: NAND device
333  *
334  * Return: the total size (in bytes) exposed by @nand.
335  */
336 static inline u64 nanddev_size(const struct nand_device *nand)
337 {
338 	return nanddev_target_size(nand) * nanddev_ntargets(nand);
339 }
340 
341 /**
342  * nanddev_get_memorg() - Extract memory organization info from a NAND device
343  * @nand: NAND device
344  *
345  * This can be used by the upper layer to fill the memorg info before calling
346  * nanddev_init().
347  *
348  * Return: the memorg object embedded in the NAND device.
349  */
350 static inline struct nand_memory_organization *
351 nanddev_get_memorg(struct nand_device *nand)
352 {
353 	return &nand->memorg;
354 }
355 
356 int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
357 		 struct module *owner);
358 void nanddev_cleanup(struct nand_device *nand);
359 
360 /**
361  * nanddev_register() - Register a NAND device
362  * @nand: NAND device
363  *
364  * Register a NAND device.
365  * This function is just a wrapper around mtd_device_register()
366  * registering the MTD device embedded in @nand.
367  *
368  * Return: 0 in case of success, a negative error code otherwise.
369  */
370 static inline int nanddev_register(struct nand_device *nand)
371 {
372 	return mtd_device_register(nand->mtd, NULL, 0);
373 }
374 
375 /**
376  * nanddev_unregister() - Unregister a NAND device
377  * @nand: NAND device
378  *
379  * Unregister a NAND device.
380  * This function is just a wrapper around mtd_device_unregister()
381  * unregistering the MTD device embedded in @nand.
382  *
383  * Return: 0 in case of success, a negative error code otherwise.
384  */
385 static inline int nanddev_unregister(struct nand_device *nand)
386 {
387 	return mtd_device_unregister(nand->mtd);
388 }
389 
390 /**
391  * nanddev_set_of_node() - Attach a DT node to a NAND device
392  * @nand: NAND device
393  * @np: DT node
394  *
395  * Attach a DT node to a NAND device.
396  */
397 static inline void nanddev_set_of_node(struct nand_device *nand,
398 				       const struct device_node *np)
399 {
400 	mtd_set_of_node(nand->mtd, np);
401 }
402 
403 /**
404  * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
405  * @nand: NAND device
406  *
407  * Return: the DT node attached to @nand.
408  */
409 static inline const struct device_node *nanddev_get_of_node(struct nand_device *nand)
410 {
411 	return mtd_get_of_node(nand->mtd);
412 }
413 
414 /**
415  * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
416  * @nand: NAND device
417  * @offs: absolute NAND offset (usually passed by the MTD layer)
418  * @pos: a NAND position object to fill in
419  *
420  * Converts @offs into a nand_pos representation.
421  *
422  * Return: the offset within the NAND page pointed by @pos.
423  */
424 static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
425 					       loff_t offs,
426 					       struct nand_pos *pos)
427 {
428 	unsigned int pageoffs;
429 	u64 tmp = offs;
430 
431 	pageoffs = do_div(tmp, nand->memorg.pagesize);
432 	pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
433 	pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
434 	pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
435 	pos->lun = do_div(tmp, nand->memorg.luns_per_target);
436 	pos->target = tmp;
437 
438 	return pageoffs;
439 }
440 
441 /**
442  * nanddev_pos_cmp() - Compare two NAND positions
443  * @a: First NAND position
444  * @b: Second NAND position
445  *
446  * Compares two NAND positions.
447  *
448  * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
449  */
450 static inline int nanddev_pos_cmp(const struct nand_pos *a,
451 				  const struct nand_pos *b)
452 {
453 	if (a->target != b->target)
454 		return a->target < b->target ? -1 : 1;
455 
456 	if (a->lun != b->lun)
457 		return a->lun < b->lun ? -1 : 1;
458 
459 	if (a->eraseblock != b->eraseblock)
460 		return a->eraseblock < b->eraseblock ? -1 : 1;
461 
462 	if (a->page != b->page)
463 		return a->page < b->page ? -1 : 1;
464 
465 	return 0;
466 }
467 
468 /**
469  * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
470  * @nand: NAND device
471  * @pos: the NAND position to convert
472  *
473  * Converts @pos NAND position into an absolute offset.
474  *
475  * Return: the absolute offset. Note that @pos points to the beginning of a
476  *	   page, if one wants to point to a specific offset within this page
477  *	   the returned offset has to be adjusted manually.
478  */
479 static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
480 					 const struct nand_pos *pos)
481 {
482 	unsigned int npages;
483 
484 	npages = pos->page +
485 		 ((pos->eraseblock +
486 		   (pos->lun +
487 		    (pos->target * nand->memorg.luns_per_target)) *
488 		   nand->memorg.eraseblocks_per_lun) *
489 		  nand->memorg.pages_per_eraseblock);
490 
491 	return (loff_t)npages * nand->memorg.pagesize;
492 }
493 
494 /**
495  * nanddev_pos_to_row() - Extract a row address from a NAND position
496  * @nand: NAND device
497  * @pos: the position to convert
498  *
499  * Converts a NAND position into a row address that can then be passed to the
500  * device.
501  *
502  * Return: the row address extracted from @pos.
503  */
504 static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
505 					      const struct nand_pos *pos)
506 {
507 	return (pos->lun << nand->rowconv.lun_addr_shift) |
508 	       (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
509 	       pos->page;
510 }
511 
512 /**
513  * nanddev_pos_next_target() - Move a position to the next target/die
514  * @nand: NAND device
515  * @pos: the position to update
516  *
517  * Updates @pos to point to the start of the next target/die. Useful when you
518  * want to iterate over all targets/dies of a NAND device.
519  */
520 static inline void nanddev_pos_next_target(struct nand_device *nand,
521 					   struct nand_pos *pos)
522 {
523 	pos->page = 0;
524 	pos->plane = 0;
525 	pos->eraseblock = 0;
526 	pos->lun = 0;
527 	pos->target++;
528 }
529 
530 /**
531  * nanddev_pos_next_lun() - Move a position to the next LUN
532  * @nand: NAND device
533  * @pos: the position to update
534  *
535  * Updates @pos to point to the start of the next LUN. Useful when you want to
536  * iterate over all LUNs of a NAND device.
537  */
538 static inline void nanddev_pos_next_lun(struct nand_device *nand,
539 					struct nand_pos *pos)
540 {
541 	if (pos->lun >= nand->memorg.luns_per_target - 1)
542 		return nanddev_pos_next_target(nand, pos);
543 
544 	pos->lun++;
545 	pos->page = 0;
546 	pos->plane = 0;
547 	pos->eraseblock = 0;
548 }
549 
550 /**
551  * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
552  * @nand: NAND device
553  * @pos: the position to update
554  *
555  * Updates @pos to point to the start of the next eraseblock. Useful when you
556  * want to iterate over all eraseblocks of a NAND device.
557  */
558 static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
559 					       struct nand_pos *pos)
560 {
561 	if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
562 		return nanddev_pos_next_lun(nand, pos);
563 
564 	pos->eraseblock++;
565 	pos->page = 0;
566 	pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
567 }
568 
569 /**
570  * nanddev_pos_next_eraseblock() - Move a position to the next page
571  * @nand: NAND device
572  * @pos: the position to update
573  *
574  * Updates @pos to point to the start of the next page. Useful when you want to
575  * iterate over all pages of a NAND device.
576  */
577 static inline void nanddev_pos_next_page(struct nand_device *nand,
578 					 struct nand_pos *pos)
579 {
580 	if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
581 		return nanddev_pos_next_eraseblock(nand, pos);
582 
583 	pos->page++;
584 }
585 
586 /**
587  * nand_io_iter_init - Initialize a NAND I/O iterator
588  * @nand: NAND device
589  * @offs: absolute offset
590  * @req: MTD request
591  * @iter: NAND I/O iterator
592  *
593  * Initializes a NAND iterator based on the information passed by the MTD
594  * layer.
595  */
596 static inline void nanddev_io_iter_init(struct nand_device *nand,
597 					loff_t offs, struct mtd_oob_ops *req,
598 					struct nand_io_iter *iter)
599 {
600 	struct mtd_info *mtd = nanddev_to_mtd(nand);
601 
602 	iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
603 	iter->req.ooboffs = req->ooboffs;
604 	iter->oobbytes_per_page = mtd_oobavail(mtd, req);
605 	iter->dataleft = req->len;
606 	iter->oobleft = req->ooblen;
607 	iter->req.databuf.in = req->datbuf;
608 	iter->req.datalen = min_t(unsigned int,
609 				  nand->memorg.pagesize - iter->req.dataoffs,
610 				  iter->dataleft);
611 	iter->req.oobbuf.in = req->oobbuf;
612 	iter->req.ooblen = min_t(unsigned int,
613 				 iter->oobbytes_per_page - iter->req.ooboffs,
614 				 iter->oobleft);
615 }
616 
617 /**
618  * nand_io_iter_next_page - Move to the next page
619  * @nand: NAND device
620  * @iter: NAND I/O iterator
621  *
622  * Updates the @iter to point to the next page.
623  */
624 static inline void nanddev_io_iter_next_page(struct nand_device *nand,
625 					     struct nand_io_iter *iter)
626 {
627 	nanddev_pos_next_page(nand, &iter->req.pos);
628 	iter->dataleft -= iter->req.datalen;
629 	iter->req.databuf.in += iter->req.datalen;
630 	iter->oobleft -= iter->req.ooblen;
631 	iter->req.oobbuf.in += iter->req.ooblen;
632 	iter->req.dataoffs = 0;
633 	iter->req.ooboffs = 0;
634 	iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
635 				  iter->dataleft);
636 	iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
637 				 iter->oobleft);
638 }
639 
640 /**
641  * nand_io_iter_end - Should end iteration or not
642  * @nand: NAND device
643  * @iter: NAND I/O iterator
644  *
645  * Check whether @iter has reached the end of the NAND portion it was asked to
646  * iterate on or not.
647  *
648  * Return: true if @iter has reached the end of the iteration request, false
649  *	   otherwise.
650  */
651 static inline bool nanddev_io_iter_end(struct nand_device *nand,
652 				       const struct nand_io_iter *iter)
653 {
654 	if (iter->dataleft || iter->oobleft)
655 		return false;
656 
657 	return true;
658 }
659 
660 /**
661  * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
662  *			   request
663  * @nand: NAND device
664  * @start: start address to read/write from
665  * @req: MTD I/O request
666  * @iter: NAND I/O iterator
667  *
668  * Should be used for iterate over pages that are contained in an MTD request.
669  */
670 #define nanddev_io_for_each_page(nand, start, req, iter)		\
671 	for (nanddev_io_iter_init(nand, start, req, iter);		\
672 	     !nanddev_io_iter_end(nand, iter);				\
673 	     nanddev_io_iter_next_page(nand, iter))
674 
675 bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
676 bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
677 int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos);
678 int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
679 
680 /* BBT related functions */
681 enum nand_bbt_block_status {
682 	NAND_BBT_BLOCK_STATUS_UNKNOWN,
683 	NAND_BBT_BLOCK_GOOD,
684 	NAND_BBT_BLOCK_WORN,
685 	NAND_BBT_BLOCK_RESERVED,
686 	NAND_BBT_BLOCK_FACTORY_BAD,
687 	NAND_BBT_BLOCK_NUM_STATUS,
688 };
689 
690 int nanddev_bbt_init(struct nand_device *nand);
691 void nanddev_bbt_cleanup(struct nand_device *nand);
692 int nanddev_bbt_update(struct nand_device *nand);
693 int nanddev_bbt_get_block_status(const struct nand_device *nand,
694 				 unsigned int entry);
695 int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
696 				 enum nand_bbt_block_status status);
697 int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
698 
699 /**
700  * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
701  * @nand: NAND device
702  * @pos: the NAND position we want to get BBT entry for
703  *
704  * Return the BBT entry used to store information about the eraseblock pointed
705  * by @pos.
706  *
707  * Return: the BBT entry storing information about eraseblock pointed by @pos.
708  */
709 static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
710 						    const struct nand_pos *pos)
711 {
712 	return pos->eraseblock +
713 	       ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
714 		nand->memorg.eraseblocks_per_lun);
715 }
716 
717 /**
718  * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
719  * @nand: NAND device
720  *
721  * Return: true if the BBT has been initialized, false otherwise.
722  */
723 static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
724 {
725 	return !!nand->bbt.cache;
726 }
727 
728 /* MTD -> NAND helper functions. */
729 int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
730 
731 #endif /* __LINUX_MTD_NAND_H */
732