xref: /rk3399_rockchip-uboot/drivers/nvme/nvme.c (revision 1a9d1d0db00bb2fdb5cd966f648297faabe92fe4)
1 /*
2  * Copyright (C) 2017 NXP Semiconductors
3  * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  */
7 
8 #include <common.h>
9 #include <bouncebuf.h>
10 #include <dm.h>
11 #include <errno.h>
12 #include <memalign.h>
13 #include <pci.h>
14 #include <dm/device-internal.h>
15 #include "nvme.h"
16 
17 #define NVME_Q_DEPTH		2
18 #define NVME_AQ_DEPTH		2
19 #define NVME_SQ_SIZE(depth)	(depth * sizeof(struct nvme_command))
20 #define NVME_CQ_SIZE(depth)	(depth * sizeof(struct nvme_completion))
21 #define NVME_CQ_ALLOCATION	ALIGN(NVME_CQ_SIZE(NVME_Q_DEPTH), \
22 				      ARCH_DMA_MINALIGN)
23 #define ADMIN_TIMEOUT		60
24 #define IO_TIMEOUT		30
25 #define MAX_PRP_POOL		512
26 
27 enum nvme_queue_id {
28 	NVME_ADMIN_Q,
29 	NVME_IO_Q,
30 	NVME_Q_NUM,
31 };
32 
33 /*
34  * An NVM Express queue. Each device has at least two (one for admin
35  * commands and one for I/O commands).
36  */
37 struct nvme_queue {
38 	struct nvme_dev *dev;
39 	struct nvme_command *sq_cmds;
40 	struct nvme_completion *cqes;
41 	wait_queue_head_t sq_full;
42 	u32 __iomem *q_db;
43 	u16 q_depth;
44 	s16 cq_vector;
45 	u16 sq_head;
46 	u16 sq_tail;
47 	u16 cq_head;
48 	u16 qid;
49 	u8 cq_phase;
50 	u8 cqe_seen;
51 	unsigned long cmdid_data[];
52 };
53 
54 static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
55 {
56 	u32 bit = enabled ? NVME_CSTS_RDY : 0;
57 	int timeout;
58 	ulong start;
59 
60 	/* Timeout field in the CAP register is in 500 millisecond units */
61 	timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
62 
63 	start = get_timer(0);
64 	while (get_timer(start) < timeout) {
65 		if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
66 			return 0;
67 	}
68 
69 	return -ETIME;
70 }
71 
72 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
73 			   int total_len, u64 dma_addr)
74 {
75 	u32 page_size = dev->page_size;
76 	int offset = dma_addr & (page_size - 1);
77 	u64 *prp_pool;
78 	int length = total_len;
79 	int i, nprps;
80 	u32 prps_per_page = page_size >> 3;
81 	u32 num_pages;
82 
83 	length -= (page_size - offset);
84 
85 	if (length <= 0) {
86 		*prp2 = 0;
87 		return 0;
88 	}
89 
90 	if (length)
91 		dma_addr += (page_size - offset);
92 
93 	if (length <= page_size) {
94 		*prp2 = dma_addr;
95 		return 0;
96 	}
97 
98 	nprps = DIV_ROUND_UP(length, page_size);
99 	num_pages = DIV_ROUND_UP(nprps + 1, prps_per_page);
100 
101 	if (nprps > dev->prp_entry_num) {
102 		free(dev->prp_pool);
103 		/*
104 		 * Always increase in increments of pages.  It doesn't waste
105 		 * much memory and reduces the number of allocations.
106 		 */
107 		dev->prp_pool = memalign(page_size, num_pages * page_size);
108 		if (!dev->prp_pool) {
109 			printf("Error: malloc prp_pool fail\n");
110 			return -ENOMEM;
111 		}
112 		dev->prp_entry_num = prps_per_page * num_pages;
113 	}
114 
115 	prp_pool = dev->prp_pool;
116 	i = 0;
117 	while (nprps) {
118 		if (i == prps_per_page) {
119 			*(prp_pool + i) = *(prp_pool + i - 1);
120 			*(prp_pool + i - 1) = cpu_to_le64((ulong)prp_pool +
121 					page_size);
122 			i = 1;
123 			prp_pool += page_size;
124 		}
125 		*(prp_pool + i++) = cpu_to_le64(dma_addr);
126 		dma_addr += page_size;
127 		nprps--;
128 	}
129 	*prp2 = (ulong)dev->prp_pool;
130 
131 	flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
132 			   dev->prp_entry_num * sizeof(u64));
133 
134 	return 0;
135 }
136 
137 static __le16 nvme_get_cmd_id(void)
138 {
139 	static unsigned short cmdid;
140 
141 	return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
142 }
143 
144 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
145 {
146 	/*
147 	 * Single CQ entries are always smaller than a cache line, so we
148 	 * can't invalidate them individually. However CQ entries are
149 	 * read only by the CPU, so it's safe to always invalidate all of them,
150 	 * as the cache line should never become dirty.
151 	 */
152 	ulong start = (ulong)&nvmeq->cqes[0];
153 	ulong stop = start + NVME_CQ_ALLOCATION;
154 
155 	invalidate_dcache_range(start, stop);
156 
157 	return readw(&(nvmeq->cqes[index].status));
158 }
159 
160 /**
161  * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
162  *
163  * @nvmeq:	The queue to use
164  * @cmd:	The command to send
165  */
166 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
167 {
168 	u16 tail = nvmeq->sq_tail;
169 
170 	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
171 	flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
172 			   (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
173 
174 	if (++tail == nvmeq->q_depth)
175 		tail = 0;
176 	writel(tail, nvmeq->q_db);
177 	nvmeq->sq_tail = tail;
178 }
179 
180 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
181 				struct nvme_command *cmd,
182 				u32 *result, unsigned timeout)
183 {
184 	u16 head = nvmeq->cq_head;
185 	u16 phase = nvmeq->cq_phase;
186 	u16 status;
187 	ulong start_time;
188 	ulong timeout_us = timeout * 100000;
189 
190 	cmd->common.command_id = nvme_get_cmd_id();
191 	nvme_submit_cmd(nvmeq, cmd);
192 
193 	start_time = timer_get_us();
194 
195 	for (;;) {
196 		status = nvme_read_completion_status(nvmeq, head);
197 		if ((status & 0x01) == phase)
198 			break;
199 		if (timeout_us > 0 && (timer_get_us() - start_time)
200 		    >= timeout_us)
201 			return -ETIMEDOUT;
202 	}
203 
204 	status >>= 1;
205 	if (status) {
206 		printf("ERROR: status = %x, phase = %d, head = %d\n",
207 		       status, phase, head);
208 		status = 0;
209 		if (++head == nvmeq->q_depth) {
210 			head = 0;
211 			phase = !phase;
212 		}
213 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
214 		nvmeq->cq_head = head;
215 		nvmeq->cq_phase = phase;
216 
217 		return -EIO;
218 	}
219 
220 	if (result)
221 		*result = readl(&(nvmeq->cqes[head].result));
222 
223 	if (++head == nvmeq->q_depth) {
224 		head = 0;
225 		phase = !phase;
226 	}
227 	writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
228 	nvmeq->cq_head = head;
229 	nvmeq->cq_phase = phase;
230 
231 	return status;
232 }
233 
234 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
235 				 u32 *result)
236 {
237 	return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
238 				    result, ADMIN_TIMEOUT);
239 }
240 
241 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
242 					   int qid, int depth)
243 {
244 	struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
245 	if (!nvmeq)
246 		return NULL;
247 	memset(nvmeq, 0, sizeof(*nvmeq));
248 
249 	nvmeq->cqes = (void *)memalign(4096, NVME_CQ_ALLOCATION);
250 	if (!nvmeq->cqes)
251 		goto free_nvmeq;
252 	memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
253 
254 	nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
255 	if (!nvmeq->sq_cmds)
256 		goto free_queue;
257 	memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
258 
259 	nvmeq->dev = dev;
260 
261 	nvmeq->cq_head = 0;
262 	nvmeq->cq_phase = 1;
263 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
264 	nvmeq->q_depth = depth;
265 	nvmeq->qid = qid;
266 	dev->queue_count++;
267 	dev->queues[qid] = nvmeq;
268 
269 	return nvmeq;
270 
271  free_queue:
272 	free((void *)nvmeq->cqes);
273  free_nvmeq:
274 	free(nvmeq);
275 
276 	return NULL;
277 }
278 
279 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
280 {
281 	struct nvme_command c;
282 
283 	memset(&c, 0, sizeof(c));
284 	c.delete_queue.opcode = opcode;
285 	c.delete_queue.qid = cpu_to_le16(id);
286 
287 	return nvme_submit_admin_cmd(dev, &c, NULL);
288 }
289 
290 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
291 {
292 	return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
293 }
294 
295 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
296 {
297 	return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
298 }
299 
300 static int nvme_enable_ctrl(struct nvme_dev *dev)
301 {
302 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
303 	dev->ctrl_config |= NVME_CC_ENABLE;
304 	writel(dev->ctrl_config, &dev->bar->cc);
305 
306 	return nvme_wait_ready(dev, true);
307 }
308 
309 static int nvme_disable_ctrl(struct nvme_dev *dev)
310 {
311 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
312 	dev->ctrl_config &= ~NVME_CC_ENABLE;
313 	writel(dev->ctrl_config, &dev->bar->cc);
314 
315 	return nvme_wait_ready(dev, false);
316 }
317 
318 static void nvme_free_queue(struct nvme_queue *nvmeq)
319 {
320 	free((void *)nvmeq->cqes);
321 	free(nvmeq->sq_cmds);
322 	free(nvmeq);
323 }
324 
325 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
326 {
327 	int i;
328 
329 	for (i = dev->queue_count - 1; i >= lowest; i--) {
330 		struct nvme_queue *nvmeq = dev->queues[i];
331 		dev->queue_count--;
332 		dev->queues[i] = NULL;
333 		nvme_free_queue(nvmeq);
334 	}
335 }
336 
337 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
338 {
339 	struct nvme_dev *dev = nvmeq->dev;
340 
341 	nvmeq->sq_tail = 0;
342 	nvmeq->cq_head = 0;
343 	nvmeq->cq_phase = 1;
344 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
345 	memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
346 	flush_dcache_range((ulong)nvmeq->cqes,
347 			   (ulong)nvmeq->cqes + NVME_CQ_ALLOCATION);
348 	dev->online_queues++;
349 }
350 
351 static int nvme_configure_admin_queue(struct nvme_dev *dev)
352 {
353 	int result;
354 	u32 aqa;
355 	u64 cap = dev->cap;
356 	struct nvme_queue *nvmeq;
357 	/* most architectures use 4KB as the page size */
358 	unsigned page_shift = 12;
359 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
360 	unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
361 
362 	if (page_shift < dev_page_min) {
363 		debug("Device minimum page size (%u) too large for host (%u)\n",
364 		      1 << dev_page_min, 1 << page_shift);
365 		return -ENODEV;
366 	}
367 
368 	if (page_shift > dev_page_max) {
369 		debug("Device maximum page size (%u) smaller than host (%u)\n",
370 		      1 << dev_page_max, 1 << page_shift);
371 		page_shift = dev_page_max;
372 	}
373 
374 	result = nvme_disable_ctrl(dev);
375 	if (result < 0)
376 		return result;
377 
378 	nvmeq = dev->queues[NVME_ADMIN_Q];
379 	if (!nvmeq) {
380 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
381 		if (!nvmeq)
382 			return -ENOMEM;
383 	}
384 
385 	aqa = nvmeq->q_depth - 1;
386 	aqa |= aqa << 16;
387 
388 	dev->page_size = 1 << page_shift;
389 
390 	dev->ctrl_config = NVME_CC_CSS_NVM;
391 	dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
392 	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
393 	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
394 
395 	writel(aqa, &dev->bar->aqa);
396 	nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
397 	nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
398 
399 	result = nvme_enable_ctrl(dev);
400 	if (result)
401 		goto free_nvmeq;
402 
403 	nvmeq->cq_vector = 0;
404 
405 	nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
406 
407 	return result;
408 
409  free_nvmeq:
410 	nvme_free_queues(dev, 0);
411 
412 	return result;
413 }
414 
415 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
416 			    struct nvme_queue *nvmeq)
417 {
418 	struct nvme_command c;
419 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
420 
421 	memset(&c, 0, sizeof(c));
422 	c.create_cq.opcode = nvme_admin_create_cq;
423 	c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
424 	c.create_cq.cqid = cpu_to_le16(qid);
425 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
426 	c.create_cq.cq_flags = cpu_to_le16(flags);
427 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
428 
429 	return nvme_submit_admin_cmd(dev, &c, NULL);
430 }
431 
432 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
433 			    struct nvme_queue *nvmeq)
434 {
435 	struct nvme_command c;
436 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
437 
438 	memset(&c, 0, sizeof(c));
439 	c.create_sq.opcode = nvme_admin_create_sq;
440 	c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
441 	c.create_sq.sqid = cpu_to_le16(qid);
442 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
443 	c.create_sq.sq_flags = cpu_to_le16(flags);
444 	c.create_sq.cqid = cpu_to_le16(qid);
445 
446 	return nvme_submit_admin_cmd(dev, &c, NULL);
447 }
448 
449 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
450 		  unsigned cns, dma_addr_t dma_addr)
451 {
452 	struct nvme_command c;
453 	u32 page_size = dev->page_size;
454 	int offset = dma_addr & (page_size - 1);
455 	int length = sizeof(struct nvme_id_ctrl);
456 	int ret;
457 
458 	memset(&c, 0, sizeof(c));
459 	c.identify.opcode = nvme_admin_identify;
460 	c.identify.nsid = cpu_to_le32(nsid);
461 	c.identify.prp1 = cpu_to_le64(dma_addr);
462 
463 	length -= (page_size - offset);
464 	if (length <= 0) {
465 		c.identify.prp2 = 0;
466 	} else {
467 		dma_addr += (page_size - offset);
468 		c.identify.prp2 = cpu_to_le64(dma_addr);
469 	}
470 
471 	c.identify.cns = cpu_to_le32(cns);
472 
473 	invalidate_dcache_range(dma_addr,
474 				dma_addr + sizeof(struct nvme_id_ctrl));
475 
476 	ret = nvme_submit_admin_cmd(dev, &c, NULL);
477 	if (!ret)
478 		invalidate_dcache_range(dma_addr,
479 					dma_addr + sizeof(struct nvme_id_ctrl));
480 
481 	return ret;
482 }
483 
484 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
485 		      dma_addr_t dma_addr, u32 *result)
486 {
487 	struct nvme_command c;
488 	int ret;
489 
490 	memset(&c, 0, sizeof(c));
491 	c.features.opcode = nvme_admin_get_features;
492 	c.features.nsid = cpu_to_le32(nsid);
493 	c.features.prp1 = cpu_to_le64(dma_addr);
494 	c.features.fid = cpu_to_le32(fid);
495 
496 	ret = nvme_submit_admin_cmd(dev, &c, result);
497 
498 	/*
499 	 * TODO: Add some cache invalidation when a DMA buffer is involved
500 	 * in the request, here and before the command gets submitted. The
501 	 * buffer size varies by feature, also some features use a different
502 	 * field in the command packet to hold the buffer address.
503 	 * Section 5.21.1 (Set Features command) in the NVMe specification
504 	 * details the buffer requirements for each feature.
505 	 *
506 	 * At the moment there is no user of this function.
507 	 */
508 
509 	return ret;
510 }
511 
512 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
513 		      dma_addr_t dma_addr, u32 *result)
514 {
515 	struct nvme_command c;
516 
517 	memset(&c, 0, sizeof(c));
518 	c.features.opcode = nvme_admin_set_features;
519 	c.features.prp1 = cpu_to_le64(dma_addr);
520 	c.features.fid = cpu_to_le32(fid);
521 	c.features.dword11 = cpu_to_le32(dword11);
522 
523 	/*
524 	 * TODO: Add a cache clean (aka flush) operation when a DMA buffer is
525 	 * involved in the request. The buffer size varies by feature, also
526 	 * some features use a different field in the command packet to hold
527 	 * the buffer address. Section 5.21.1 (Set Features command) in the
528 	 * NVMe specification details the buffer requirements for each
529 	 * feature.
530 	 * At the moment the only user of this function is not using
531 	 * any DMA buffer at all.
532 	 */
533 
534 	return nvme_submit_admin_cmd(dev, &c, result);
535 }
536 
537 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
538 {
539 	struct nvme_dev *dev = nvmeq->dev;
540 	int result;
541 
542 	nvmeq->cq_vector = qid - 1;
543 	result = nvme_alloc_cq(dev, qid, nvmeq);
544 	if (result < 0)
545 		goto release_cq;
546 
547 	result = nvme_alloc_sq(dev, qid, nvmeq);
548 	if (result < 0)
549 		goto release_sq;
550 
551 	nvme_init_queue(nvmeq, qid);
552 
553 	return result;
554 
555  release_sq:
556 	nvme_delete_sq(dev, qid);
557  release_cq:
558 	nvme_delete_cq(dev, qid);
559 
560 	return result;
561 }
562 
563 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
564 {
565 	int status;
566 	u32 result;
567 	u32 q_count = (count - 1) | ((count - 1) << 16);
568 
569 	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
570 			q_count, 0, &result);
571 
572 	if (status < 0)
573 		return status;
574 	if (status > 1)
575 		return 0;
576 
577 	return min(result & 0xffff, result >> 16) + 1;
578 }
579 
580 static void nvme_create_io_queues(struct nvme_dev *dev)
581 {
582 	unsigned int i;
583 
584 	for (i = dev->queue_count; i <= dev->max_qid; i++)
585 		if (!nvme_alloc_queue(dev, i, dev->q_depth))
586 			break;
587 
588 	for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
589 		if (nvme_create_queue(dev->queues[i], i))
590 			break;
591 }
592 
593 static int nvme_setup_io_queues(struct nvme_dev *dev)
594 {
595 	int nr_io_queues;
596 	int result;
597 
598 	nr_io_queues = 1;
599 	result = nvme_set_queue_count(dev, nr_io_queues);
600 	if (result <= 0)
601 		return result;
602 
603 	dev->max_qid = nr_io_queues;
604 
605 	/* Free previously allocated queues */
606 	nvme_free_queues(dev, nr_io_queues + 1);
607 	nvme_create_io_queues(dev);
608 
609 	return 0;
610 }
611 
612 static int nvme_get_info_from_identify(struct nvme_dev *dev)
613 {
614 	struct nvme_id_ctrl *ctrl;
615 	int ret;
616 	int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
617 
618 	ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
619 	if (!ctrl)
620 		return -ENOMEM;
621 
622 	ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
623 	if (ret) {
624 		free(ctrl);
625 		return -EIO;
626 	}
627 
628 	dev->nn = le32_to_cpu(ctrl->nn);
629 	dev->vwc = ctrl->vwc;
630 	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
631 	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
632 	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
633 	if (ctrl->mdts)
634 		dev->max_transfer_shift = (ctrl->mdts + shift);
635 	else {
636 		/*
637 		 * Maximum Data Transfer Size (MDTS) field indicates the maximum
638 		 * data transfer size between the host and the controller. The
639 		 * host should not submit a command that exceeds this transfer
640 		 * size. The value is in units of the minimum memory page size
641 		 * and is reported as a power of two (2^n).
642 		 *
643 		 * The spec also says: a value of 0h indicates no restrictions
644 		 * on transfer size. But in nvme_blk_read/write() below we have
645 		 * the following algorithm for maximum number of logic blocks
646 		 * per transfer:
647 		 *
648 		 * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
649 		 *
650 		 * In order for lbas not to overflow, the maximum number is 15
651 		 * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
652 		 * Let's use 20 which provides 1MB size.
653 		 */
654 		dev->max_transfer_shift = 20;
655 	}
656 
657 	free(ctrl);
658 	return 0;
659 }
660 
661 int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
662 {
663 	struct nvme_ns *ns = dev_get_priv(udev);
664 
665 	if (ns_id)
666 		*ns_id = ns->ns_id;
667 	if (eui64)
668 		memcpy(eui64, ns->eui64, sizeof(ns->eui64));
669 
670 	return 0;
671 }
672 
673 int nvme_scan_namespace(void)
674 {
675 	struct uclass *uc;
676 	struct udevice *dev;
677 	int ret;
678 
679 	ret = uclass_get(UCLASS_NVME, &uc);
680 	if (ret)
681 		return ret;
682 
683 	uclass_foreach_dev(dev, uc) {
684 		ret = device_probe(dev);
685 		if (ret) {
686 			printf("Failed to probe '%s': err=%dE\n", dev->name,
687 				ret);
688 			/* Bail if we ran out of memory, else keep trying */
689 			if (ret != -EBUSY)
690 				return ret;
691 		}
692 	}
693 
694 	return 0;
695 }
696 
697 static int nvme_blk_probe(struct udevice *udev)
698 {
699 	struct nvme_dev *ndev = dev_get_priv(udev->parent);
700 	struct blk_desc *desc = dev_get_uclass_platdata(udev);
701 	struct nvme_ns *ns = dev_get_priv(udev);
702 	u8 flbas;
703 	struct pci_child_platdata *pplat;
704 	struct nvme_id_ns *id;
705 
706 	id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
707 	if (!id)
708 		return -ENOMEM;
709 
710 	ns->dev = ndev;
711 	/* extract the namespace id from the block device name */
712 	ns->ns_id = trailing_strtol(udev->name);
713 	if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
714 		free(id);
715 		return -EIO;
716 	}
717 
718 	memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
719 	flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
720 	ns->flbas = flbas;
721 	ns->lba_shift = id->lbaf[flbas].ds;
722 	list_add(&ns->list, &ndev->namespaces);
723 
724 	desc->lba = le64_to_cpu(id->nsze);
725 	desc->log2blksz = ns->lba_shift;
726 	desc->blksz = 1 << ns->lba_shift;
727 	desc->bdev = udev;
728 	pplat = dev_get_parent_platdata(udev->parent);
729 	sprintf(desc->vendor, "0x%.4x", pplat->vendor);
730 	memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
731 	memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
732 	part_init(desc);
733 
734 	free(id);
735 	return 0;
736 }
737 
738 static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
739 			 lbaint_t blkcnt, void *buffer, bool read)
740 {
741 	struct nvme_ns *ns = dev_get_priv(udev);
742 	struct nvme_dev *dev = ns->dev;
743 	struct nvme_command c;
744 	struct blk_desc *desc = dev_get_uclass_platdata(udev);
745 	int status;
746 	u64 prp2;
747 	u64 total_len = blkcnt << desc->log2blksz;
748 	u64 temp_len = total_len;
749 	uintptr_t temp_buffer;
750 
751 	u64 slba = blknr;
752 	u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
753 	u64 total_lbas = blkcnt;
754 
755 	struct bounce_buffer bb;
756 	unsigned int bb_flags;
757 	int ret;
758 
759 	if (read)
760 		bb_flags = GEN_BB_WRITE;
761 	else
762 		bb_flags = GEN_BB_READ;
763 
764 	ret = bounce_buffer_start(&bb, buffer, total_len, bb_flags);
765 	if (ret)
766 		return -ENOMEM;
767 	temp_buffer = (unsigned long)bb.bounce_buffer;
768 
769 	c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
770 	c.rw.flags = 0;
771 	c.rw.nsid = cpu_to_le32(ns->ns_id);
772 	c.rw.control = 0;
773 	c.rw.dsmgmt = 0;
774 	c.rw.reftag = 0;
775 	c.rw.apptag = 0;
776 	c.rw.appmask = 0;
777 	c.rw.metadata = 0;
778 
779 	/* Enable FUA for data integrity if vwc is enabled */
780 	if (dev->vwc)
781 		c.rw.control |= NVME_RW_FUA;
782 
783 	while (total_lbas) {
784 		if (total_lbas < lbas) {
785 			lbas = (u16)total_lbas;
786 			total_lbas = 0;
787 		} else {
788 			total_lbas -= lbas;
789 		}
790 
791 		if (nvme_setup_prps(dev, &prp2,
792 				    lbas << ns->lba_shift, temp_buffer))
793 			return -EIO;
794 		c.rw.slba = cpu_to_le64(slba);
795 		slba += lbas;
796 		c.rw.length = cpu_to_le16(lbas - 1);
797 		c.rw.prp1 = cpu_to_le64(temp_buffer);
798 		c.rw.prp2 = cpu_to_le64(prp2);
799 		status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
800 				&c, NULL, IO_TIMEOUT);
801 		if (status)
802 			break;
803 		temp_len -= (u32)lbas << ns->lba_shift;
804 		temp_buffer += lbas << ns->lba_shift;
805 	}
806 
807 	bounce_buffer_stop(&bb);
808 
809 	return (total_len - temp_len) >> desc->log2blksz;
810 }
811 
812 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
813 			   lbaint_t blkcnt, void *buffer)
814 {
815 	return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
816 }
817 
818 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
819 			    lbaint_t blkcnt, const void *buffer)
820 {
821 	return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
822 }
823 
824 static ulong nvme_blk_erase(struct udevice *udev, lbaint_t blknr,
825 			    lbaint_t blkcnt)
826 {
827 	ALLOC_CACHE_ALIGN_BUFFER(struct nvme_dsm_range, range, sizeof(struct nvme_dsm_range));
828 	struct nvme_ns *ns = dev_get_priv(udev);
829 	struct nvme_dev *dev = ns->dev;
830 	struct nvme_command cmnd;
831 
832 	memset(&cmnd, 0, sizeof(cmnd));
833 
834 	range->cattr = cpu_to_le32(0);
835 	range->nlb = cpu_to_le32(blkcnt);
836 	range->slba = cpu_to_le64(blknr);
837 
838 	cmnd.dsm.opcode = nvme_cmd_dsm;
839         cmnd.dsm.command_id = nvme_get_cmd_id();
840 	cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
841 	cmnd.dsm.prp1 = cpu_to_le64((ulong)range);
842 	cmnd.dsm.nr = 0;
843 	cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
844 	cmnd.common.nsid = cpu_to_le32(ns->ns_id);
845 
846 	flush_dcache_range((ulong)range,
847 			(ulong)range + sizeof(struct nvme_dsm_range));
848 
849 	nvme_submit_cmd(dev->queues[NVME_IO_Q], &cmnd);
850 	return blkcnt;
851 }
852 
853 static const struct blk_ops nvme_blk_ops = {
854 	.read	= nvme_blk_read,
855 	.write	= nvme_blk_write,
856 	.erase  = nvme_blk_erase,
857 };
858 
859 U_BOOT_DRIVER(nvme_blk) = {
860 	.name	= "nvme-blk",
861 	.id	= UCLASS_BLK,
862 	.probe	= nvme_blk_probe,
863 	.ops	= &nvme_blk_ops,
864 	.priv_auto_alloc_size = sizeof(struct nvme_ns),
865 };
866 
867 static int nvme_bind(struct udevice *udev)
868 {
869 	static int ndev_num;
870 	char name[20];
871 
872 	sprintf(name, "nvme#%d", ndev_num++);
873 
874 	return device_set_name(udev, name);
875 }
876 
877 static int nvme_probe(struct udevice *udev)
878 {
879 	int ret;
880 	struct nvme_dev *ndev = dev_get_priv(udev);
881 	struct nvme_id_ns *id;
882 
883 	ndev->instance = trailing_strtol(udev->name);
884 
885 	INIT_LIST_HEAD(&ndev->namespaces);
886 	ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
887 			PCI_REGION_MEM);
888 	if (readl(&ndev->bar->csts) == -1) {
889 		ret = -EBUSY;
890 		printf("Error: %s: Controller not ready!\n", udev->name);
891 		goto free_nvme;
892 	}
893 
894 	ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
895 	if (!ndev->queues) {
896 		ret = -ENOMEM;
897 		printf("Error: %s: Out of memory!\n", udev->name);
898 		goto free_nvme;
899 	}
900 	memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
901 
902 	ndev->cap = nvme_readq(&ndev->bar->cap);
903 	ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
904 	ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
905 	ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
906 
907 	ret = nvme_configure_admin_queue(ndev);
908 	if (ret)
909 		goto free_queue;
910 
911 	/* Allocate after the page size is known */
912 	ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
913 	if (!ndev->prp_pool) {
914 		ret = -ENOMEM;
915 		printf("Error: %s: Out of memory!\n", udev->name);
916 		goto free_nvme;
917 	}
918 	ndev->prp_entry_num = MAX_PRP_POOL >> 3;
919 
920 	ret = nvme_setup_io_queues(ndev);
921 	if (ret)
922 		goto free_queue;
923 
924 	nvme_get_info_from_identify(ndev);
925 
926 	/* Create a blk device for each namespace */
927 
928 	id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
929 	if (!id) {
930 		ret = -ENOMEM;
931 		goto free_queue;
932 	}
933 
934 	for (int i = 1; i <= ndev->nn; i++) {
935 		struct udevice *ns_udev;
936 		char name[20];
937 
938 		memset(id, 0, sizeof(*id));
939 		if (nvme_identify(ndev, i, 0, (dma_addr_t)(long)id)) {
940 			ret = -EIO;
941 			goto free_id;
942 		}
943 
944 		/* skip inactive namespace */
945 		if (!id->nsze)
946 			continue;
947 
948 		/*
949 		 * Encode the namespace id to the device name so that
950 		 * we can extract it when doing the probe.
951 		 */
952 		sprintf(name, "blk#%d", i);
953 
954 		/* The real blksz and size will be set by nvme_blk_probe() */
955 		ret = blk_create_devicef(udev, "nvme-blk", name, IF_TYPE_NVME,
956 					 -1, 512, 0, &ns_udev);
957 		if (ret)
958 			goto free_id;
959 	}
960 
961 	free(id);
962 	return 0;
963 
964 free_id:
965 	free(id);
966 free_queue:
967 	free((void *)ndev->queues);
968 free_nvme:
969 	return ret;
970 }
971 
972 U_BOOT_DRIVER(nvme) = {
973 	.name	= "nvme",
974 	.id	= UCLASS_NVME,
975 	.bind	= nvme_bind,
976 	.probe	= nvme_probe,
977 	.priv_auto_alloc_size = sizeof(struct nvme_dev),
978 };
979 
980 struct pci_device_id nvme_supported[] = {
981 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
982 	{}
983 };
984 
985 U_BOOT_PCI_DEVICE(nvme, nvme_supported);
986