1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright 2017 - Free Electrons 4 * 5 * Authors: 6 * Boris Brezillon <boris.brezillon@free-electrons.com> 7 * Peter Pan <peterpandong@micron.com> 8 */ 9 10 #ifndef __LINUX_MTD_NAND_H 11 #define __LINUX_MTD_NAND_H 12 13 #include <linux/mtd/mtd.h> 14 15 /** 16 * struct nand_memory_organization - Memory organization structure 17 * @bits_per_cell: number of bits per NAND cell 18 * @pagesize: page size 19 * @oobsize: OOB area size 20 * @pages_per_eraseblock: number of pages per eraseblock 21 * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number) 22 * @planes_per_lun: number of planes per LUN 23 * @luns_per_target: number of LUN per target (target is a synonym for die) 24 * @ntargets: total number of targets exposed by the NAND device 25 */ 26 struct nand_memory_organization { 27 unsigned int bits_per_cell; 28 unsigned int pagesize; 29 unsigned int oobsize; 30 unsigned int pages_per_eraseblock; 31 unsigned int eraseblocks_per_lun; 32 unsigned int planes_per_lun; 33 unsigned int luns_per_target; 34 unsigned int ntargets; 35 }; 36 37 #define NAND_MEMORG(bpc, ps, os, ppe, epl, ppl, lpt, nt) \ 38 { \ 39 .bits_per_cell = (bpc), \ 40 .pagesize = (ps), \ 41 .oobsize = (os), \ 42 .pages_per_eraseblock = (ppe), \ 43 .eraseblocks_per_lun = (epl), \ 44 .planes_per_lun = (ppl), \ 45 .luns_per_target = (lpt), \ 46 .ntargets = (nt), \ 47 } 48 49 /** 50 * struct nand_row_converter - Information needed to convert an absolute offset 51 * into a row address 52 * @lun_addr_shift: position of the LUN identifier in the row address 53 * @eraseblock_addr_shift: position of the eraseblock identifier in the row 54 * address 55 */ 56 struct nand_row_converter { 57 unsigned int lun_addr_shift; 58 unsigned int eraseblock_addr_shift; 59 }; 60 61 /** 62 * struct nand_pos - NAND position object 63 * @target: the NAND target/die 64 * @lun: the LUN identifier 65 * @plane: the plane within the LUN 66 * @eraseblock: the eraseblock within the LUN 67 * @page: the page within the LUN 68 * 69 * These information are usually used by specific sub-layers to select the 70 * appropriate target/die and generate a row address to pass to the device. 71 */ 72 struct nand_pos { 73 unsigned int target; 74 unsigned int lun; 75 unsigned int plane; 76 unsigned int eraseblock; 77 unsigned int page; 78 }; 79 80 /** 81 * struct nand_page_io_req - NAND I/O request object 82 * @pos: the position this I/O request is targeting 83 * @dataoffs: the offset within the page 84 * @datalen: number of data bytes to read from/write to this page 85 * @databuf: buffer to store data in or get data from 86 * @ooboffs: the OOB offset within the page 87 * @ooblen: the number of OOB bytes to read from/write to this page 88 * @oobbuf: buffer to store OOB data in or get OOB data from 89 * @mode: one of the %MTD_OPS_XXX mode 90 * 91 * This object is used to pass per-page I/O requests to NAND sub-layers. This 92 * way all useful information are already formatted in a useful way and 93 * specific NAND layers can focus on translating these information into 94 * specific commands/operations. 95 */ 96 struct nand_page_io_req { 97 struct nand_pos pos; 98 unsigned int dataoffs; 99 unsigned int datalen; 100 union { 101 const void *out; 102 void *in; 103 } databuf; 104 unsigned int ooboffs; 105 unsigned int ooblen; 106 union { 107 const void *out; 108 void *in; 109 } oobbuf; 110 int mode; 111 }; 112 113 /** 114 * struct nand_ecc_req - NAND ECC requirements 115 * @strength: ECC strength 116 * @step_size: ECC step/block size 117 */ 118 struct nand_ecc_req { 119 unsigned int strength; 120 unsigned int step_size; 121 }; 122 123 #define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) } 124 125 /** 126 * struct nand_bbt - bad block table object 127 * @cache: in memory BBT cache 128 */ 129 struct nand_bbt { 130 unsigned long *cache; 131 }; 132 133 struct nand_device; 134 135 /** 136 * struct nand_ops - NAND operations 137 * @erase: erase a specific block. No need to check if the block is bad before 138 * erasing, this has been taken care of by the generic NAND layer 139 * @markbad: mark a specific block bad. No need to check if the block is 140 * already marked bad, this has been taken care of by the generic 141 * NAND layer. This method should just write the BBM (Bad Block 142 * Marker) so that future call to struct_nand_ops->isbad() return 143 * true 144 * @isbad: check whether a block is bad or not. This method should just read 145 * the BBM and return whether the block is bad or not based on what it 146 * reads 147 * 148 * These are all low level operations that should be implemented by specialized 149 * NAND layers (SPI NAND, raw NAND, ...). 150 */ 151 struct nand_ops { 152 int (*erase)(struct nand_device *nand, const struct nand_pos *pos); 153 int (*markbad)(struct nand_device *nand, const struct nand_pos *pos); 154 bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos); 155 }; 156 157 /** 158 * struct nand_device - NAND device 159 * @mtd: MTD instance attached to the NAND device 160 * @memorg: memory layout 161 * @eccreq: ECC requirements 162 * @rowconv: position to row address converter 163 * @bbt: bad block table info 164 * @ops: NAND operations attached to the NAND device 165 * 166 * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND) 167 * should declare their own NAND object embedding a nand_device struct (that's 168 * how inheritance is done). 169 * struct_nand_device->memorg and struct_nand_device->eccreq should be filled 170 * at device detection time to reflect the NAND device 171 * capabilities/requirements. Once this is done nanddev_init() can be called. 172 * It will take care of converting NAND information into MTD ones, which means 173 * the specialized NAND layers should never manually tweak 174 * struct_nand_device->mtd except for the ->_read/write() hooks. 175 */ 176 struct nand_device { 177 struct mtd_info *mtd; 178 struct nand_memory_organization memorg; 179 struct nand_ecc_req eccreq; 180 struct nand_row_converter rowconv; 181 struct nand_bbt bbt; 182 const struct nand_ops *ops; 183 }; 184 185 /** 186 * struct nand_io_iter - NAND I/O iterator 187 * @req: current I/O request 188 * @oobbytes_per_page: maximum number of OOB bytes per page 189 * @dataleft: remaining number of data bytes to read/write 190 * @oobleft: remaining number of OOB bytes to read/write 191 * 192 * Can be used by specialized NAND layers to iterate over all pages covered 193 * by an MTD I/O request, which should greatly simplifies the boiler-plate 194 * code needed to read/write data from/to a NAND device. 195 */ 196 struct nand_io_iter { 197 struct nand_page_io_req req; 198 unsigned int oobbytes_per_page; 199 unsigned int dataleft; 200 unsigned int oobleft; 201 }; 202 203 /** 204 * mtd_to_nanddev() - Get the NAND device attached to the MTD instance 205 * @mtd: MTD instance 206 * 207 * Return: the NAND device embedding @mtd. 208 */ 209 static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd) 210 { 211 return mtd->priv; 212 } 213 214 /** 215 * nanddev_to_mtd() - Get the MTD device attached to a NAND device 216 * @nand: NAND device 217 * 218 * Return: the MTD device embedded in @nand. 219 */ 220 static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand) 221 { 222 return nand->mtd; 223 } 224 225 /* 226 * nanddev_bits_per_cell() - Get the number of bits per cell 227 * @nand: NAND device 228 * 229 * Return: the number of bits per cell. 230 */ 231 static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand) 232 { 233 return nand->memorg.bits_per_cell; 234 } 235 236 /** 237 * nanddev_page_size() - Get NAND page size 238 * @nand: NAND device 239 * 240 * Return: the page size. 241 */ 242 static inline size_t nanddev_page_size(const struct nand_device *nand) 243 { 244 return nand->memorg.pagesize; 245 } 246 247 /** 248 * nanddev_per_page_oobsize() - Get NAND OOB size 249 * @nand: NAND device 250 * 251 * Return: the OOB size. 252 */ 253 static inline unsigned int 254 nanddev_per_page_oobsize(const struct nand_device *nand) 255 { 256 return nand->memorg.oobsize; 257 } 258 259 /** 260 * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock 261 * @nand: NAND device 262 * 263 * Return: the number of pages per eraseblock. 264 */ 265 static inline unsigned int 266 nanddev_pages_per_eraseblock(const struct nand_device *nand) 267 { 268 return nand->memorg.pages_per_eraseblock; 269 } 270 271 /** 272 * nanddev_per_page_oobsize() - Get NAND erase block size 273 * @nand: NAND device 274 * 275 * Return: the eraseblock size. 276 */ 277 static inline size_t nanddev_eraseblock_size(const struct nand_device *nand) 278 { 279 return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock; 280 } 281 282 /** 283 * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN 284 * @nand: NAND device 285 * 286 * Return: the number of eraseblocks per LUN. 287 */ 288 static inline unsigned int 289 nanddev_eraseblocks_per_lun(const struct nand_device *nand) 290 { 291 return nand->memorg.eraseblocks_per_lun; 292 } 293 294 /** 295 * nanddev_target_size() - Get the total size provided by a single target/die 296 * @nand: NAND device 297 * 298 * Return: the total size exposed by a single target/die in bytes. 299 */ 300 static inline u64 nanddev_target_size(const struct nand_device *nand) 301 { 302 return (u64)nand->memorg.luns_per_target * 303 nand->memorg.eraseblocks_per_lun * 304 nand->memorg.pages_per_eraseblock * 305 nand->memorg.pagesize; 306 } 307 308 /** 309 * nanddev_ntarget() - Get the total of targets 310 * @nand: NAND device 311 * 312 * Return: the number of targets/dies exposed by @nand. 313 */ 314 static inline unsigned int nanddev_ntargets(const struct nand_device *nand) 315 { 316 return nand->memorg.ntargets; 317 } 318 319 /** 320 * nanddev_neraseblocks() - Get the total number of erasablocks 321 * @nand: NAND device 322 * 323 * Return: the total number of eraseblocks exposed by @nand. 324 */ 325 static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand) 326 { 327 return nand->memorg.ntargets * nand->memorg.luns_per_target * 328 nand->memorg.eraseblocks_per_lun; 329 } 330 331 /** 332 * nanddev_size() - Get NAND size 333 * @nand: NAND device 334 * 335 * Return: the total size (in bytes) exposed by @nand. 336 */ 337 static inline u64 nanddev_size(const struct nand_device *nand) 338 { 339 return nanddev_target_size(nand) * nanddev_ntargets(nand); 340 } 341 342 /** 343 * nanddev_get_memorg() - Extract memory organization info from a NAND device 344 * @nand: NAND device 345 * 346 * This can be used by the upper layer to fill the memorg info before calling 347 * nanddev_init(). 348 * 349 * Return: the memorg object embedded in the NAND device. 350 */ 351 static inline struct nand_memory_organization * 352 nanddev_get_memorg(struct nand_device *nand) 353 { 354 return &nand->memorg; 355 } 356 357 int nanddev_init(struct nand_device *nand, const struct nand_ops *ops, 358 struct module *owner); 359 void nanddev_cleanup(struct nand_device *nand); 360 361 /** 362 * nanddev_register() - Register a NAND device 363 * @nand: NAND device 364 * 365 * Register a NAND device. 366 * This function is just a wrapper around mtd_device_register() 367 * registering the MTD device embedded in @nand. 368 * 369 * Return: 0 in case of success, a negative error code otherwise. 370 */ 371 static inline int nanddev_register(struct nand_device *nand) 372 { 373 return mtd_device_register(nand->mtd, NULL, 0); 374 } 375 376 /** 377 * nanddev_unregister() - Unregister a NAND device 378 * @nand: NAND device 379 * 380 * Unregister a NAND device. 381 * This function is just a wrapper around mtd_device_unregister() 382 * unregistering the MTD device embedded in @nand. 383 * 384 * Return: 0 in case of success, a negative error code otherwise. 385 */ 386 static inline int nanddev_unregister(struct nand_device *nand) 387 { 388 return mtd_device_unregister(nand->mtd); 389 } 390 391 /** 392 * nanddev_set_of_node() - Attach a DT node to a NAND device 393 * @nand: NAND device 394 * @np: DT node 395 * 396 * Attach a DT node to a NAND device. 397 */ 398 static inline void nanddev_set_of_node(struct nand_device *nand, 399 const struct device_node *np) 400 { 401 mtd_set_of_node(nand->mtd, np); 402 } 403 404 /** 405 * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device 406 * @nand: NAND device 407 * 408 * Return: the DT node attached to @nand. 409 */ 410 static inline const struct device_node *nanddev_get_of_node(struct nand_device *nand) 411 { 412 return mtd_get_of_node(nand->mtd); 413 } 414 415 /** 416 * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position 417 * @nand: NAND device 418 * @offs: absolute NAND offset (usually passed by the MTD layer) 419 * @pos: a NAND position object to fill in 420 * 421 * Converts @offs into a nand_pos representation. 422 * 423 * Return: the offset within the NAND page pointed by @pos. 424 */ 425 static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand, 426 loff_t offs, 427 struct nand_pos *pos) 428 { 429 unsigned int pageoffs; 430 u64 tmp = offs; 431 432 pageoffs = do_div(tmp, nand->memorg.pagesize); 433 pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock); 434 pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun); 435 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun; 436 pos->lun = do_div(tmp, nand->memorg.luns_per_target); 437 pos->target = tmp; 438 439 return pageoffs; 440 } 441 442 /** 443 * nanddev_pos_cmp() - Compare two NAND positions 444 * @a: First NAND position 445 * @b: Second NAND position 446 * 447 * Compares two NAND positions. 448 * 449 * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b. 450 */ 451 static inline int nanddev_pos_cmp(const struct nand_pos *a, 452 const struct nand_pos *b) 453 { 454 if (a->target != b->target) 455 return a->target < b->target ? -1 : 1; 456 457 if (a->lun != b->lun) 458 return a->lun < b->lun ? -1 : 1; 459 460 if (a->eraseblock != b->eraseblock) 461 return a->eraseblock < b->eraseblock ? -1 : 1; 462 463 if (a->page != b->page) 464 return a->page < b->page ? -1 : 1; 465 466 return 0; 467 } 468 469 /** 470 * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset 471 * @nand: NAND device 472 * @pos: the NAND position to convert 473 * 474 * Converts @pos NAND position into an absolute offset. 475 * 476 * Return: the absolute offset. Note that @pos points to the beginning of a 477 * page, if one wants to point to a specific offset within this page 478 * the returned offset has to be adjusted manually. 479 */ 480 static inline loff_t nanddev_pos_to_offs(struct nand_device *nand, 481 const struct nand_pos *pos) 482 { 483 unsigned int npages; 484 485 npages = pos->page + 486 ((pos->eraseblock + 487 (pos->lun + 488 (pos->target * nand->memorg.luns_per_target)) * 489 nand->memorg.eraseblocks_per_lun) * 490 nand->memorg.pages_per_eraseblock); 491 492 return (loff_t)npages * nand->memorg.pagesize; 493 } 494 495 /** 496 * nanddev_pos_to_row() - Extract a row address from a NAND position 497 * @nand: NAND device 498 * @pos: the position to convert 499 * 500 * Converts a NAND position into a row address that can then be passed to the 501 * device. 502 * 503 * Return: the row address extracted from @pos. 504 */ 505 static inline unsigned int nanddev_pos_to_row(struct nand_device *nand, 506 const struct nand_pos *pos) 507 { 508 return (pos->lun << nand->rowconv.lun_addr_shift) | 509 (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) | 510 pos->page; 511 } 512 513 /** 514 * nanddev_pos_next_target() - Move a position to the next target/die 515 * @nand: NAND device 516 * @pos: the position to update 517 * 518 * Updates @pos to point to the start of the next target/die. Useful when you 519 * want to iterate over all targets/dies of a NAND device. 520 */ 521 static inline void nanddev_pos_next_target(struct nand_device *nand, 522 struct nand_pos *pos) 523 { 524 pos->page = 0; 525 pos->plane = 0; 526 pos->eraseblock = 0; 527 pos->lun = 0; 528 pos->target++; 529 } 530 531 /** 532 * nanddev_pos_next_lun() - Move a position to the next LUN 533 * @nand: NAND device 534 * @pos: the position to update 535 * 536 * Updates @pos to point to the start of the next LUN. Useful when you want to 537 * iterate over all LUNs of a NAND device. 538 */ 539 static inline void nanddev_pos_next_lun(struct nand_device *nand, 540 struct nand_pos *pos) 541 { 542 if (pos->lun >= nand->memorg.luns_per_target - 1) 543 return nanddev_pos_next_target(nand, pos); 544 545 pos->lun++; 546 pos->page = 0; 547 pos->plane = 0; 548 pos->eraseblock = 0; 549 } 550 551 /** 552 * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock 553 * @nand: NAND device 554 * @pos: the position to update 555 * 556 * Updates @pos to point to the start of the next eraseblock. Useful when you 557 * want to iterate over all eraseblocks of a NAND device. 558 */ 559 static inline void nanddev_pos_next_eraseblock(struct nand_device *nand, 560 struct nand_pos *pos) 561 { 562 if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1) 563 return nanddev_pos_next_lun(nand, pos); 564 565 pos->eraseblock++; 566 pos->page = 0; 567 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun; 568 } 569 570 /** 571 * nanddev_pos_next_eraseblock() - Move a position to the next page 572 * @nand: NAND device 573 * @pos: the position to update 574 * 575 * Updates @pos to point to the start of the next page. Useful when you want to 576 * iterate over all pages of a NAND device. 577 */ 578 static inline void nanddev_pos_next_page(struct nand_device *nand, 579 struct nand_pos *pos) 580 { 581 if (pos->page >= nand->memorg.pages_per_eraseblock - 1) 582 return nanddev_pos_next_eraseblock(nand, pos); 583 584 pos->page++; 585 } 586 587 /** 588 * nand_io_iter_init - Initialize a NAND I/O iterator 589 * @nand: NAND device 590 * @offs: absolute offset 591 * @req: MTD request 592 * @iter: NAND I/O iterator 593 * 594 * Initializes a NAND iterator based on the information passed by the MTD 595 * layer. 596 */ 597 static inline void nanddev_io_iter_init(struct nand_device *nand, 598 loff_t offs, struct mtd_oob_ops *req, 599 struct nand_io_iter *iter) 600 { 601 struct mtd_info *mtd = nanddev_to_mtd(nand); 602 603 iter->req.mode = req->mode; 604 iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos); 605 iter->req.ooboffs = req->ooboffs; 606 iter->oobbytes_per_page = mtd_oobavail(mtd, req); 607 iter->dataleft = req->len; 608 iter->oobleft = req->ooblen; 609 iter->req.databuf.in = req->datbuf; 610 iter->req.datalen = min_t(unsigned int, 611 nand->memorg.pagesize - iter->req.dataoffs, 612 iter->dataleft); 613 iter->req.oobbuf.in = req->oobbuf; 614 iter->req.ooblen = min_t(unsigned int, 615 iter->oobbytes_per_page - iter->req.ooboffs, 616 iter->oobleft); 617 } 618 619 /** 620 * nand_io_iter_next_page - Move to the next page 621 * @nand: NAND device 622 * @iter: NAND I/O iterator 623 * 624 * Updates the @iter to point to the next page. 625 */ 626 static inline void nanddev_io_iter_next_page(struct nand_device *nand, 627 struct nand_io_iter *iter) 628 { 629 nanddev_pos_next_page(nand, &iter->req.pos); 630 iter->dataleft -= iter->req.datalen; 631 iter->req.databuf.in += iter->req.datalen; 632 iter->oobleft -= iter->req.ooblen; 633 iter->req.oobbuf.in += iter->req.ooblen; 634 iter->req.dataoffs = 0; 635 iter->req.ooboffs = 0; 636 iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize, 637 iter->dataleft); 638 iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page, 639 iter->oobleft); 640 } 641 642 /** 643 * nand_io_iter_end - Should end iteration or not 644 * @nand: NAND device 645 * @iter: NAND I/O iterator 646 * 647 * Check whether @iter has reached the end of the NAND portion it was asked to 648 * iterate on or not. 649 * 650 * Return: true if @iter has reached the end of the iteration request, false 651 * otherwise. 652 */ 653 static inline bool nanddev_io_iter_end(struct nand_device *nand, 654 const struct nand_io_iter *iter) 655 { 656 if (iter->dataleft || iter->oobleft) 657 return false; 658 659 return true; 660 } 661 662 /** 663 * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O 664 * request 665 * @nand: NAND device 666 * @start: start address to read/write from 667 * @req: MTD I/O request 668 * @iter: NAND I/O iterator 669 * 670 * Should be used for iterate over pages that are contained in an MTD request. 671 */ 672 #define nanddev_io_for_each_page(nand, start, req, iter) \ 673 for (nanddev_io_iter_init(nand, start, req, iter); \ 674 !nanddev_io_iter_end(nand, iter); \ 675 nanddev_io_iter_next_page(nand, iter)) 676 677 bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos); 678 bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos); 679 int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos); 680 int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos); 681 682 /* BBT related functions */ 683 enum nand_bbt_block_status { 684 NAND_BBT_BLOCK_STATUS_UNKNOWN, 685 NAND_BBT_BLOCK_GOOD, 686 NAND_BBT_BLOCK_WORN, 687 NAND_BBT_BLOCK_RESERVED, 688 NAND_BBT_BLOCK_FACTORY_BAD, 689 NAND_BBT_BLOCK_NUM_STATUS, 690 }; 691 692 int nanddev_bbt_init(struct nand_device *nand); 693 void nanddev_bbt_cleanup(struct nand_device *nand); 694 int nanddev_bbt_update(struct nand_device *nand); 695 int nanddev_bbt_get_block_status(const struct nand_device *nand, 696 unsigned int entry); 697 int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry, 698 enum nand_bbt_block_status status); 699 int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block); 700 701 /** 702 * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry 703 * @nand: NAND device 704 * @pos: the NAND position we want to get BBT entry for 705 * 706 * Return the BBT entry used to store information about the eraseblock pointed 707 * by @pos. 708 * 709 * Return: the BBT entry storing information about eraseblock pointed by @pos. 710 */ 711 static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand, 712 const struct nand_pos *pos) 713 { 714 return pos->eraseblock + 715 ((pos->lun + (pos->target * nand->memorg.luns_per_target)) * 716 nand->memorg.eraseblocks_per_lun); 717 } 718 719 /** 720 * nanddev_bbt_is_initialized() - Check if the BBT has been initialized 721 * @nand: NAND device 722 * 723 * Return: true if the BBT has been initialized, false otherwise. 724 */ 725 static inline bool nanddev_bbt_is_initialized(struct nand_device *nand) 726 { 727 return !!nand->bbt.cache; 728 } 729 730 /* MTD -> NAND helper functions. */ 731 int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo); 732 733 #endif /* __LINUX_MTD_NAND_H */ 734