xref: /rk3399_rockchip-uboot/drivers/nvme/nvme.c (revision a8a4d6c05a2e5f52e75e5096f9470aa3d36fd000)
1 /*
2  * Copyright (C) 2017 NXP Semiconductors
3  * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  */
7 
8 #include <common.h>
9 #include <bouncebuf.h>
10 #include <dm.h>
11 #include <errno.h>
12 #include <memalign.h>
13 #include <pci.h>
14 #include <dm/device-internal.h>
15 #include "nvme.h"
16 
17 #define NVME_Q_DEPTH		2
18 #define NVME_AQ_DEPTH		2
19 #define NVME_SQ_SIZE(depth)	(depth * sizeof(struct nvme_command))
20 #define NVME_CQ_SIZE(depth)	(depth * sizeof(struct nvme_completion))
21 #define NVME_CQ_ALLOCATION	ALIGN(NVME_CQ_SIZE(NVME_Q_DEPTH), \
22 				      ARCH_DMA_MINALIGN)
23 #define ADMIN_TIMEOUT		60
24 #define IO_TIMEOUT		30
25 #define MAX_PRP_POOL		512
26 
27 enum nvme_queue_id {
28 	NVME_ADMIN_Q,
29 	NVME_IO_Q,
30 	NVME_Q_NUM,
31 };
32 
33 /*
34  * An NVM Express queue. Each device has at least two (one for admin
35  * commands and one for I/O commands).
36  */
37 struct nvme_queue {
38 	struct nvme_dev *dev;
39 	struct nvme_command *sq_cmds;
40 	struct nvme_completion *cqes;
41 	wait_queue_head_t sq_full;
42 	u32 __iomem *q_db;
43 	u16 q_depth;
44 	s16 cq_vector;
45 	u16 sq_head;
46 	u16 sq_tail;
47 	u16 cq_head;
48 	u16 qid;
49 	u8 cq_phase;
50 	u8 cqe_seen;
51 	unsigned long cmdid_data[];
52 };
53 
54 static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
55 {
56 	u32 bit = enabled ? NVME_CSTS_RDY : 0;
57 	int timeout;
58 	ulong start;
59 
60 	/* Timeout field in the CAP register is in 500 millisecond units */
61 	timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
62 
63 	start = get_timer(0);
64 	while (get_timer(start) < timeout) {
65 		if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
66 			return 0;
67 	}
68 
69 	return -ETIME;
70 }
71 
72 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
73 			   int total_len, u64 dma_addr)
74 {
75 	u32 page_size = dev->page_size;
76 	int offset = dma_addr & (page_size - 1);
77 	u64 *prp_pool;
78 	int length = total_len;
79 	int i, nprps;
80 	u32 prps_per_page = page_size >> 3;
81 	u32 num_pages;
82 
83 	length -= (page_size - offset);
84 
85 	if (length <= 0) {
86 		*prp2 = 0;
87 		return 0;
88 	}
89 
90 	if (length)
91 		dma_addr += (page_size - offset);
92 
93 	if (length <= page_size) {
94 		*prp2 = dma_addr;
95 		return 0;
96 	}
97 
98 	nprps = DIV_ROUND_UP(length, page_size);
99 	num_pages = DIV_ROUND_UP(nprps + 1, prps_per_page);
100 
101 	if (nprps > dev->prp_entry_num) {
102 		free(dev->prp_pool);
103 		/*
104 		 * Always increase in increments of pages.  It doesn't waste
105 		 * much memory and reduces the number of allocations.
106 		 */
107 		dev->prp_pool = memalign(page_size, num_pages * page_size);
108 		if (!dev->prp_pool) {
109 			printf("Error: malloc prp_pool fail\n");
110 			return -ENOMEM;
111 		}
112 		dev->prp_entry_num = prps_per_page * num_pages;
113 	}
114 
115 	prp_pool = dev->prp_pool;
116 	i = 0;
117 	while (nprps) {
118 		if (i == prps_per_page) {
119 			*(prp_pool + i) = *(prp_pool + i - 1);
120 			*(prp_pool + i - 1) = cpu_to_le64((ulong)prp_pool +
121 					page_size);
122 			i = 1;
123 			prp_pool += page_size;
124 		}
125 		*(prp_pool + i++) = cpu_to_le64(dma_addr);
126 		dma_addr += page_size;
127 		nprps--;
128 	}
129 	*prp2 = (ulong)dev->prp_pool;
130 
131 	flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
132 			   dev->prp_entry_num * sizeof(u64));
133 
134 	return 0;
135 }
136 
137 static __le16 nvme_get_cmd_id(void)
138 {
139 	static unsigned short cmdid;
140 
141 	return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
142 }
143 
144 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
145 {
146 	/*
147 	 * Single CQ entries are always smaller than a cache line, so we
148 	 * can't invalidate them individually. However CQ entries are
149 	 * read only by the CPU, so it's safe to always invalidate all of them,
150 	 * as the cache line should never become dirty.
151 	 */
152 	ulong start = (ulong)&nvmeq->cqes[0];
153 	ulong stop = start + NVME_CQ_ALLOCATION;
154 
155 	invalidate_dcache_range(start, stop);
156 
157 	return readw(&(nvmeq->cqes[index].status));
158 }
159 
160 /**
161  * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
162  *
163  * @nvmeq:	The queue to use
164  * @cmd:	The command to send
165  */
166 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
167 {
168 	u16 tail = nvmeq->sq_tail;
169 
170 	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
171 	flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
172 			   (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
173 
174 	if (++tail == nvmeq->q_depth)
175 		tail = 0;
176 	writel(tail, nvmeq->q_db);
177 	nvmeq->sq_tail = tail;
178 }
179 
180 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
181 				struct nvme_command *cmd,
182 				u32 *result, unsigned timeout)
183 {
184 	u16 head = nvmeq->cq_head;
185 	u16 phase = nvmeq->cq_phase;
186 	u16 status;
187 	ulong start_time;
188 	ulong timeout_us = timeout * 100000;
189 
190 	cmd->common.command_id = nvme_get_cmd_id();
191 	nvme_submit_cmd(nvmeq, cmd);
192 
193 	start_time = timer_get_us();
194 
195 	for (;;) {
196 		status = nvme_read_completion_status(nvmeq, head);
197 		if ((status & 0x01) == phase)
198 			break;
199 		if (timeout_us > 0 && (timer_get_us() - start_time)
200 		    >= timeout_us)
201 			return -ETIMEDOUT;
202 	}
203 
204 	status >>= 1;
205 	if (status) {
206 		printf("ERROR: status = %x, phase = %d, head = %d\n",
207 		       status, phase, head);
208 		status = 0;
209 		if (++head == nvmeq->q_depth) {
210 			head = 0;
211 			phase = !phase;
212 		}
213 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
214 		nvmeq->cq_head = head;
215 		nvmeq->cq_phase = phase;
216 
217 		return -EIO;
218 	}
219 
220 	if (result)
221 		*result = readl(&(nvmeq->cqes[head].result));
222 
223 	if (++head == nvmeq->q_depth) {
224 		head = 0;
225 		phase = !phase;
226 	}
227 	writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
228 	nvmeq->cq_head = head;
229 	nvmeq->cq_phase = phase;
230 
231 	return status;
232 }
233 
234 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
235 				 u32 *result)
236 {
237 	return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
238 				    result, ADMIN_TIMEOUT);
239 }
240 
241 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
242 					   int qid, int depth)
243 {
244 	struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
245 	if (!nvmeq)
246 		return NULL;
247 	memset(nvmeq, 0, sizeof(*nvmeq));
248 
249 	nvmeq->cqes = (void *)memalign(4096, NVME_CQ_ALLOCATION);
250 	if (!nvmeq->cqes)
251 		goto free_nvmeq;
252 	memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
253 
254 	nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
255 	if (!nvmeq->sq_cmds)
256 		goto free_queue;
257 	memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
258 
259 	nvmeq->dev = dev;
260 
261 	nvmeq->cq_head = 0;
262 	nvmeq->cq_phase = 1;
263 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
264 	nvmeq->q_depth = depth;
265 	nvmeq->qid = qid;
266 	dev->queue_count++;
267 	dev->queues[qid] = nvmeq;
268 
269 	return nvmeq;
270 
271  free_queue:
272 	free((void *)nvmeq->cqes);
273  free_nvmeq:
274 	free(nvmeq);
275 
276 	return NULL;
277 }
278 
279 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
280 {
281 	struct nvme_command c;
282 
283 	memset(&c, 0, sizeof(c));
284 	c.delete_queue.opcode = opcode;
285 	c.delete_queue.qid = cpu_to_le16(id);
286 
287 	return nvme_submit_admin_cmd(dev, &c, NULL);
288 }
289 
290 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
291 {
292 	return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
293 }
294 
295 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
296 {
297 	return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
298 }
299 
300 static int nvme_enable_ctrl(struct nvme_dev *dev)
301 {
302 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
303 	dev->ctrl_config |= NVME_CC_ENABLE;
304 	writel(dev->ctrl_config, &dev->bar->cc);
305 
306 	return nvme_wait_ready(dev, true);
307 }
308 
309 static int nvme_disable_ctrl(struct nvme_dev *dev)
310 {
311 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
312 	dev->ctrl_config &= ~NVME_CC_ENABLE;
313 	writel(dev->ctrl_config, &dev->bar->cc);
314 
315 	if (dev->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
316 		mdelay(NVME_QUIRK_DELAY_AMOUNT);
317 
318 	return nvme_wait_ready(dev, false);
319 }
320 
321 static void nvme_free_queue(struct nvme_queue *nvmeq)
322 {
323 	free((void *)nvmeq->cqes);
324 	free(nvmeq->sq_cmds);
325 	free(nvmeq);
326 }
327 
328 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
329 {
330 	int i;
331 
332 	for (i = dev->queue_count - 1; i >= lowest; i--) {
333 		struct nvme_queue *nvmeq = dev->queues[i];
334 		dev->queue_count--;
335 		dev->queues[i] = NULL;
336 		nvme_free_queue(nvmeq);
337 	}
338 }
339 
340 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
341 {
342 	struct nvme_dev *dev = nvmeq->dev;
343 
344 	nvmeq->sq_tail = 0;
345 	nvmeq->cq_head = 0;
346 	nvmeq->cq_phase = 1;
347 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
348 	memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
349 	flush_dcache_range((ulong)nvmeq->cqes,
350 			   (ulong)nvmeq->cqes + NVME_CQ_ALLOCATION);
351 	dev->online_queues++;
352 }
353 
354 static int nvme_configure_admin_queue(struct nvme_dev *dev)
355 {
356 	int result;
357 	u32 aqa;
358 	u64 cap = dev->cap;
359 	struct nvme_queue *nvmeq;
360 	/* most architectures use 4KB as the page size */
361 	unsigned page_shift = 12;
362 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
363 	unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
364 
365 	if (page_shift < dev_page_min) {
366 		debug("Device minimum page size (%u) too large for host (%u)\n",
367 		      1 << dev_page_min, 1 << page_shift);
368 		return -ENODEV;
369 	}
370 
371 	if (page_shift > dev_page_max) {
372 		debug("Device maximum page size (%u) smaller than host (%u)\n",
373 		      1 << dev_page_max, 1 << page_shift);
374 		page_shift = dev_page_max;
375 	}
376 
377 	result = nvme_disable_ctrl(dev);
378 	if (result < 0)
379 		return result;
380 
381 	nvmeq = dev->queues[NVME_ADMIN_Q];
382 	if (!nvmeq) {
383 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
384 		if (!nvmeq)
385 			return -ENOMEM;
386 	}
387 
388 	aqa = nvmeq->q_depth - 1;
389 	aqa |= aqa << 16;
390 
391 	dev->page_size = 1 << page_shift;
392 
393 	dev->ctrl_config = NVME_CC_CSS_NVM;
394 	dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
395 	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
396 	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
397 
398 	writel(aqa, &dev->bar->aqa);
399 	nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
400 	nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
401 
402 	result = nvme_enable_ctrl(dev);
403 	if (result)
404 		goto free_nvmeq;
405 
406 	nvmeq->cq_vector = 0;
407 
408 	nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
409 
410 	return result;
411 
412  free_nvmeq:
413 	nvme_free_queues(dev, 0);
414 
415 	return result;
416 }
417 
418 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
419 			    struct nvme_queue *nvmeq)
420 {
421 	struct nvme_command c;
422 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
423 
424 	memset(&c, 0, sizeof(c));
425 	c.create_cq.opcode = nvme_admin_create_cq;
426 	c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
427 	c.create_cq.cqid = cpu_to_le16(qid);
428 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
429 	c.create_cq.cq_flags = cpu_to_le16(flags);
430 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
431 
432 	return nvme_submit_admin_cmd(dev, &c, NULL);
433 }
434 
435 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
436 			    struct nvme_queue *nvmeq)
437 {
438 	struct nvme_command c;
439 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
440 
441 	memset(&c, 0, sizeof(c));
442 	c.create_sq.opcode = nvme_admin_create_sq;
443 	c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
444 	c.create_sq.sqid = cpu_to_le16(qid);
445 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
446 	c.create_sq.sq_flags = cpu_to_le16(flags);
447 	c.create_sq.cqid = cpu_to_le16(qid);
448 
449 	return nvme_submit_admin_cmd(dev, &c, NULL);
450 }
451 
452 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
453 		  unsigned cns, dma_addr_t dma_addr)
454 {
455 	struct nvme_command c;
456 	u32 page_size = dev->page_size;
457 	int offset = dma_addr & (page_size - 1);
458 	int length = sizeof(struct nvme_id_ctrl);
459 	int ret;
460 
461 	memset(&c, 0, sizeof(c));
462 	c.identify.opcode = nvme_admin_identify;
463 	c.identify.nsid = cpu_to_le32(nsid);
464 	c.identify.prp1 = cpu_to_le64(dma_addr);
465 
466 	length -= (page_size - offset);
467 	if (length <= 0) {
468 		c.identify.prp2 = 0;
469 	} else {
470 		dma_addr += (page_size - offset);
471 		c.identify.prp2 = cpu_to_le64(dma_addr);
472 	}
473 
474 	c.identify.cns = cpu_to_le32(cns);
475 
476 	invalidate_dcache_range(dma_addr,
477 				dma_addr + sizeof(struct nvme_id_ctrl));
478 
479 	ret = nvme_submit_admin_cmd(dev, &c, NULL);
480 	if (!ret)
481 		invalidate_dcache_range(dma_addr,
482 					dma_addr + sizeof(struct nvme_id_ctrl));
483 
484 	return ret;
485 }
486 
487 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
488 		      dma_addr_t dma_addr, u32 *result)
489 {
490 	struct nvme_command c;
491 	int ret;
492 
493 	memset(&c, 0, sizeof(c));
494 	c.features.opcode = nvme_admin_get_features;
495 	c.features.nsid = cpu_to_le32(nsid);
496 	c.features.prp1 = cpu_to_le64(dma_addr);
497 	c.features.fid = cpu_to_le32(fid);
498 
499 	ret = nvme_submit_admin_cmd(dev, &c, result);
500 
501 	/*
502 	 * TODO: Add some cache invalidation when a DMA buffer is involved
503 	 * in the request, here and before the command gets submitted. The
504 	 * buffer size varies by feature, also some features use a different
505 	 * field in the command packet to hold the buffer address.
506 	 * Section 5.21.1 (Set Features command) in the NVMe specification
507 	 * details the buffer requirements for each feature.
508 	 *
509 	 * At the moment there is no user of this function.
510 	 */
511 
512 	return ret;
513 }
514 
515 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
516 		      dma_addr_t dma_addr, u32 *result)
517 {
518 	struct nvme_command c;
519 
520 	memset(&c, 0, sizeof(c));
521 	c.features.opcode = nvme_admin_set_features;
522 	c.features.prp1 = cpu_to_le64(dma_addr);
523 	c.features.fid = cpu_to_le32(fid);
524 	c.features.dword11 = cpu_to_le32(dword11);
525 
526 	/*
527 	 * TODO: Add a cache clean (aka flush) operation when a DMA buffer is
528 	 * involved in the request. The buffer size varies by feature, also
529 	 * some features use a different field in the command packet to hold
530 	 * the buffer address. Section 5.21.1 (Set Features command) in the
531 	 * NVMe specification details the buffer requirements for each
532 	 * feature.
533 	 * At the moment the only user of this function is not using
534 	 * any DMA buffer at all.
535 	 */
536 
537 	return nvme_submit_admin_cmd(dev, &c, result);
538 }
539 
540 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
541 {
542 	struct nvme_dev *dev = nvmeq->dev;
543 	int result;
544 
545 	nvmeq->cq_vector = qid - 1;
546 	result = nvme_alloc_cq(dev, qid, nvmeq);
547 	if (result < 0)
548 		goto release_cq;
549 
550 	result = nvme_alloc_sq(dev, qid, nvmeq);
551 	if (result < 0)
552 		goto release_sq;
553 
554 	nvme_init_queue(nvmeq, qid);
555 
556 	return result;
557 
558  release_sq:
559 	nvme_delete_sq(dev, qid);
560  release_cq:
561 	nvme_delete_cq(dev, qid);
562 
563 	return result;
564 }
565 
566 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
567 {
568 	int status;
569 	u32 result;
570 	u32 q_count = (count - 1) | ((count - 1) << 16);
571 
572 	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
573 			q_count, 0, &result);
574 
575 	if (status < 0)
576 		return status;
577 	if (status > 1)
578 		return 0;
579 
580 	return min(result & 0xffff, result >> 16) + 1;
581 }
582 
583 static void nvme_create_io_queues(struct nvme_dev *dev)
584 {
585 	unsigned int i;
586 
587 	for (i = dev->queue_count; i <= dev->max_qid; i++)
588 		if (!nvme_alloc_queue(dev, i, dev->q_depth))
589 			break;
590 
591 	for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
592 		if (nvme_create_queue(dev->queues[i], i))
593 			break;
594 }
595 
596 static int nvme_setup_io_queues(struct nvme_dev *dev)
597 {
598 	int nr_io_queues;
599 	int result;
600 
601 	nr_io_queues = 1;
602 	result = nvme_set_queue_count(dev, nr_io_queues);
603 	if (result <= 0)
604 		return result;
605 
606 	dev->max_qid = nr_io_queues;
607 
608 	/* Free previously allocated queues */
609 	nvme_free_queues(dev, nr_io_queues + 1);
610 	nvme_create_io_queues(dev);
611 
612 	return 0;
613 }
614 
615 static int nvme_get_info_from_identify(struct nvme_dev *dev)
616 {
617 	struct nvme_id_ctrl *ctrl;
618 	int ret;
619 	int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
620 
621 	ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
622 	if (!ctrl)
623 		return -ENOMEM;
624 
625 	ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
626 	if (ret) {
627 		free(ctrl);
628 		return -EIO;
629 	}
630 
631 	dev->nn = le32_to_cpu(ctrl->nn);
632 	dev->vwc = ctrl->vwc;
633 	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
634 	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
635 	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
636 	if (ctrl->mdts)
637 		dev->max_transfer_shift = (ctrl->mdts + shift);
638 	else {
639 		/*
640 		 * Maximum Data Transfer Size (MDTS) field indicates the maximum
641 		 * data transfer size between the host and the controller. The
642 		 * host should not submit a command that exceeds this transfer
643 		 * size. The value is in units of the minimum memory page size
644 		 * and is reported as a power of two (2^n).
645 		 *
646 		 * The spec also says: a value of 0h indicates no restrictions
647 		 * on transfer size. But in nvme_blk_read/write() below we have
648 		 * the following algorithm for maximum number of logic blocks
649 		 * per transfer:
650 		 *
651 		 * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
652 		 *
653 		 * In order for lbas not to overflow, the maximum number is 15
654 		 * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
655 		 * Let's use 20 which provides 1MB size.
656 		 */
657 		dev->max_transfer_shift = 20;
658 	}
659 
660 	free(ctrl);
661 	return 0;
662 }
663 
664 int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
665 {
666 	struct nvme_ns *ns = dev_get_priv(udev);
667 
668 	if (ns_id)
669 		*ns_id = ns->ns_id;
670 	if (eui64)
671 		memcpy(eui64, ns->eui64, sizeof(ns->eui64));
672 
673 	return 0;
674 }
675 
676 int nvme_scan_namespace(void)
677 {
678 	struct uclass *uc;
679 	struct udevice *dev;
680 	int ret;
681 
682 	ret = uclass_get(UCLASS_NVME, &uc);
683 	if (ret)
684 		return ret;
685 
686 	uclass_foreach_dev(dev, uc) {
687 		ret = device_probe(dev);
688 		if (ret) {
689 			printf("Failed to probe '%s': err=%dE\n", dev->name,
690 				ret);
691 			/* Bail if we ran out of memory, else keep trying */
692 			if (ret != -EBUSY)
693 				return ret;
694 		}
695 	}
696 
697 	return 0;
698 }
699 
700 static int nvme_blk_probe(struct udevice *udev)
701 {
702 	struct nvme_dev *ndev = dev_get_priv(udev->parent);
703 	struct blk_desc *desc = dev_get_uclass_platdata(udev);
704 	struct nvme_ns *ns = dev_get_priv(udev);
705 	u8 flbas;
706 	struct pci_child_platdata *pplat;
707 	struct nvme_id_ns *id;
708 
709 	id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
710 	if (!id)
711 		return -ENOMEM;
712 
713 	ns->dev = ndev;
714 	/* extract the namespace id from the block device name */
715 	ns->ns_id = trailing_strtol(udev->name);
716 	if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
717 		free(id);
718 		return -EIO;
719 	}
720 
721 	memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
722 	flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
723 	ns->flbas = flbas;
724 	ns->lba_shift = id->lbaf[flbas].ds;
725 	list_add(&ns->list, &ndev->namespaces);
726 
727 	desc->lba = le64_to_cpu(id->nsze);
728 	desc->log2blksz = ns->lba_shift;
729 	desc->blksz = 1 << ns->lba_shift;
730 	desc->bdev = udev;
731 	pplat = dev_get_parent_platdata(udev->parent);
732 	sprintf(desc->vendor, "0x%.4x", pplat->vendor);
733 	memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
734 	memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
735 	part_init(desc);
736 
737 	free(id);
738 	return 0;
739 }
740 
741 static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
742 			 lbaint_t blkcnt, void *buffer, bool read)
743 {
744 	struct nvme_ns *ns = dev_get_priv(udev);
745 	struct nvme_dev *dev = ns->dev;
746 	struct nvme_command c;
747 	struct blk_desc *desc = dev_get_uclass_platdata(udev);
748 	int status;
749 	u64 prp2;
750 	u64 total_len = blkcnt << desc->log2blksz;
751 	u64 temp_len = total_len;
752 	uintptr_t temp_buffer;
753 
754 	u64 slba = blknr;
755 	u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
756 	u64 total_lbas = blkcnt;
757 
758 	struct bounce_buffer bb;
759 	unsigned int bb_flags;
760 	int ret;
761 
762 	if (read)
763 		bb_flags = GEN_BB_WRITE;
764 	else
765 		bb_flags = GEN_BB_READ;
766 
767 	ret = bounce_buffer_start(&bb, buffer, total_len, bb_flags);
768 	if (ret)
769 		return -ENOMEM;
770 	temp_buffer = (unsigned long)bb.bounce_buffer;
771 
772 	c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
773 	c.rw.flags = 0;
774 	c.rw.nsid = cpu_to_le32(ns->ns_id);
775 	c.rw.control = 0;
776 	c.rw.dsmgmt = 0;
777 	c.rw.reftag = 0;
778 	c.rw.apptag = 0;
779 	c.rw.appmask = 0;
780 	c.rw.metadata = 0;
781 
782 	/* Enable FUA for data integrity if vwc is enabled */
783 	if (dev->vwc)
784 		c.rw.control |= NVME_RW_FUA;
785 
786 	while (total_lbas) {
787 		if (total_lbas < lbas) {
788 			lbas = (u16)total_lbas;
789 			total_lbas = 0;
790 		} else {
791 			total_lbas -= lbas;
792 		}
793 
794 		if (nvme_setup_prps(dev, &prp2,
795 				    lbas << ns->lba_shift, temp_buffer))
796 			return -EIO;
797 		c.rw.slba = cpu_to_le64(slba);
798 		slba += lbas;
799 		c.rw.length = cpu_to_le16(lbas - 1);
800 		c.rw.prp1 = cpu_to_le64(temp_buffer);
801 		c.rw.prp2 = cpu_to_le64(prp2);
802 		status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
803 				&c, NULL, IO_TIMEOUT);
804 		if (status)
805 			break;
806 		temp_len -= (u32)lbas << ns->lba_shift;
807 		temp_buffer += lbas << ns->lba_shift;
808 	}
809 
810 	bounce_buffer_stop(&bb);
811 
812 	return (total_len - temp_len) >> desc->log2blksz;
813 }
814 
815 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
816 			   lbaint_t blkcnt, void *buffer)
817 {
818 	return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
819 }
820 
821 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
822 			    lbaint_t blkcnt, const void *buffer)
823 {
824 	return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
825 }
826 
827 static ulong nvme_blk_erase(struct udevice *udev, lbaint_t blknr,
828 			    lbaint_t blkcnt)
829 {
830 	ALLOC_CACHE_ALIGN_BUFFER(struct nvme_dsm_range, range, sizeof(struct nvme_dsm_range));
831 	struct nvme_ns *ns = dev_get_priv(udev);
832 	struct nvme_dev *dev = ns->dev;
833 	struct nvme_command cmnd;
834 
835 	memset(&cmnd, 0, sizeof(cmnd));
836 
837 	range->cattr = cpu_to_le32(0);
838 	range->nlb = cpu_to_le32(blkcnt);
839 	range->slba = cpu_to_le64(blknr);
840 
841 	cmnd.dsm.opcode = nvme_cmd_dsm;
842         cmnd.dsm.command_id = nvme_get_cmd_id();
843 	cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
844 	cmnd.dsm.prp1 = cpu_to_le64((ulong)range);
845 	cmnd.dsm.nr = 0;
846 	cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
847 	cmnd.common.nsid = cpu_to_le32(ns->ns_id);
848 
849 	flush_dcache_range((ulong)range,
850 			(ulong)range + sizeof(struct nvme_dsm_range));
851 
852 	nvme_submit_cmd(dev->queues[NVME_IO_Q], &cmnd);
853 	return blkcnt;
854 }
855 
856 static ulong nvme_blk_write_zeroes(struct udevice *udev, lbaint_t blknr, lbaint_t blkcnt)
857 {
858 	struct nvme_ns *ns = dev_get_priv(udev);
859 	struct nvme_dev *dev = ns->dev;
860 	struct nvme_command cmnd;
861 
862 	if (dev->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
863 		nvme_blk_erase(udev, blknr, blkcnt);
864 
865 	memset(&cmnd, 0, sizeof(cmnd));
866 
867 	cmnd.write_zeroes.opcode = nvme_cmd_write_zeroes;
868 	cmnd.write_zeroes.nsid = cpu_to_le32(ns->ns_id);
869 	cmnd.write_zeroes.slba = cpu_to_le64(blknr);
870 	cmnd.write_zeroes.length = cpu_to_le16(blkcnt - 1);
871 	cmnd.write_zeroes.control = 0;
872 	cmnd.write_zeroes.command_id = nvme_get_cmd_id();
873 
874 	nvme_submit_cmd(dev->queues[NVME_IO_Q], &cmnd);
875 	return blkcnt;
876 }
877 
878 static const struct blk_ops nvme_blk_ops = {
879 	.read	= nvme_blk_read,
880 	.write	= nvme_blk_write,
881 	.write_zeroes = nvme_blk_write_zeroes,
882 	.erase  = nvme_blk_erase,
883 };
884 
885 U_BOOT_DRIVER(nvme_blk) = {
886 	.name	= "nvme-blk",
887 	.id	= UCLASS_BLK,
888 	.probe	= nvme_blk_probe,
889 	.ops	= &nvme_blk_ops,
890 	.priv_auto_alloc_size = sizeof(struct nvme_ns),
891 };
892 
893 static int nvme_bind(struct udevice *udev)
894 {
895 	static int ndev_num;
896 	char name[20];
897 
898 	sprintf(name, "nvme#%d", ndev_num++);
899 
900 	return device_set_name(udev, name);
901 }
902 
903 static const struct pci_device_id nvme_id_table[] = {
904 	{ PCI_VDEVICE(INTEL, 0x0953),   /* Intel 750/P3500/P3600/P3700 */
905 	  .driver_data = NVME_QUIRK_DEALLOCATE_ZEROES, },
906 	{ PCI_VDEVICE(INTEL, 0x0a53),   /* Intel P3520 */
907 	  .driver_data = NVME_QUIRK_DEALLOCATE_ZEROES, },
908 	{ PCI_VDEVICE(INTEL, 0x0a54),   /* Intel P4500/P4600 */
909 	  .driver_data = NVME_QUIRK_DEALLOCATE_ZEROES  },
910 	{ PCI_VDEVICE(INTEL, 0x0a55),   /* Dell Express Flash P4600 */
911 	  .driver_data = NVME_QUIRK_DEALLOCATE_ZEROES, },
912         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
913 	  .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
914 	{ PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
915 	  .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
916 	{ PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
917 	  .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
918 	{ PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
919 	  .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
920 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
921 	  .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
922 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
923 	  .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
924 	{ PCI_DEVICE(0x1987, 0x5013),   /* Phison E13 */
925 	  .driver_data = NVME_QUIRK_LIMIT_IOQD32},
926 };
927 
928 static void nvme_apply_quirks(struct udevice *udev)
929 {
930 	struct nvme_dev *ndev = dev_get_priv(udev);
931 	u16 vendor_id, device_id;
932 	unsigned int i;
933 
934 	dm_pci_read_config16(udev, PCI_VENDOR_ID, &vendor_id);
935 	dm_pci_read_config16(udev, PCI_DEVICE_ID, &device_id);
936 
937 	for (i = 0; i < ARRAY_SIZE(nvme_id_table); i++) {
938 		if (vendor_id == nvme_id_table[i].vendor &&
939 		    device_id == nvme_id_table[i].device) {
940 			ndev->quirks |= nvme_id_table[i].driver_data;
941 			debug("vid 0x%x, pid 0x%x apply quirks 0x%lx\n",
942 			      vendor_id, device_id, nvme_id_table[i].driver_data);
943 		}
944 	}
945 }
946 
947 static int nvme_probe(struct udevice *udev)
948 {
949 	int ret;
950 	struct nvme_dev *ndev = dev_get_priv(udev);
951 	struct nvme_id_ns *id;
952 
953 	ndev->instance = trailing_strtol(udev->name);
954 
955 	INIT_LIST_HEAD(&ndev->namespaces);
956 	ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
957 			PCI_REGION_MEM);
958 	if (readl(&ndev->bar->csts) == -1) {
959 		ret = -EBUSY;
960 		printf("Error: %s: Controller not ready!\n", udev->name);
961 		goto free_nvme;
962 	}
963 
964 	ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
965 	if (!ndev->queues) {
966 		ret = -ENOMEM;
967 		printf("Error: %s: Out of memory!\n", udev->name);
968 		goto free_nvme;
969 	}
970 	memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
971 
972 	nvme_apply_quirks(udev);
973 
974 	ndev->cap = nvme_readq(&ndev->bar->cap);
975 	ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
976 	if (ndev->quirks & NVME_QUIRK_LIMIT_IOQD32)
977 		ndev->q_depth = min_t(int, ndev->q_depth, 32);
978 	ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
979 	ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
980 
981 	ret = nvme_configure_admin_queue(ndev);
982 	if (ret)
983 		goto free_queue;
984 
985 	/* Allocate after the page size is known */
986 	ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
987 	if (!ndev->prp_pool) {
988 		ret = -ENOMEM;
989 		printf("Error: %s: Out of memory!\n", udev->name);
990 		goto free_nvme;
991 	}
992 	ndev->prp_entry_num = MAX_PRP_POOL >> 3;
993 
994 	ret = nvme_setup_io_queues(ndev);
995 	if (ret)
996 		goto free_queue;
997 
998 	nvme_get_info_from_identify(ndev);
999 
1000 	/* Create a blk device for each namespace */
1001 
1002 	id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
1003 	if (!id) {
1004 		ret = -ENOMEM;
1005 		goto free_queue;
1006 	}
1007 
1008 	for (int i = 1; i <= ndev->nn; i++) {
1009 		struct udevice *ns_udev;
1010 		char name[20];
1011 
1012 		memset(id, 0, sizeof(*id));
1013 		if (nvme_identify(ndev, i, 0, (dma_addr_t)(long)id)) {
1014 			ret = -EIO;
1015 			goto free_id;
1016 		}
1017 
1018 		/* skip inactive namespace */
1019 		if (!id->nsze)
1020 			continue;
1021 
1022 		/*
1023 		 * Encode the namespace id to the device name so that
1024 		 * we can extract it when doing the probe.
1025 		 */
1026 		sprintf(name, "blk#%d", i);
1027 
1028 		/* The real blksz and size will be set by nvme_blk_probe() */
1029 		ret = blk_create_devicef(udev, "nvme-blk", name, IF_TYPE_NVME,
1030 					 -1, 512, 0, &ns_udev);
1031 		if (ret)
1032 			goto free_id;
1033 	}
1034 
1035 	free(id);
1036 	return 0;
1037 
1038 free_id:
1039 	free(id);
1040 free_queue:
1041 	free((void *)ndev->queues);
1042 free_nvme:
1043 	return ret;
1044 }
1045 
1046 U_BOOT_DRIVER(nvme) = {
1047 	.name	= "nvme",
1048 	.id	= UCLASS_NVME,
1049 	.bind	= nvme_bind,
1050 	.probe	= nvme_probe,
1051 	.priv_auto_alloc_size = sizeof(struct nvme_dev),
1052 };
1053 
1054 struct pci_device_id nvme_supported[] = {
1055 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
1056 	{}
1057 };
1058 
1059 U_BOOT_PCI_DEVICE(nvme, nvme_supported);
1060