xref: /rk3399_rockchip-uboot/drivers/mtd/spi/spi-nor-core.c (revision 2f6c020d95ebda22b28d3a31f574ec547a9281fb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4  * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5  *
6  * Copyright (C) 2005, Intec Automation Inc.
7  * Copyright (C) 2014, Freescale Semiconductor, Inc.
8  *
9  * Synced from Linux v4.19
10  */
11 
12 #include <common.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/log2.h>
16 #include <linux/math64.h>
17 #include <linux/sizes.h>
18 
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/spi-nor.h>
21 #include <spi-mem.h>
22 #include <spi.h>
23 
24 #include "sf_internal.h"
25 
26 /* Define max times to check status register before we give up. */
27 
28 /*
29  * For everything but full-chip erase; probably could be much smaller, but kept
30  * around for safety for now
31  */
32 
33 #define HZ					CONFIG_SYS_HZ
34 
35 #define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)
36 
37 static int spi_nor_read_write_reg(struct spi_nor *nor, struct spi_mem_op
38 		*op, void *buf)
39 {
40 	if (op->data.dir == SPI_MEM_DATA_IN)
41 		op->data.buf.in = buf;
42 	else
43 		op->data.buf.out = buf;
44 	return spi_mem_exec_op(nor->spi, op);
45 }
46 
47 static int spi_nor_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len)
48 {
49 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(code, 1),
50 					  SPI_MEM_OP_NO_ADDR,
51 					  SPI_MEM_OP_NO_DUMMY,
52 					  SPI_MEM_OP_DATA_IN(len, NULL, 1));
53 	int ret;
54 
55 	ret = spi_nor_read_write_reg(nor, &op, val);
56 	if (ret < 0)
57 		dev_dbg(&flash->spimem->spi->dev, "error %d reading %x\n", ret,
58 			code);
59 
60 	return ret;
61 }
62 
63 static int spi_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
64 {
65 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 1),
66 					  SPI_MEM_OP_NO_ADDR,
67 					  SPI_MEM_OP_NO_DUMMY,
68 					  SPI_MEM_OP_DATA_OUT(len, NULL, 1));
69 
70 	return spi_nor_read_write_reg(nor, &op, buf);
71 }
72 
73 static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len,
74 				 u_char *buf)
75 {
76 	struct spi_mem_op op =
77 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
78 				   SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
79 				   SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
80 				   SPI_MEM_OP_DATA_IN(len, buf, 1));
81 	size_t remaining = len;
82 	int ret;
83 
84 	/* get transfer protocols. */
85 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
86 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
87 	op.dummy.buswidth = op.addr.buswidth;
88 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
89 
90 	/* convert the dummy cycles to the number of bytes */
91 	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
92 
93 	while (remaining) {
94 		op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX;
95 		ret = spi_mem_adjust_op_size(nor->spi, &op);
96 		if (ret)
97 			return ret;
98 
99 		ret = spi_mem_exec_op(nor->spi, &op);
100 		if (ret)
101 			return ret;
102 
103 		op.addr.val += op.data.nbytes;
104 		remaining -= op.data.nbytes;
105 		op.data.buf.in += op.data.nbytes;
106 	}
107 
108 	return len;
109 }
110 
111 static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
112 				  const u_char *buf)
113 {
114 	struct spi_mem_op op =
115 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
116 				   SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
117 				   SPI_MEM_OP_NO_DUMMY,
118 				   SPI_MEM_OP_DATA_OUT(len, buf, 1));
119 	int ret;
120 
121 	/* get transfer protocols. */
122 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
123 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
124 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
125 
126 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
127 		op.addr.nbytes = 0;
128 
129 	ret = spi_mem_adjust_op_size(nor->spi, &op);
130 	if (ret)
131 		return ret;
132 	op.data.nbytes = len < op.data.nbytes ? len : op.data.nbytes;
133 
134 	ret = spi_mem_exec_op(nor->spi, &op);
135 	if (ret)
136 		return ret;
137 
138 	return op.data.nbytes;
139 }
140 
141 /*
142  * Read the status register, returning its value in the location
143  * Return the status register value.
144  * Returns negative if error occurred.
145  */
146 static int read_sr(struct spi_nor *nor)
147 {
148 	int ret;
149 	u8 val;
150 
151 	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
152 	if (ret < 0) {
153 		pr_debug("error %d reading SR\n", (int)ret);
154 		return ret;
155 	}
156 
157 	return val;
158 }
159 
160 /*
161  * Read the flag status register, returning its value in the location
162  * Return the status register value.
163  * Returns negative if error occurred.
164  */
165 static int read_fsr(struct spi_nor *nor)
166 {
167 	int ret;
168 	u8 val;
169 
170 	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
171 	if (ret < 0) {
172 		pr_debug("error %d reading FSR\n", ret);
173 		return ret;
174 	}
175 
176 	return val;
177 }
178 
179 /*
180  * Read configuration register, returning its value in the
181  * location. Return the configuration register value.
182  * Returns negative if error occurred.
183  */
184 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) || defined(CONFIG_SPI_FLASH_NORMEM)
185 static int read_cr(struct spi_nor *nor)
186 {
187 	int ret;
188 	u8 val;
189 
190 	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
191 	if (ret < 0) {
192 		dev_dbg(nor->dev, "error %d reading CR\n", ret);
193 		return ret;
194 	}
195 
196 	return val;
197 }
198 #endif
199 
200 /*
201  * Write status register 1 byte
202  * Returns negative if error occurred.
203  */
204 static int write_sr(struct spi_nor *nor, u8 val)
205 {
206 	nor->cmd_buf[0] = val;
207 	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
208 }
209 
210 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT) || defined(CONFIG_SPI_FLASH_NORMEM)
211 /*
212  * Write confiture register 1 byte
213  * Returns negative if error occurred.
214  */
215 static int write_cr(struct spi_nor *nor, u8 val)
216 {
217 	nor->cmd_buf[0] = val;
218 	return nor->write_reg(nor, SPINOR_OP_WRCR, nor->cmd_buf, 1);
219 }
220 #endif
221 
222 /*
223  * Set write enable latch with Write Enable command.
224  * Returns negative if error occurred.
225  */
226 static int write_enable(struct spi_nor *nor)
227 {
228 	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
229 }
230 
231 /*
232  * Send write disable instruction to the chip.
233  */
234 static int write_disable(struct spi_nor *nor)
235 {
236 	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
237 }
238 
239 static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
240 {
241 	return mtd->priv;
242 }
243 
244 #ifndef CONFIG_SPI_FLASH_BAR
245 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
246 {
247 	size_t i;
248 
249 	for (i = 0; i < size; i++)
250 		if (table[i][0] == opcode)
251 			return table[i][1];
252 
253 	/* No conversion found, keep input op code. */
254 	return opcode;
255 }
256 
257 static u8 spi_nor_convert_3to4_read(u8 opcode)
258 {
259 	static const u8 spi_nor_3to4_read[][2] = {
260 		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
261 		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
262 		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
263 		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
264 		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
265 		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
266 		{ SPINOR_OP_READ_1_1_8,	SPINOR_OP_READ_1_1_8_4B },
267 		{ SPINOR_OP_READ_1_8_8,	SPINOR_OP_READ_1_8_8_4B },
268 
269 		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
270 		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
271 		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
272 	};
273 
274 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
275 				      ARRAY_SIZE(spi_nor_3to4_read));
276 }
277 
278 static u8 spi_nor_convert_3to4_program(u8 opcode)
279 {
280 	static const u8 spi_nor_3to4_program[][2] = {
281 		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
282 		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
283 		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
284 		{ SPINOR_OP_PP_1_1_8,	SPINOR_OP_PP_1_1_8_4B },
285 		{ SPINOR_OP_PP_1_8_8,	SPINOR_OP_PP_1_8_8_4B },
286 	};
287 
288 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
289 				      ARRAY_SIZE(spi_nor_3to4_program));
290 }
291 
292 static u8 spi_nor_convert_3to4_erase(u8 opcode)
293 {
294 	static const u8 spi_nor_3to4_erase[][2] = {
295 		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
296 		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
297 		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
298 	};
299 
300 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
301 				      ARRAY_SIZE(spi_nor_3to4_erase));
302 }
303 
304 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
305 				      const struct flash_info *info)
306 {
307 	/* Do some manufacturer fixups first */
308 	switch (JEDEC_MFR(info)) {
309 	case SNOR_MFR_SPANSION:
310 		/* No small sector erase for 4-byte command set */
311 		nor->erase_opcode = SPINOR_OP_SE;
312 		nor->mtd.erasesize = info->sector_size;
313 		break;
314 
315 	default:
316 		break;
317 	}
318 
319 	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
320 	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
321 	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
322 }
323 #endif /* !CONFIG_SPI_FLASH_BAR */
324 
325 /* Enable/disable 4-byte addressing mode. */
326 static int set_4byte(struct spi_nor *nor, const struct flash_info *info,
327 		     int enable)
328 {
329 	int status;
330 	bool need_wren = false;
331 	u8 cmd;
332 
333 	switch (JEDEC_MFR(info)) {
334 	case SNOR_MFR_ST:
335 	case SNOR_MFR_MICRON:
336 		/* Some Micron need WREN command; all will accept it */
337 		need_wren = true;
338 	case SNOR_MFR_MACRONIX:
339 	case SNOR_MFR_WINBOND:
340 		if (need_wren)
341 			write_enable(nor);
342 
343 		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
344 		status = nor->write_reg(nor, cmd, NULL, 0);
345 		if (need_wren)
346 			write_disable(nor);
347 
348 		if (!status && !enable &&
349 		    JEDEC_MFR(info) == SNOR_MFR_WINBOND) {
350 			/*
351 			 * On Winbond W25Q256FV, leaving 4byte mode causes
352 			 * the Extended Address Register to be set to 1, so all
353 			 * 3-byte-address reads come from the second 16M.
354 			 * We must clear the register to enable normal behavior.
355 			 */
356 			write_enable(nor);
357 			nor->cmd_buf[0] = 0;
358 			nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1);
359 			write_disable(nor);
360 		}
361 
362 		return status;
363 	default:
364 		/* Spansion style */
365 		nor->cmd_buf[0] = enable << 7;
366 		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
367 	}
368 }
369 
370 static int spi_nor_sr_ready(struct spi_nor *nor)
371 {
372 	int sr = read_sr(nor);
373 
374 	if (sr < 0)
375 		return sr;
376 
377 	if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
378 		if (sr & SR_E_ERR)
379 			dev_dbg(nor->dev, "Erase Error occurred\n");
380 		else
381 			dev_dbg(nor->dev, "Programming Error occurred\n");
382 
383 		nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
384 		return -EIO;
385 	}
386 
387 	return !(sr & SR_WIP);
388 }
389 
390 static int spi_nor_fsr_ready(struct spi_nor *nor)
391 {
392 	int fsr = read_fsr(nor);
393 
394 	if (fsr < 0)
395 		return fsr;
396 
397 	if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
398 		if (fsr & FSR_E_ERR)
399 			dev_err(nor->dev, "Erase operation failed.\n");
400 		else
401 			dev_err(nor->dev, "Program operation failed.\n");
402 
403 		if (fsr & FSR_PT_ERR)
404 			dev_err(nor->dev,
405 				"Attempted to modify a protected sector.\n");
406 
407 		nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
408 		return -EIO;
409 	}
410 
411 	return fsr & FSR_READY;
412 }
413 
414 static int spi_nor_ready(struct spi_nor *nor)
415 {
416 	int sr, fsr;
417 
418 	sr = spi_nor_sr_ready(nor);
419 	if (sr < 0)
420 		return sr;
421 	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
422 	if (fsr < 0)
423 		return fsr;
424 	return sr && fsr;
425 }
426 
427 /*
428  * Service routine to read status register until ready, or timeout occurs.
429  * Returns non-zero if error.
430  */
431 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
432 						unsigned long timeout)
433 {
434 	unsigned long timebase;
435 	int ret;
436 
437 	timebase = get_timer(0);
438 
439 	while (get_timer(timebase) < timeout) {
440 		ret = spi_nor_ready(nor);
441 		if (ret < 0)
442 			return ret;
443 		if (ret)
444 			return 0;
445 	}
446 
447 	dev_err(nor->dev, "flash operation timed out\n");
448 
449 	return -ETIMEDOUT;
450 }
451 
452 static int spi_nor_wait_till_ready(struct spi_nor *nor)
453 {
454 	return spi_nor_wait_till_ready_with_timeout(nor,
455 						    DEFAULT_READY_WAIT_JIFFIES);
456 }
457 
458 #ifdef CONFIG_SPI_FLASH_BAR
459 /*
460  * This "clean_bar" is necessary in a situation when one was accessing
461  * spi flash memory > 16 MiB by using Bank Address Register's BA24 bit.
462  *
463  * After it the BA24 bit shall be cleared to allow access to correct
464  * memory region after SW reset (by calling "reset" command).
465  *
466  * Otherwise, the BA24 bit may be left set and then after reset, the
467  * ROM would read/write/erase SPL from 16 MiB * bank_sel address.
468  */
469 static int clean_bar(struct spi_nor *nor)
470 {
471 	u8 cmd, bank_sel = 0;
472 
473 	if (nor->bank_curr == 0)
474 		return 0;
475 	cmd = nor->bank_write_cmd;
476 	nor->bank_curr = 0;
477 	write_enable(nor);
478 
479 	return nor->write_reg(nor, cmd, &bank_sel, 1);
480 }
481 
482 static int write_bar(struct spi_nor *nor, u32 offset)
483 {
484 	u8 cmd, bank_sel;
485 	int ret;
486 
487 	bank_sel = offset / SZ_16M;
488 	if (bank_sel == nor->bank_curr)
489 		goto bar_end;
490 
491 	cmd = nor->bank_write_cmd;
492 	write_enable(nor);
493 	ret = nor->write_reg(nor, cmd, &bank_sel, 1);
494 	if (ret < 0) {
495 		debug("SF: fail to write bank register\n");
496 		return ret;
497 	}
498 
499 bar_end:
500 	nor->bank_curr = bank_sel;
501 	return nor->bank_curr;
502 }
503 
504 static int read_bar(struct spi_nor *nor, const struct flash_info *info)
505 {
506 	u8 curr_bank = 0;
507 	int ret;
508 
509 	switch (JEDEC_MFR(info)) {
510 	case SNOR_MFR_SPANSION:
511 		nor->bank_read_cmd = SPINOR_OP_BRRD;
512 		nor->bank_write_cmd = SPINOR_OP_BRWR;
513 		break;
514 	default:
515 		nor->bank_read_cmd = SPINOR_OP_RDEAR;
516 		nor->bank_write_cmd = SPINOR_OP_WREAR;
517 	}
518 
519 	ret = nor->read_reg(nor, nor->bank_read_cmd,
520 				    &curr_bank, 1);
521 	if (ret) {
522 		debug("SF: fail to read bank addr register\n");
523 		return ret;
524 	}
525 	nor->bank_curr = curr_bank;
526 
527 	return 0;
528 }
529 #endif
530 
531 /*
532  * Initiate the erasure of a single sector
533  */
534 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
535 {
536 	struct spi_mem_op op =
537 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
538 			   SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
539 			   SPI_MEM_OP_NO_DUMMY,
540 			   SPI_MEM_OP_NO_DATA);
541 
542 	if (nor->erase)
543 		return nor->erase(nor, addr);
544 
545 	/*
546 	 * Default implementation, if driver doesn't have a specialized HW
547 	 * control
548 	 */
549 	return spi_mem_exec_op(nor->spi, &op);
550 }
551 
552 /*
553  * Erase an address range on the nor chip.  The address range may extend
554  * one or more erase sectors.  Return an error is there is a problem erasing.
555  */
556 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
557 {
558 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
559 	u32 addr, len, rem, target;
560 	int ret;
561 
562 	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
563 		(long long)instr->len);
564 
565 	div_u64_rem(instr->len, mtd->erasesize, &rem);
566 	if (rem)
567 		return -EINVAL;
568 
569 	addr = instr->addr;
570 	len = instr->len;
571 
572 	while (len) {
573 #if defined(CONFIG_SPI_FLASH_AUTO_MERGE)
574 		nor->spi->auto_merge_cs_cur = addr < nor->auto_merge_single_chip_size ? 0 : 1;
575 		target = addr - nor->spi->auto_merge_cs_cur * nor->auto_merge_single_chip_size;
576 #else
577 		target = addr;
578 #endif
579 #ifdef CONFIG_SPI_FLASH_BAR
580 		ret = write_bar(nor, target);
581 		if (ret < 0)
582 			return ret;
583 #endif
584 		write_enable(nor);
585 
586 		ret = spi_nor_erase_sector(nor, target);
587 		if (ret)
588 			goto erase_err;
589 
590 		addr += mtd->erasesize;
591 		len -= mtd->erasesize;
592 
593 		ret = spi_nor_wait_till_ready(nor);
594 		if (ret)
595 			goto erase_err;
596 	}
597 
598 erase_err:
599 #ifdef CONFIG_SPI_FLASH_BAR
600 	ret = clean_bar(nor);
601 #endif
602 	write_disable(nor);
603 
604 	return ret;
605 }
606 
607 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
608 /* Write status register and ensure bits in mask match written values */
609 static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
610 {
611 	int ret;
612 
613 	write_enable(nor);
614 	ret = write_sr(nor, status_new);
615 	if (ret)
616 		return ret;
617 
618 	ret = spi_nor_wait_till_ready(nor);
619 	if (ret)
620 		return ret;
621 
622 	ret = read_sr(nor);
623 	if (ret < 0)
624 		return ret;
625 
626 	return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
627 }
628 
629 static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
630 				 uint64_t *len)
631 {
632 	struct mtd_info *mtd = &nor->mtd;
633 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
634 	int shift = ffs(mask) - 1;
635 	int pow;
636 
637 	if (!(sr & mask)) {
638 		/* No protection */
639 		*ofs = 0;
640 		*len = 0;
641 	} else {
642 		pow = ((sr & mask) ^ mask) >> shift;
643 		*len = mtd->size >> pow;
644 		if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
645 			*ofs = 0;
646 		else
647 			*ofs = mtd->size - *len;
648 	}
649 }
650 
651 /*
652  * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
653  * @locked is false); 0 otherwise
654  */
655 static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, u64 len,
656 				    u8 sr, bool locked)
657 {
658 	loff_t lock_offs;
659 	uint64_t lock_len;
660 
661 	if (!len)
662 		return 1;
663 
664 	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
665 
666 	if (locked)
667 		/* Requested range is a sub-range of locked range */
668 		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
669 	else
670 		/* Requested range does not overlap with locked range */
671 		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
672 }
673 
674 static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
675 			    u8 sr)
676 {
677 	return stm_check_lock_status_sr(nor, ofs, len, sr, true);
678 }
679 
680 static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
681 			      u8 sr)
682 {
683 	return stm_check_lock_status_sr(nor, ofs, len, sr, false);
684 }
685 
686 /*
687  * Lock a region of the flash. Compatible with ST Micro and similar flash.
688  * Supports the block protection bits BP{0,1,2} in the status register
689  * (SR). Does not support these features found in newer SR bitfields:
690  *   - SEC: sector/block protect - only handle SEC=0 (block protect)
691  *   - CMP: complement protect - only support CMP=0 (range is not complemented)
692  *
693  * Support for the following is provided conditionally for some flash:
694  *   - TB: top/bottom protect
695  *
696  * Sample table portion for 8MB flash (Winbond w25q64fw):
697  *
698  *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
699  *  --------------------------------------------------------------------------
700  *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
701  *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
702  *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
703  *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
704  *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
705  *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
706  *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
707  *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
708  *  ------|-------|-------|-------|-------|---------------|-------------------
709  *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
710  *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
711  *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
712  *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
713  *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
714  *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
715  *
716  * Returns negative on errors, 0 on success.
717  */
718 static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
719 {
720 	struct mtd_info *mtd = &nor->mtd;
721 	int status_old, status_new;
722 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
723 	u8 shift = ffs(mask) - 1, pow, val;
724 	loff_t lock_len;
725 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
726 	bool use_top;
727 
728 	status_old = read_sr(nor);
729 	if (status_old < 0)
730 		return status_old;
731 
732 	/* If nothing in our range is unlocked, we don't need to do anything */
733 	if (stm_is_locked_sr(nor, ofs, len, status_old))
734 		return 0;
735 
736 	/* If anything below us is unlocked, we can't use 'bottom' protection */
737 	if (!stm_is_locked_sr(nor, 0, ofs, status_old))
738 		can_be_bottom = false;
739 
740 	/* If anything above us is unlocked, we can't use 'top' protection */
741 	if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
742 			      status_old))
743 		can_be_top = false;
744 
745 	if (!can_be_bottom && !can_be_top)
746 		return -EINVAL;
747 
748 	/* Prefer top, if both are valid */
749 	use_top = can_be_top;
750 
751 	/* lock_len: length of region that should end up locked */
752 	if (use_top)
753 		lock_len = mtd->size - ofs;
754 	else
755 		lock_len = ofs + len;
756 
757 	/*
758 	 * Need smallest pow such that:
759 	 *
760 	 *   1 / (2^pow) <= (len / size)
761 	 *
762 	 * so (assuming power-of-2 size) we do:
763 	 *
764 	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
765 	 */
766 	pow = ilog2(mtd->size) - ilog2(lock_len);
767 	val = mask - (pow << shift);
768 	if (val & ~mask)
769 		return -EINVAL;
770 	/* Don't "lock" with no region! */
771 	if (!(val & mask))
772 		return -EINVAL;
773 
774 	status_new = (status_old & ~mask & ~SR_TB) | val;
775 
776 	/* Disallow further writes if WP pin is asserted */
777 	status_new |= SR_SRWD;
778 
779 	if (!use_top)
780 		status_new |= SR_TB;
781 
782 	/* Don't bother if they're the same */
783 	if (status_new == status_old)
784 		return 0;
785 
786 	/* Only modify protection if it will not unlock other areas */
787 	if ((status_new & mask) < (status_old & mask))
788 		return -EINVAL;
789 
790 	return write_sr_and_check(nor, status_new, mask);
791 }
792 
793 /*
794  * Unlock a region of the flash. See stm_lock() for more info
795  *
796  * Returns negative on errors, 0 on success.
797  */
798 static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
799 {
800 	struct mtd_info *mtd = &nor->mtd;
801 	int status_old, status_new;
802 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
803 	u8 shift = ffs(mask) - 1, pow, val;
804 	loff_t lock_len;
805 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
806 	bool use_top;
807 
808 	status_old = read_sr(nor);
809 	if (status_old < 0)
810 		return status_old;
811 
812 	/* If nothing in our range is locked, we don't need to do anything */
813 	if (stm_is_unlocked_sr(nor, ofs, len, status_old))
814 		return 0;
815 
816 	/* If anything below us is locked, we can't use 'top' protection */
817 	if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
818 		can_be_top = false;
819 
820 	/* If anything above us is locked, we can't use 'bottom' protection */
821 	if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
822 				status_old))
823 		can_be_bottom = false;
824 
825 	if (!can_be_bottom && !can_be_top)
826 		return -EINVAL;
827 
828 	/* Prefer top, if both are valid */
829 	use_top = can_be_top;
830 
831 	/* lock_len: length of region that should remain locked */
832 	if (use_top)
833 		lock_len = mtd->size - (ofs + len);
834 	else
835 		lock_len = ofs;
836 
837 	/*
838 	 * Need largest pow such that:
839 	 *
840 	 *   1 / (2^pow) >= (len / size)
841 	 *
842 	 * so (assuming power-of-2 size) we do:
843 	 *
844 	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
845 	 */
846 	pow = ilog2(mtd->size) - order_base_2(lock_len);
847 	if (lock_len == 0) {
848 		val = 0; /* fully unlocked */
849 	} else {
850 		val = mask - (pow << shift);
851 		/* Some power-of-two sizes are not supported */
852 		if (val & ~mask)
853 			return -EINVAL;
854 	}
855 
856 	status_new = (status_old & ~mask & ~SR_TB) | val;
857 
858 	/* Don't protect status register if we're fully unlocked */
859 	if (lock_len == 0)
860 		status_new &= ~SR_SRWD;
861 
862 	if (!use_top)
863 		status_new |= SR_TB;
864 
865 	/* Don't bother if they're the same */
866 	if (status_new == status_old)
867 		return 0;
868 
869 	/* Only modify protection if it will not lock other areas */
870 	if ((status_new & mask) > (status_old & mask))
871 		return -EINVAL;
872 
873 	return write_sr_and_check(nor, status_new, mask);
874 }
875 
876 /*
877  * Check if a region of the flash is (completely) locked. See stm_lock() for
878  * more info.
879  *
880  * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
881  * negative on errors.
882  */
883 static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
884 {
885 	int status;
886 
887 	status = read_sr(nor);
888 	if (status < 0)
889 		return status;
890 
891 	return stm_is_locked_sr(nor, ofs, len, status);
892 }
893 #endif /* CONFIG_SPI_FLASH_STMICRO */
894 
895 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
896 {
897 	int			tmp;
898 	u8			id[SPI_NOR_MAX_ID_LEN];
899 	const struct flash_info	*info;
900 
901 	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
902 	if (tmp < 0) {
903 		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
904 		return ERR_PTR(tmp);
905 	}
906 
907 	info = spi_nor_ids;
908 	for (; info->name; info++) {
909 		if (info->id_len) {
910 			if (!memcmp(info->id, id, info->id_len))
911 				return info;
912 		}
913 	}
914 
915 	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
916 		id[0], id[1], id[2]);
917 	return ERR_PTR(-ENODEV);
918 }
919 
920 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
921 			size_t *retlen, u_char *buf)
922 {
923 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
924 	int ret;
925 
926 	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
927 
928 	while (len) {
929 		loff_t addr = from;
930 		size_t read_len = len;
931 
932 #if defined(CONFIG_SPI_FLASH_AUTO_MERGE)
933 		if (addr < nor->auto_merge_single_chip_size && (addr + len) > nor->auto_merge_single_chip_size)
934 			read_len = nor->auto_merge_single_chip_size - addr;
935 		nor->spi->auto_merge_cs_cur = addr < nor->auto_merge_single_chip_size ? 0 : 1;
936 		addr -= nor->spi->auto_merge_cs_cur * nor->auto_merge_single_chip_size;
937 #endif
938 
939 #ifdef CONFIG_SPI_FLASH_BAR
940 		u32 remain_len;
941 
942 		ret = write_bar(nor, addr);
943 		if (ret < 0)
944 			return log_ret(ret);
945 		remain_len = (SZ_16M * (nor->bank_curr + 1)) - addr;
946 
947 		if (len < remain_len)
948 			read_len = len;
949 		else
950 			read_len = remain_len;
951 #endif
952 
953 		ret = nor->read(nor, addr, read_len, buf);
954 		if (ret == 0) {
955 			/* We shouldn't see 0-length reads */
956 			ret = -EIO;
957 			goto read_err;
958 		}
959 		if (ret < 0)
960 			goto read_err;
961 
962 		*retlen += ret;
963 		buf += ret;
964 		from += ret;
965 		len -= ret;
966 	}
967 	ret = 0;
968 
969 read_err:
970 #ifdef CONFIG_SPI_FLASH_BAR
971 	ret = clean_bar(nor);
972 #endif
973 	return ret;
974 }
975 
976 #ifdef CONFIG_SPI_FLASH_SST
977 /*
978  * sst26 flash series has its own block protection implementation:
979  * 4x   - 8  KByte blocks - read & write protection bits - upper addresses
980  * 1x   - 32 KByte blocks - write protection bits
981  * rest - 64 KByte blocks - write protection bits
982  * 1x   - 32 KByte blocks - write protection bits
983  * 4x   - 8  KByte blocks - read & write protection bits - lower addresses
984  *
985  * We'll support only per 64k lock/unlock so lower and upper 64 KByte region
986  * will be treated as single block.
987  */
988 #define SST26_BPR_8K_NUM		4
989 #define SST26_MAX_BPR_REG_LEN		(18 + 1)
990 #define SST26_BOUND_REG_SIZE		((32 + SST26_BPR_8K_NUM * 8) * SZ_1K)
991 
992 enum lock_ctl {
993 	SST26_CTL_LOCK,
994 	SST26_CTL_UNLOCK,
995 	SST26_CTL_CHECK
996 };
997 
998 static bool sst26_process_bpr(u32 bpr_size, u8 *cmd, u32 bit, enum lock_ctl ctl)
999 {
1000 	switch (ctl) {
1001 	case SST26_CTL_LOCK:
1002 		cmd[bpr_size - (bit / 8) - 1] |= BIT(bit % 8);
1003 		break;
1004 	case SST26_CTL_UNLOCK:
1005 		cmd[bpr_size - (bit / 8) - 1] &= ~BIT(bit % 8);
1006 		break;
1007 	case SST26_CTL_CHECK:
1008 		return !!(cmd[bpr_size - (bit / 8) - 1] & BIT(bit % 8));
1009 	}
1010 
1011 	return false;
1012 }
1013 
1014 /*
1015  * Lock, unlock or check lock status of the flash region of the flash (depending
1016  * on the lock_ctl value)
1017  */
1018 static int sst26_lock_ctl(struct spi_nor *nor, loff_t ofs, uint64_t len, enum lock_ctl ctl)
1019 {
1020 	struct mtd_info *mtd = &nor->mtd;
1021 	u32 i, bpr_ptr, rptr_64k, lptr_64k, bpr_size;
1022 	bool lower_64k = false, upper_64k = false;
1023 	u8 bpr_buff[SST26_MAX_BPR_REG_LEN] = {};
1024 	int ret;
1025 
1026 	/* Check length and offset for 64k alignment */
1027 	if ((ofs & (SZ_64K - 1)) || (len & (SZ_64K - 1))) {
1028 		dev_err(nor->dev, "length or offset is not 64KiB allighned\n");
1029 		return -EINVAL;
1030 	}
1031 
1032 	if (ofs + len > mtd->size) {
1033 		dev_err(nor->dev, "range is more than device size: %#llx + %#llx > %#llx\n",
1034 			ofs, len, mtd->size);
1035 		return -EINVAL;
1036 	}
1037 
1038 	/* SST26 family has only 16 Mbit, 32 Mbit and 64 Mbit IC */
1039 	if (mtd->size != SZ_2M &&
1040 	    mtd->size != SZ_4M &&
1041 	    mtd->size != SZ_8M)
1042 		return -EINVAL;
1043 
1044 	bpr_size = 2 + (mtd->size / SZ_64K / 8);
1045 
1046 	ret = nor->read_reg(nor, SPINOR_OP_READ_BPR, bpr_buff, bpr_size);
1047 	if (ret < 0) {
1048 		dev_err(nor->dev, "fail to read block-protection register\n");
1049 		return ret;
1050 	}
1051 
1052 	rptr_64k = min_t(u32, ofs + len, mtd->size - SST26_BOUND_REG_SIZE);
1053 	lptr_64k = max_t(u32, ofs, SST26_BOUND_REG_SIZE);
1054 
1055 	upper_64k = ((ofs + len) > (mtd->size - SST26_BOUND_REG_SIZE));
1056 	lower_64k = (ofs < SST26_BOUND_REG_SIZE);
1057 
1058 	/* Lower bits in block-protection register are about 64k region */
1059 	bpr_ptr = lptr_64k / SZ_64K - 1;
1060 
1061 	/* Process 64K blocks region */
1062 	while (lptr_64k < rptr_64k) {
1063 		if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1064 			return EACCES;
1065 
1066 		bpr_ptr++;
1067 		lptr_64k += SZ_64K;
1068 	}
1069 
1070 	/* 32K and 8K region bits in BPR are after 64k region bits */
1071 	bpr_ptr = (mtd->size - 2 * SST26_BOUND_REG_SIZE) / SZ_64K;
1072 
1073 	/* Process lower 32K block region */
1074 	if (lower_64k)
1075 		if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1076 			return EACCES;
1077 
1078 	bpr_ptr++;
1079 
1080 	/* Process upper 32K block region */
1081 	if (upper_64k)
1082 		if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1083 			return EACCES;
1084 
1085 	bpr_ptr++;
1086 
1087 	/* Process lower 8K block regions */
1088 	for (i = 0; i < SST26_BPR_8K_NUM; i++) {
1089 		if (lower_64k)
1090 			if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1091 				return EACCES;
1092 
1093 		/* In 8K area BPR has both read and write protection bits */
1094 		bpr_ptr += 2;
1095 	}
1096 
1097 	/* Process upper 8K block regions */
1098 	for (i = 0; i < SST26_BPR_8K_NUM; i++) {
1099 		if (upper_64k)
1100 			if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1101 				return EACCES;
1102 
1103 		/* In 8K area BPR has both read and write protection bits */
1104 		bpr_ptr += 2;
1105 	}
1106 
1107 	/* If we check region status we don't need to write BPR back */
1108 	if (ctl == SST26_CTL_CHECK)
1109 		return 0;
1110 
1111 	ret = nor->write_reg(nor, SPINOR_OP_WRITE_BPR, bpr_buff, bpr_size);
1112 	if (ret < 0) {
1113 		dev_err(nor->dev, "fail to write block-protection register\n");
1114 		return ret;
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 static int sst26_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1121 {
1122 	return sst26_lock_ctl(nor, ofs, len, SST26_CTL_UNLOCK);
1123 }
1124 
1125 static int sst26_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1126 {
1127 	return sst26_lock_ctl(nor, ofs, len, SST26_CTL_LOCK);
1128 }
1129 
1130 /*
1131  * Returns EACCES (positive value) if region is locked, 0 if region is unlocked,
1132  * and negative on errors.
1133  */
1134 static int sst26_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
1135 {
1136 	/*
1137 	 * is_locked function is used for check before reading or erasing flash
1138 	 * region, so offset and length might be not 64k allighned, so adjust
1139 	 * them to be 64k allighned as sst26_lock_ctl works only with 64k
1140 	 * allighned regions.
1141 	 */
1142 	ofs -= ofs & (SZ_64K - 1);
1143 	len = len & (SZ_64K - 1) ? (len & ~(SZ_64K - 1)) + SZ_64K : len;
1144 
1145 	return sst26_lock_ctl(nor, ofs, len, SST26_CTL_CHECK);
1146 }
1147 
1148 static int sst_write_byteprogram(struct spi_nor *nor, loff_t to, size_t len,
1149 				 size_t *retlen, const u_char *buf)
1150 {
1151 	size_t actual;
1152 	int ret = 0;
1153 
1154 	for (actual = 0; actual < len; actual++) {
1155 		nor->program_opcode = SPINOR_OP_BP;
1156 
1157 		write_enable(nor);
1158 		/* write one byte. */
1159 		ret = nor->write(nor, to, 1, buf + actual);
1160 		if (ret < 0)
1161 			goto sst_write_err;
1162 		ret = spi_nor_wait_till_ready(nor);
1163 		if (ret)
1164 			goto sst_write_err;
1165 		to++;
1166 	}
1167 
1168 sst_write_err:
1169 	write_disable(nor);
1170 	return ret;
1171 }
1172 
1173 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
1174 		     size_t *retlen, const u_char *buf)
1175 {
1176 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1177 	struct spi_slave *spi = nor->spi;
1178 	size_t actual;
1179 	int ret;
1180 
1181 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1182 	if (spi->mode & SPI_TX_BYTE)
1183 		return sst_write_byteprogram(nor, to, len, retlen, buf);
1184 
1185 	write_enable(nor);
1186 
1187 	nor->sst_write_second = false;
1188 
1189 	actual = to % 2;
1190 	/* Start write from odd address. */
1191 	if (actual) {
1192 		nor->program_opcode = SPINOR_OP_BP;
1193 
1194 		/* write one byte. */
1195 		ret = nor->write(nor, to, 1, buf);
1196 		if (ret < 0)
1197 			goto sst_write_err;
1198 		ret = spi_nor_wait_till_ready(nor);
1199 		if (ret)
1200 			goto sst_write_err;
1201 	}
1202 	to += actual;
1203 
1204 	/* Write out most of the data here. */
1205 	for (; actual < len - 1; actual += 2) {
1206 		nor->program_opcode = SPINOR_OP_AAI_WP;
1207 
1208 		/* write two bytes. */
1209 		ret = nor->write(nor, to, 2, buf + actual);
1210 		if (ret < 0)
1211 			goto sst_write_err;
1212 		ret = spi_nor_wait_till_ready(nor);
1213 		if (ret)
1214 			goto sst_write_err;
1215 		to += 2;
1216 		nor->sst_write_second = true;
1217 	}
1218 	nor->sst_write_second = false;
1219 
1220 	write_disable(nor);
1221 	ret = spi_nor_wait_till_ready(nor);
1222 	if (ret)
1223 		goto sst_write_err;
1224 
1225 	/* Write out trailing byte if it exists. */
1226 	if (actual != len) {
1227 		write_enable(nor);
1228 
1229 		nor->program_opcode = SPINOR_OP_BP;
1230 		ret = nor->write(nor, to, 1, buf + actual);
1231 		if (ret < 0)
1232 			goto sst_write_err;
1233 		ret = spi_nor_wait_till_ready(nor);
1234 		if (ret)
1235 			goto sst_write_err;
1236 		write_disable(nor);
1237 		actual += 1;
1238 	}
1239 sst_write_err:
1240 	*retlen += actual;
1241 	return ret;
1242 }
1243 #endif
1244 /*
1245  * Write an address range to the nor chip.  Data must be written in
1246  * FLASH_PAGESIZE chunks.  The address range may be any size provided
1247  * it is within the physical boundaries.
1248  */
1249 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
1250 	size_t *retlen, const u_char *buf)
1251 {
1252 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1253 	size_t page_offset, page_remain, i;
1254 	ssize_t ret;
1255 
1256 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1257 
1258 	for (i = 0; i < len; ) {
1259 		ssize_t written;
1260 		loff_t addr = to + i;
1261 
1262 #if defined(CONFIG_SPI_FLASH_AUTO_MERGE)
1263 		nor->spi->auto_merge_cs_cur = addr < nor->auto_merge_single_chip_size ? 0 : 1;
1264 		addr -= nor->spi->auto_merge_cs_cur * nor->auto_merge_single_chip_size;
1265 #endif
1266 
1267 		/*
1268 		 * If page_size is a power of two, the offset can be quickly
1269 		 * calculated with an AND operation. On the other cases we
1270 		 * need to do a modulus operation (more expensive).
1271 		 * Power of two numbers have only one bit set and we can use
1272 		 * the instruction hweight32 to detect if we need to do a
1273 		 * modulus (do_div()) or not.
1274 		 */
1275 		if (hweight32(nor->page_size) == 1) {
1276 			page_offset = addr & (nor->page_size - 1);
1277 		} else {
1278 			u64 aux = addr;
1279 
1280 			page_offset = do_div(aux, nor->page_size);
1281 		}
1282 		/* the size of data remaining on the first page */
1283 		page_remain = min_t(size_t,
1284 				    nor->page_size - page_offset, len - i);
1285 
1286 #ifdef CONFIG_SPI_FLASH_BAR
1287 		ret = write_bar(nor, addr);
1288 		if (ret < 0)
1289 			return ret;
1290 #endif
1291 		write_enable(nor);
1292 		ret = nor->write(nor, addr, page_remain, buf + i);
1293 		if (ret < 0)
1294 			goto write_err;
1295 		written = ret;
1296 
1297 		ret = spi_nor_wait_till_ready(nor);
1298 		if (ret)
1299 			goto write_err;
1300 		*retlen += written;
1301 		i += written;
1302 	}
1303 
1304 write_err:
1305 #ifdef CONFIG_SPI_FLASH_BAR
1306 	ret = clean_bar(nor);
1307 #endif
1308 	return ret;
1309 }
1310 
1311 #ifdef CONFIG_SPI_FLASH_MACRONIX
1312 /**
1313  * macronix_quad_enable() - set QE bit in Status Register.
1314  * @nor:	pointer to a 'struct spi_nor'
1315  *
1316  * Set the Quad Enable (QE) bit in the Status Register.
1317  *
1318  * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
1319  *
1320  * Return: 0 on success, -errno otherwise.
1321  */
1322 static int macronix_quad_enable(struct spi_nor *nor)
1323 {
1324 	int ret, val;
1325 
1326 	val = read_sr(nor);
1327 	if (val < 0)
1328 		return val;
1329 	if (val & SR_QUAD_EN_MX)
1330 		return 0;
1331 
1332 	write_enable(nor);
1333 
1334 	write_sr(nor, val | SR_QUAD_EN_MX);
1335 
1336 	ret = spi_nor_wait_till_ready(nor);
1337 	if (ret)
1338 		return ret;
1339 
1340 	ret = read_sr(nor);
1341 	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
1342 		dev_err(nor->dev, "Macronix Quad bit not set\n");
1343 		return -EINVAL;
1344 	}
1345 
1346 	return 0;
1347 }
1348 #endif
1349 
1350 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1351 /*
1352  * Write status Register and configuration register with 2 bytes
1353  * The first byte will be written to the status register, while the
1354  * second byte will be written to the configuration register.
1355  * Return negative if error occurred.
1356  */
1357 static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
1358 {
1359 	int ret;
1360 
1361 	write_enable(nor);
1362 
1363 	ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
1364 	if (ret < 0) {
1365 		dev_dbg(nor->dev,
1366 			"error while writing configuration register\n");
1367 		return -EINVAL;
1368 	}
1369 
1370 	ret = spi_nor_wait_till_ready(nor);
1371 	if (ret) {
1372 		dev_dbg(nor->dev,
1373 			"timeout while writing configuration register\n");
1374 		return ret;
1375 	}
1376 
1377 	return 0;
1378 }
1379 
1380 /**
1381  * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
1382  * @nor:	pointer to a 'struct spi_nor'
1383  *
1384  * Set the Quad Enable (QE) bit in the Configuration Register.
1385  * This function should be used with QSPI memories supporting the Read
1386  * Configuration Register (35h) instruction.
1387  *
1388  * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1389  * memories.
1390  *
1391  * Return: 0 on success, -errno otherwise.
1392  */
1393 static int spansion_read_cr_quad_enable(struct spi_nor *nor)
1394 {
1395 	u8 sr_cr[2];
1396 	int ret;
1397 
1398 	/* Check current Quad Enable bit value. */
1399 	ret = read_cr(nor);
1400 	if (ret < 0) {
1401 		dev_dbg(dev, "error while reading configuration register\n");
1402 		return -EINVAL;
1403 	}
1404 
1405 	if (ret & CR_QUAD_EN_SPAN)
1406 		return 0;
1407 
1408 	sr_cr[1] = ret | CR_QUAD_EN_SPAN;
1409 
1410 	/* Keep the current value of the Status Register. */
1411 	ret = read_sr(nor);
1412 	if (ret < 0) {
1413 		dev_dbg(dev, "error while reading status register\n");
1414 		return -EINVAL;
1415 	}
1416 	sr_cr[0] = ret;
1417 
1418 	ret = write_sr_cr(nor, sr_cr);
1419 	if (ret)
1420 		return ret;
1421 
1422 	/* Read back and check it. */
1423 	ret = read_cr(nor);
1424 	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1425 		dev_dbg(nor->dev, "Spansion Quad bit not set\n");
1426 		return -EINVAL;
1427 	}
1428 
1429 	return 0;
1430 }
1431 
1432 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
1433 /**
1434  * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
1435  * @nor:	pointer to a 'struct spi_nor'
1436  *
1437  * Set the Quad Enable (QE) bit in the Configuration Register.
1438  * This function should be used with QSPI memories not supporting the Read
1439  * Configuration Register (35h) instruction.
1440  *
1441  * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1442  * memories.
1443  *
1444  * Return: 0 on success, -errno otherwise.
1445  */
1446 static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
1447 {
1448 	u8 sr_cr[2];
1449 	int ret;
1450 
1451 	/* Keep the current value of the Status Register. */
1452 	ret = read_sr(nor);
1453 	if (ret < 0) {
1454 		dev_dbg(nor->dev, "error while reading status register\n");
1455 		return -EINVAL;
1456 	}
1457 	sr_cr[0] = ret;
1458 	sr_cr[1] = CR_QUAD_EN_SPAN;
1459 
1460 	return write_sr_cr(nor, sr_cr);
1461 }
1462 
1463 #endif /* CONFIG_SPI_FLASH_SFDP_SUPPORT */
1464 #endif /* CONFIG_SPI_FLASH_SPANSION */
1465 
1466 #ifdef CONFIG_SPI_FLASH_NORMEM
1467 /**
1468  * normem_quad_enable() - set QE bit in Status Register.
1469  * @nor:	pointer to a 'struct spi_nor'
1470  *
1471  * Set the Quad Enable (QE) bit in the Status Register.
1472  *
1473  * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
1474  *
1475  * Return: 0 on success, -errno otherwise.
1476  */
1477 static int normem_quad_enable(struct spi_nor *nor)
1478 {
1479 	int ret, val;
1480 
1481 	val = read_cr(nor);
1482 	if (val < 0)
1483 		return val;
1484 	if (val & SR_QUAD_EN_NORMEM)
1485 		return 0;
1486 
1487 	write_enable(nor);
1488 
1489 	write_cr(nor, val | SR_QUAD_EN_NORMEM);
1490 
1491 	ret = spi_nor_wait_till_ready(nor);
1492 	if (ret)
1493 		return ret;
1494 
1495 	ret = read_cr(nor);
1496 	if (!(ret > 0 && (ret & SR_QUAD_EN_NORMEM))) {
1497 		dev_err(nor->dev, "NORMEM Quad bit not set\n");
1498 		return -EINVAL;
1499 	}
1500 
1501 	return 0;
1502 }
1503 #endif
1504 
1505 struct spi_nor_read_command {
1506 	u8			num_mode_clocks;
1507 	u8			num_wait_states;
1508 	u8			opcode;
1509 	enum spi_nor_protocol	proto;
1510 };
1511 
1512 struct spi_nor_pp_command {
1513 	u8			opcode;
1514 	enum spi_nor_protocol	proto;
1515 };
1516 
1517 enum spi_nor_read_command_index {
1518 	SNOR_CMD_READ,
1519 	SNOR_CMD_READ_FAST,
1520 	SNOR_CMD_READ_1_1_1_DTR,
1521 
1522 	/* Dual SPI */
1523 	SNOR_CMD_READ_1_1_2,
1524 	SNOR_CMD_READ_1_2_2,
1525 	SNOR_CMD_READ_2_2_2,
1526 	SNOR_CMD_READ_1_2_2_DTR,
1527 
1528 	/* Quad SPI */
1529 	SNOR_CMD_READ_1_1_4,
1530 	SNOR_CMD_READ_1_4_4,
1531 	SNOR_CMD_READ_4_4_4,
1532 	SNOR_CMD_READ_1_4_4_DTR,
1533 
1534 	/* Octo SPI */
1535 	SNOR_CMD_READ_1_1_8,
1536 	SNOR_CMD_READ_1_8_8,
1537 	SNOR_CMD_READ_8_8_8,
1538 	SNOR_CMD_READ_1_8_8_DTR,
1539 
1540 	SNOR_CMD_READ_MAX
1541 };
1542 
1543 enum spi_nor_pp_command_index {
1544 	SNOR_CMD_PP,
1545 
1546 	/* Quad SPI */
1547 	SNOR_CMD_PP_1_1_4,
1548 	SNOR_CMD_PP_1_4_4,
1549 	SNOR_CMD_PP_4_4_4,
1550 
1551 	/* Octo SPI */
1552 	SNOR_CMD_PP_1_1_8,
1553 	SNOR_CMD_PP_1_8_8,
1554 	SNOR_CMD_PP_8_8_8,
1555 
1556 	SNOR_CMD_PP_MAX
1557 };
1558 
1559 struct spi_nor_flash_parameter {
1560 	u64				size;
1561 	u32				page_size;
1562 
1563 	struct spi_nor_hwcaps		hwcaps;
1564 	struct spi_nor_read_command	reads[SNOR_CMD_READ_MAX];
1565 	struct spi_nor_pp_command	page_programs[SNOR_CMD_PP_MAX];
1566 
1567 	int (*quad_enable)(struct spi_nor *nor);
1568 };
1569 
1570 static void
1571 spi_nor_set_read_settings(struct spi_nor_read_command *read,
1572 			  u8 num_mode_clocks,
1573 			  u8 num_wait_states,
1574 			  u8 opcode,
1575 			  enum spi_nor_protocol proto)
1576 {
1577 	read->num_mode_clocks = num_mode_clocks;
1578 	read->num_wait_states = num_wait_states;
1579 	read->opcode = opcode;
1580 	read->proto = proto;
1581 }
1582 
1583 static void
1584 spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
1585 			u8 opcode,
1586 			enum spi_nor_protocol proto)
1587 {
1588 	pp->opcode = opcode;
1589 	pp->proto = proto;
1590 }
1591 
1592 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
1593 /*
1594  * Serial Flash Discoverable Parameters (SFDP) parsing.
1595  */
1596 
1597 /**
1598  * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
1599  * @nor:	pointer to a 'struct spi_nor'
1600  * @addr:	offset in the SFDP area to start reading data from
1601  * @len:	number of bytes to read
1602  * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
1603  *
1604  * Whatever the actual numbers of bytes for address and dummy cycles are
1605  * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
1606  * followed by a 3-byte address and 8 dummy clock cycles.
1607  *
1608  * Return: 0 on success, -errno otherwise.
1609  */
1610 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
1611 			     size_t len, void *buf)
1612 {
1613 	u8 addr_width, read_opcode, read_dummy;
1614 	int ret;
1615 
1616 	read_opcode = nor->read_opcode;
1617 	addr_width = nor->addr_width;
1618 	read_dummy = nor->read_dummy;
1619 
1620 	nor->read_opcode = SPINOR_OP_RDSFDP;
1621 	nor->addr_width = 3;
1622 	nor->read_dummy = 8;
1623 
1624 	while (len) {
1625 		ret = nor->read(nor, addr, len, (u8 *)buf);
1626 		if (!ret || ret > len) {
1627 			ret = -EIO;
1628 			goto read_err;
1629 		}
1630 		if (ret < 0)
1631 			goto read_err;
1632 
1633 		buf += ret;
1634 		addr += ret;
1635 		len -= ret;
1636 	}
1637 	ret = 0;
1638 
1639 read_err:
1640 	nor->read_opcode = read_opcode;
1641 	nor->addr_width = addr_width;
1642 	nor->read_dummy = read_dummy;
1643 
1644 	return ret;
1645 }
1646 
1647 struct sfdp_parameter_header {
1648 	u8		id_lsb;
1649 	u8		minor;
1650 	u8		major;
1651 	u8		length; /* in double words */
1652 	u8		parameter_table_pointer[3]; /* byte address */
1653 	u8		id_msb;
1654 };
1655 
1656 #define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
1657 #define SFDP_PARAM_HEADER_PTP(p) \
1658 	(((p)->parameter_table_pointer[2] << 16) | \
1659 	 ((p)->parameter_table_pointer[1] <<  8) | \
1660 	 ((p)->parameter_table_pointer[0] <<  0))
1661 
1662 #define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
1663 #define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
1664 
1665 #define SFDP_SIGNATURE		0x50444653U
1666 #define SFDP_JESD216_MAJOR	1
1667 #define SFDP_JESD216_MINOR	0
1668 #define SFDP_JESD216A_MINOR	5
1669 #define SFDP_JESD216B_MINOR	6
1670 
1671 struct sfdp_header {
1672 	u32		signature; /* Ox50444653U <=> "SFDP" */
1673 	u8		minor;
1674 	u8		major;
1675 	u8		nph; /* 0-base number of parameter headers */
1676 	u8		unused;
1677 
1678 	/* Basic Flash Parameter Table. */
1679 	struct sfdp_parameter_header	bfpt_header;
1680 };
1681 
1682 /* Basic Flash Parameter Table */
1683 
1684 /*
1685  * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
1686  * They are indexed from 1 but C arrays are indexed from 0.
1687  */
1688 #define BFPT_DWORD(i)		((i) - 1)
1689 #define BFPT_DWORD_MAX		16
1690 
1691 /* The first version of JESB216 defined only 9 DWORDs. */
1692 #define BFPT_DWORD_MAX_JESD216			9
1693 
1694 /* 1st DWORD. */
1695 #define BFPT_DWORD1_FAST_READ_1_1_2		BIT(16)
1696 #define BFPT_DWORD1_ADDRESS_BYTES_MASK		GENMASK(18, 17)
1697 #define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY	(0x0UL << 17)
1698 #define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4	(0x1UL << 17)
1699 #define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY	(0x2UL << 17)
1700 #define BFPT_DWORD1_DTR				BIT(19)
1701 #define BFPT_DWORD1_FAST_READ_1_2_2		BIT(20)
1702 #define BFPT_DWORD1_FAST_READ_1_4_4		BIT(21)
1703 #define BFPT_DWORD1_FAST_READ_1_1_4		BIT(22)
1704 
1705 /* 5th DWORD. */
1706 #define BFPT_DWORD5_FAST_READ_2_2_2		BIT(0)
1707 #define BFPT_DWORD5_FAST_READ_4_4_4		BIT(4)
1708 
1709 /* 11th DWORD. */
1710 #define BFPT_DWORD11_PAGE_SIZE_SHIFT		4
1711 #define BFPT_DWORD11_PAGE_SIZE_MASK		GENMASK(7, 4)
1712 
1713 /* 15th DWORD. */
1714 
1715 /*
1716  * (from JESD216 rev F)
1717  * Quad Enable Requirements (QER):
1718  * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
1719  *         reads based on instruction. DQ3/HOLD# functions are hold during
1720  *         instruction phase.
1721  * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
1722  *         two data bytes where bit 1 of the second byte is one.
1723  *         [...]
1724  *         Writing only one byte to the status register has the side-effect of
1725  *         clearing status register 2, including the QE bit. The 100b code is
1726  *         used if writing one byte to the status register does not modify
1727  *         status register 2.
1728  * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
1729  *         one data byte where bit 6 is one.
1730  *         [...]
1731  * - 011b: QE is bit 7 of status register 2. It is set via Write status
1732  *         register 2 instruction 3Eh with one data byte where bit 7 is one.
1733  *         [...]
1734  *         The status register 2 is read using instruction 3Fh.
1735  * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
1736  *         two data bytes where bit 1 of the second byte is one.
1737  *         [...]
1738  *         In contrast to the 001b code, writing one byte to the status
1739  *         register does not modify status register 2.
1740  * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
1741  *         Read Status instruction 05h. Status register2 is read using
1742  *         instruction 35h. QE is set via Writ Status instruction 01h with
1743  *         two data bytes where bit 1 of the second byte is one.
1744  *         [...]
1745  * - 110b: QE is bit 1 of the status register 2. Status register 1 is read using
1746  *         Read Status instruction 05h. Status register 2 is read using instruction
1747  *         35h, and status register 3 is read using instruction 15h. QE is set via
1748  *         Write Status Register instruction 31h with one data byte where bit 1 is
1749  *         one. It is cleared via Write Status Register instruction 31h with one
1750  *         data byte where bit 1 is zero.
1751  */
1752 #define BFPT_DWORD15_QER_MASK			GENMASK(22, 20)
1753 #define BFPT_DWORD15_QER_NONE			(0x0UL << 20) /* Micron */
1754 #define BFPT_DWORD15_QER_SR2_BIT1_BUGGY		(0x1UL << 20)
1755 #define BFPT_DWORD15_QER_SR1_BIT6		(0x2UL << 20) /* Macronix */
1756 #define BFPT_DWORD15_QER_SR2_BIT7		(0x3UL << 20)
1757 #define BFPT_DWORD15_QER_SR2_BIT1_NO_RD		(0x4UL << 20)
1758 #define BFPT_DWORD15_QER_SR2_BIT1		(0x5UL << 20) /* Spansion */
1759 #define BFPT_DWORD15_QER_SR2_BIT1_WR		(0x6UL << 20)
1760 
1761 struct sfdp_bfpt {
1762 	u32	dwords[BFPT_DWORD_MAX];
1763 };
1764 
1765 /* Fast Read settings. */
1766 
1767 static void
1768 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
1769 				    u16 half,
1770 				    enum spi_nor_protocol proto)
1771 {
1772 	read->num_mode_clocks = (half >> 5) & 0x07;
1773 	read->num_wait_states = (half >> 0) & 0x1f;
1774 	read->opcode = (half >> 8) & 0xff;
1775 	read->proto = proto;
1776 }
1777 
1778 struct sfdp_bfpt_read {
1779 	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
1780 	u32			hwcaps;
1781 
1782 	/*
1783 	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
1784 	 * whether the Fast Read x-y-z command is supported.
1785 	 */
1786 	u32			supported_dword;
1787 	u32			supported_bit;
1788 
1789 	/*
1790 	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
1791 	 * encodes the op code, the number of mode clocks and the number of wait
1792 	 * states to be used by Fast Read x-y-z command.
1793 	 */
1794 	u32			settings_dword;
1795 	u32			settings_shift;
1796 
1797 	/* The SPI protocol for this Fast Read x-y-z command. */
1798 	enum spi_nor_protocol	proto;
1799 };
1800 
1801 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
1802 	/* Fast Read 1-1-2 */
1803 	{
1804 		SNOR_HWCAPS_READ_1_1_2,
1805 		BFPT_DWORD(1), BIT(16),	/* Supported bit */
1806 		BFPT_DWORD(4), 0,	/* Settings */
1807 		SNOR_PROTO_1_1_2,
1808 	},
1809 
1810 	/* Fast Read 1-2-2 */
1811 	{
1812 		SNOR_HWCAPS_READ_1_2_2,
1813 		BFPT_DWORD(1), BIT(20),	/* Supported bit */
1814 		BFPT_DWORD(4), 16,	/* Settings */
1815 		SNOR_PROTO_1_2_2,
1816 	},
1817 
1818 	/* Fast Read 2-2-2 */
1819 	{
1820 		SNOR_HWCAPS_READ_2_2_2,
1821 		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
1822 		BFPT_DWORD(6), 16,	/* Settings */
1823 		SNOR_PROTO_2_2_2,
1824 	},
1825 
1826 	/* Fast Read 1-1-4 */
1827 	{
1828 		SNOR_HWCAPS_READ_1_1_4,
1829 		BFPT_DWORD(1), BIT(22),	/* Supported bit */
1830 		BFPT_DWORD(3), 16,	/* Settings */
1831 		SNOR_PROTO_1_1_4,
1832 	},
1833 
1834 	/* Fast Read 1-4-4 */
1835 	{
1836 		SNOR_HWCAPS_READ_1_4_4,
1837 		BFPT_DWORD(1), BIT(21),	/* Supported bit */
1838 		BFPT_DWORD(3), 0,	/* Settings */
1839 		SNOR_PROTO_1_4_4,
1840 	},
1841 
1842 	/* Fast Read 4-4-4 */
1843 	{
1844 		SNOR_HWCAPS_READ_4_4_4,
1845 		BFPT_DWORD(5), BIT(4),	/* Supported bit */
1846 		BFPT_DWORD(7), 16,	/* Settings */
1847 		SNOR_PROTO_4_4_4,
1848 	},
1849 };
1850 
1851 struct sfdp_bfpt_erase {
1852 	/*
1853 	 * The half-word at offset <shift> in DWORD <dwoard> encodes the
1854 	 * op code and erase sector size to be used by Sector Erase commands.
1855 	 */
1856 	u32			dword;
1857 	u32			shift;
1858 };
1859 
1860 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
1861 	/* Erase Type 1 in DWORD8 bits[15:0] */
1862 	{BFPT_DWORD(8), 0},
1863 
1864 	/* Erase Type 2 in DWORD8 bits[31:16] */
1865 	{BFPT_DWORD(8), 16},
1866 
1867 	/* Erase Type 3 in DWORD9 bits[15:0] */
1868 	{BFPT_DWORD(9), 0},
1869 
1870 	/* Erase Type 4 in DWORD9 bits[31:16] */
1871 	{BFPT_DWORD(9), 16},
1872 };
1873 
1874 static int spi_nor_hwcaps_read2cmd(u32 hwcaps);
1875 
1876 /**
1877  * spi_nor_wr_quad_enable() - set QE bit in Configuration Register with 31H.
1878  * @nor:	pointer to a 'struct spi_nor'
1879  *
1880  * Set the Quad Enable (QE) bit in the Configuration Register.
1881  * This function should be used with QSPI memories not supporting the Read
1882  * Configuration Register (35h) instruction.
1883  *
1884  * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1885  * memories.
1886  *
1887  * Return: 0 on success, -errno otherwise.
1888  */
1889 static int spi_nor_wr_quad_enable(struct spi_nor *nor)
1890 {
1891 	int ret, val;
1892 
1893 	val = read_cr(nor);
1894 	if (val < 0)
1895 		return val;
1896 	if (val & CR_QUAD_EN_SPAN)
1897 		return 0;
1898 
1899 	write_enable(nor);
1900 
1901 	write_cr(nor, val | CR_QUAD_EN_SPAN);
1902 
1903 	ret = spi_nor_wait_till_ready(nor);
1904 	if (ret)
1905 		return ret;
1906 
1907 	ret = read_cr(nor);
1908 	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1909 		dev_err(nor->dev, "Configure register Quad bit not set, ret=%x\n", ret);
1910 		return -EINVAL;
1911 	}
1912 
1913 	return 0;
1914 }
1915 
1916 /**
1917  * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
1918  * @nor:		pointer to a 'struct spi_nor'
1919  * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
1920  *			the Basic Flash Parameter Table length and version
1921  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
1922  *			filled
1923  *
1924  * The Basic Flash Parameter Table is the main and only mandatory table as
1925  * defined by the SFDP (JESD216) specification.
1926  * It provides us with the total size (memory density) of the data array and
1927  * the number of address bytes for Fast Read, Page Program and Sector Erase
1928  * commands.
1929  * For Fast READ commands, it also gives the number of mode clock cycles and
1930  * wait states (regrouped in the number of dummy clock cycles) for each
1931  * supported instruction op code.
1932  * For Page Program, the page size is now available since JESD216 rev A, however
1933  * the supported instruction op codes are still not provided.
1934  * For Sector Erase commands, this table stores the supported instruction op
1935  * codes and the associated sector sizes.
1936  * Finally, the Quad Enable Requirements (QER) are also available since JESD216
1937  * rev A. The QER bits encode the manufacturer dependent procedure to be
1938  * executed to set the Quad Enable (QE) bit in some internal register of the
1939  * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
1940  * sending any Quad SPI command to the memory. Actually, setting the QE bit
1941  * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
1942  * and IO3 hence enabling 4 (Quad) I/O lines.
1943  *
1944  * Return: 0 on success, -errno otherwise.
1945  */
1946 static int spi_nor_parse_bfpt(struct spi_nor *nor,
1947 			      const struct sfdp_parameter_header *bfpt_header,
1948 			      struct spi_nor_flash_parameter *params)
1949 {
1950 	struct mtd_info *mtd = &nor->mtd;
1951 	struct sfdp_bfpt bfpt;
1952 	size_t len;
1953 	int i, cmd, err;
1954 	u32 addr;
1955 	u16 half;
1956 
1957 	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
1958 	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
1959 		return -EINVAL;
1960 
1961 	/* Read the Basic Flash Parameter Table. */
1962 	len = min_t(size_t, sizeof(bfpt),
1963 		    bfpt_header->length * sizeof(u32));
1964 	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
1965 	memset(&bfpt, 0, sizeof(bfpt));
1966 	err = spi_nor_read_sfdp(nor,  addr, len, &bfpt);
1967 	if (err < 0)
1968 		return err;
1969 
1970 	/* Fix endianness of the BFPT DWORDs. */
1971 	for (i = 0; i < BFPT_DWORD_MAX; i++)
1972 		bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);
1973 
1974 	/* Number of address bytes. */
1975 	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
1976 	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
1977 		nor->addr_width = 3;
1978 		break;
1979 
1980 	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
1981 		nor->addr_width = 4;
1982 		break;
1983 
1984 	default:
1985 		break;
1986 	}
1987 
1988 	/* Flash Memory Density (in bits). */
1989 	params->size = bfpt.dwords[BFPT_DWORD(2)];
1990 	if (params->size & BIT(31)) {
1991 		params->size &= ~BIT(31);
1992 
1993 		/*
1994 		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
1995 		 * bits is unlikely to exist so this error probably means
1996 		 * the BFPT we are reading is corrupted/wrong.
1997 		 */
1998 		if (params->size > 63)
1999 			return -EINVAL;
2000 
2001 		params->size = 1ULL << params->size;
2002 	} else {
2003 		params->size++;
2004 	}
2005 	params->size >>= 3; /* Convert to bytes. */
2006 
2007 	/* Fast Read settings. */
2008 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
2009 		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
2010 		struct spi_nor_read_command *read;
2011 
2012 		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
2013 			params->hwcaps.mask &= ~rd->hwcaps;
2014 			continue;
2015 		}
2016 
2017 		params->hwcaps.mask |= rd->hwcaps;
2018 		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
2019 		read = &params->reads[cmd];
2020 		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
2021 		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
2022 	}
2023 
2024 	/* Sector Erase settings. */
2025 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
2026 		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
2027 		u32 erasesize;
2028 		u8 opcode;
2029 
2030 		half = bfpt.dwords[er->dword] >> er->shift;
2031 		erasesize = half & 0xff;
2032 
2033 		/* erasesize == 0 means this Erase Type is not supported. */
2034 		if (!erasesize)
2035 			continue;
2036 
2037 		erasesize = 1U << erasesize;
2038 		opcode = (half >> 8) & 0xff;
2039 #ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
2040 		if (erasesize == SZ_4K) {
2041 			nor->erase_opcode = opcode;
2042 			mtd->erasesize = erasesize;
2043 			break;
2044 		}
2045 #endif
2046 		if (!mtd->erasesize || mtd->erasesize < erasesize) {
2047 			nor->erase_opcode = opcode;
2048 			mtd->erasesize = erasesize;
2049 		}
2050 	}
2051 
2052 	/* Stop here if not JESD216 rev A or later. */
2053 	if (bfpt_header->length < BFPT_DWORD_MAX)
2054 		return 0;
2055 
2056 	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
2057 	params->page_size = bfpt.dwords[BFPT_DWORD(11)];
2058 	params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
2059 	params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
2060 	params->page_size = 1U << params->page_size;
2061 
2062 	/* Quad Enable Requirements. */
2063 	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
2064 	case BFPT_DWORD15_QER_NONE:
2065 		params->quad_enable = NULL;
2066 		break;
2067 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
2068 	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
2069 	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
2070 		params->quad_enable = spansion_no_read_cr_quad_enable;
2071 		break;
2072 #endif
2073 #ifdef CONFIG_SPI_FLASH_MACRONIX
2074 	case BFPT_DWORD15_QER_SR1_BIT6:
2075 		params->quad_enable = macronix_quad_enable;
2076 		break;
2077 #endif
2078 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
2079 	case BFPT_DWORD15_QER_SR2_BIT1:
2080 		params->quad_enable = spansion_read_cr_quad_enable;
2081 		break;
2082 #endif
2083 	case BFPT_DWORD15_QER_SR2_BIT1_WR:
2084 		params->quad_enable = spi_nor_wr_quad_enable;
2085 		break;
2086 	default:
2087 		return -EINVAL;
2088 	}
2089 
2090 	return 0;
2091 }
2092 
2093 /**
2094  * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
2095  * @nor:		pointer to a 'struct spi_nor'
2096  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
2097  *			filled
2098  *
2099  * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
2100  * specification. This is a standard which tends to supported by almost all
2101  * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
2102  * runtime the main parameters needed to perform basic SPI flash operations such
2103  * as Fast Read, Page Program or Sector Erase commands.
2104  *
2105  * Return: 0 on success, -errno otherwise.
2106  */
2107 static int spi_nor_parse_sfdp(struct spi_nor *nor,
2108 			      struct spi_nor_flash_parameter *params)
2109 {
2110 	const struct sfdp_parameter_header *param_header, *bfpt_header;
2111 	struct sfdp_parameter_header *param_headers = NULL;
2112 	struct sfdp_header header;
2113 	size_t psize;
2114 	int i, err;
2115 
2116 	/* Get the SFDP header. */
2117 	err = spi_nor_read_sfdp(nor, 0, sizeof(header), &header);
2118 	if (err < 0)
2119 		return err;
2120 
2121 	/* Check the SFDP header version. */
2122 	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
2123 	    header.major != SFDP_JESD216_MAJOR)
2124 		return -EINVAL;
2125 
2126 	/*
2127 	 * Verify that the first and only mandatory parameter header is a
2128 	 * Basic Flash Parameter Table header as specified in JESD216.
2129 	 */
2130 	bfpt_header = &header.bfpt_header;
2131 	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
2132 	    bfpt_header->major != SFDP_JESD216_MAJOR)
2133 		return -EINVAL;
2134 
2135 	/*
2136 	 * Allocate memory then read all parameter headers with a single
2137 	 * Read SFDP command. These parameter headers will actually be parsed
2138 	 * twice: a first time to get the latest revision of the basic flash
2139 	 * parameter table, then a second time to handle the supported optional
2140 	 * tables.
2141 	 * Hence we read the parameter headers once for all to reduce the
2142 	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
2143 	 * because we don't need to keep these parameter headers: the allocated
2144 	 * memory is always released with kfree() before exiting this function.
2145 	 */
2146 	if (header.nph) {
2147 		psize = header.nph * sizeof(*param_headers);
2148 
2149 		param_headers = kmalloc(psize, GFP_KERNEL);
2150 		if (!param_headers)
2151 			return -ENOMEM;
2152 
2153 		err = spi_nor_read_sfdp(nor, sizeof(header),
2154 					psize, param_headers);
2155 		if (err < 0) {
2156 			dev_err(dev, "failed to read SFDP parameter headers\n");
2157 			goto exit;
2158 		}
2159 	}
2160 
2161 	/*
2162 	 * Check other parameter headers to get the latest revision of
2163 	 * the basic flash parameter table.
2164 	 */
2165 	for (i = 0; i < header.nph; i++) {
2166 		param_header = &param_headers[i];
2167 
2168 		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
2169 		    param_header->major == SFDP_JESD216_MAJOR &&
2170 		    (param_header->minor > bfpt_header->minor ||
2171 		     (param_header->minor == bfpt_header->minor &&
2172 		      param_header->length > bfpt_header->length)))
2173 			bfpt_header = param_header;
2174 	}
2175 
2176 	err = spi_nor_parse_bfpt(nor, bfpt_header, params);
2177 	if (err)
2178 		goto exit;
2179 
2180 	/* Parse other parameter headers. */
2181 	for (i = 0; i < header.nph; i++) {
2182 		param_header = &param_headers[i];
2183 
2184 		switch (SFDP_PARAM_HEADER_ID(param_header)) {
2185 		case SFDP_SECTOR_MAP_ID:
2186 			dev_info(dev, "non-uniform erase sector maps are not supported yet.\n");
2187 			break;
2188 
2189 		default:
2190 			break;
2191 		}
2192 
2193 		if (err)
2194 			goto exit;
2195 	}
2196 
2197 exit:
2198 	kfree(param_headers);
2199 	return err;
2200 }
2201 #else
2202 static int spi_nor_parse_sfdp(struct spi_nor *nor,
2203 			      struct spi_nor_flash_parameter *params)
2204 {
2205 	return -EINVAL;
2206 }
2207 #endif /* SPI_FLASH_SFDP_SUPPORT */
2208 
2209 static int spi_nor_init_params(struct spi_nor *nor,
2210 			       const struct flash_info *info,
2211 			       struct spi_nor_flash_parameter *params)
2212 {
2213 	/* Set legacy flash parameters as default. */
2214 	memset(params, 0, sizeof(*params));
2215 
2216 	/* Set SPI NOR sizes. */
2217 	params->size = info->sector_size * info->n_sectors;
2218 	params->page_size = info->page_size;
2219 
2220 	/* (Fast) Read settings. */
2221 	params->hwcaps.mask |= SNOR_HWCAPS_READ;
2222 	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
2223 				  0, 0, SPINOR_OP_READ,
2224 				  SNOR_PROTO_1_1_1);
2225 
2226 	if (!(info->flags & SPI_NOR_NO_FR)) {
2227 		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2228 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
2229 					  0, 8, SPINOR_OP_READ_FAST,
2230 					  SNOR_PROTO_1_1_1);
2231 	}
2232 
2233 	if (info->flags & SPI_NOR_DUAL_READ) {
2234 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2235 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
2236 					  0, 8, SPINOR_OP_READ_1_1_2,
2237 					  SNOR_PROTO_1_1_2);
2238 	}
2239 
2240 	if (info->flags & SPI_NOR_QUAD_READ) {
2241 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2242 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
2243 					  0, 8, SPINOR_OP_READ_1_1_4,
2244 					  SNOR_PROTO_1_1_4);
2245 	}
2246 
2247 	if (info->flags & SPI_NOR_OCTAL_READ) {
2248 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2249 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
2250 					  0, 8, SPINOR_OP_READ_1_1_8,
2251 					  SNOR_PROTO_1_1_8);
2252 	}
2253 
2254 	/* Page Program settings. */
2255 	params->hwcaps.mask |= SNOR_HWCAPS_PP;
2256 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
2257 				SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2258 
2259 	if (info->flags & SPI_NOR_QUAD_READ) {
2260 		params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
2261 		spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
2262 					SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
2263 	}
2264 
2265 	/* Select the procedure to set the Quad Enable bit. */
2266 	if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
2267 				   SNOR_HWCAPS_PP_QUAD)) {
2268 		switch (JEDEC_MFR(info)) {
2269 #ifdef CONFIG_SPI_FLASH_MACRONIX
2270 		case SNOR_MFR_MACRONIX:
2271 			params->quad_enable = macronix_quad_enable;
2272 			break;
2273 #endif
2274 		case SNOR_MFR_ST:
2275 		case SNOR_MFR_MICRON:
2276 			break;
2277 #ifdef CONFIG_SPI_FLASH_NORMEM
2278 		case SNOR_MFR_NORMEM:
2279 			params->quad_enable = normem_quad_enable;
2280 			break;
2281 #endif
2282 		default:
2283 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
2284 			/* Kept only for backward compatibility purpose. */
2285 			params->quad_enable = spansion_read_cr_quad_enable;
2286 #endif
2287 			break;
2288 		}
2289 	}
2290 
2291 	/* Override the parameters with data read from SFDP tables. */
2292 	nor->addr_width = 0;
2293 	nor->mtd.erasesize = 0;
2294 	if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
2295 	    !(info->flags & SPI_NOR_SKIP_SFDP)) {
2296 		struct spi_nor_flash_parameter sfdp_params;
2297 
2298 		memcpy(&sfdp_params, params, sizeof(sfdp_params));
2299 		if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
2300 			nor->addr_width = 0;
2301 			nor->mtd.erasesize = 0;
2302 		} else {
2303 			memcpy(params, &sfdp_params, sizeof(*params));
2304 		}
2305 	}
2306 
2307 	return 0;
2308 }
2309 
2310 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2311 {
2312 	size_t i;
2313 
2314 	for (i = 0; i < size; i++)
2315 		if (table[i][0] == (int)hwcaps)
2316 			return table[i][1];
2317 
2318 	return -EINVAL;
2319 }
2320 
2321 static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2322 {
2323 	static const int hwcaps_read2cmd[][2] = {
2324 		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
2325 		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
2326 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
2327 		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
2328 		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
2329 		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
2330 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
2331 		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
2332 		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
2333 		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
2334 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
2335 		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
2336 		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
2337 		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
2338 		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
2339 	};
2340 
2341 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2342 				  ARRAY_SIZE(hwcaps_read2cmd));
2343 }
2344 
2345 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2346 {
2347 	static const int hwcaps_pp2cmd[][2] = {
2348 		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
2349 		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
2350 		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
2351 		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
2352 		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
2353 		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
2354 		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
2355 	};
2356 
2357 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2358 				  ARRAY_SIZE(hwcaps_pp2cmd));
2359 }
2360 
2361 static int spi_nor_select_read(struct spi_nor *nor,
2362 			       const struct spi_nor_flash_parameter *params,
2363 			       u32 shared_hwcaps)
2364 {
2365 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2366 	const struct spi_nor_read_command *read;
2367 
2368 	if (best_match < 0)
2369 		return -EINVAL;
2370 
2371 	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2372 	if (cmd < 0)
2373 		return -EINVAL;
2374 
2375 	read = &params->reads[cmd];
2376 	nor->read_opcode = read->opcode;
2377 	nor->read_proto = read->proto;
2378 
2379 	/*
2380 	 * In the spi-nor framework, we don't need to make the difference
2381 	 * between mode clock cycles and wait state clock cycles.
2382 	 * Indeed, the value of the mode clock cycles is used by a QSPI
2383 	 * flash memory to know whether it should enter or leave its 0-4-4
2384 	 * (Continuous Read / XIP) mode.
2385 	 * eXecution In Place is out of the scope of the mtd sub-system.
2386 	 * Hence we choose to merge both mode and wait state clock cycles
2387 	 * into the so called dummy clock cycles.
2388 	 */
2389 	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2390 	return 0;
2391 }
2392 
2393 static int spi_nor_select_pp(struct spi_nor *nor,
2394 			     const struct spi_nor_flash_parameter *params,
2395 			     u32 shared_hwcaps)
2396 {
2397 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2398 	const struct spi_nor_pp_command *pp;
2399 
2400 	if (best_match < 0)
2401 		return -EINVAL;
2402 
2403 	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2404 	if (cmd < 0)
2405 		return -EINVAL;
2406 
2407 	pp = &params->page_programs[cmd];
2408 	nor->program_opcode = pp->opcode;
2409 	nor->write_proto = pp->proto;
2410 	return 0;
2411 }
2412 
2413 static int spi_nor_select_erase(struct spi_nor *nor,
2414 				const struct flash_info *info)
2415 {
2416 	struct mtd_info *mtd = &nor->mtd;
2417 
2418 	/* Do nothing if already configured from SFDP. */
2419 	if (mtd->erasesize)
2420 		return 0;
2421 
2422 #ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
2423 	/* prefer "small sector" erase if possible */
2424 	if (info->flags & SECT_4K) {
2425 		nor->erase_opcode = SPINOR_OP_BE_4K;
2426 		mtd->erasesize = 4096;
2427 	} else if (info->flags & SECT_4K_PMC) {
2428 		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
2429 		mtd->erasesize = 4096;
2430 	} else
2431 #endif
2432 	{
2433 		nor->erase_opcode = SPINOR_OP_SE;
2434 		mtd->erasesize = info->sector_size;
2435 	}
2436 	return 0;
2437 }
2438 
2439 static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
2440 			 const struct spi_nor_flash_parameter *params,
2441 			 const struct spi_nor_hwcaps *hwcaps)
2442 {
2443 	u32 ignored_mask, shared_mask;
2444 	bool enable_quad_io;
2445 	int err;
2446 
2447 	/*
2448 	 * Keep only the hardware capabilities supported by both the SPI
2449 	 * controller and the SPI flash memory.
2450 	 */
2451 	shared_mask = hwcaps->mask & params->hwcaps.mask;
2452 
2453 	/* SPI n-n-n protocols are not supported yet. */
2454 	ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
2455 			SNOR_HWCAPS_READ_4_4_4 |
2456 			SNOR_HWCAPS_READ_8_8_8 |
2457 			SNOR_HWCAPS_PP_4_4_4 |
2458 			SNOR_HWCAPS_PP_8_8_8);
2459 	if (shared_mask & ignored_mask) {
2460 		dev_dbg(nor->dev,
2461 			"SPI n-n-n protocols are not supported yet.\n");
2462 		shared_mask &= ~ignored_mask;
2463 	}
2464 
2465 	/* Select the (Fast) Read command. */
2466 	err = spi_nor_select_read(nor, params, shared_mask);
2467 	if (err) {
2468 		dev_dbg(nor->dev,
2469 			"can't select read settings supported by both the SPI controller and memory.\n");
2470 		return err;
2471 	}
2472 
2473 	/* Select the Page Program command. */
2474 	err = spi_nor_select_pp(nor, params, shared_mask);
2475 	if (err) {
2476 		dev_dbg(nor->dev,
2477 			"can't select write settings supported by both the SPI controller and memory.\n");
2478 		return err;
2479 	}
2480 
2481 	/* Select the Sector Erase command. */
2482 	err = spi_nor_select_erase(nor, info);
2483 	if (err) {
2484 		dev_dbg(nor->dev,
2485 			"can't select erase settings supported by both the SPI controller and memory.\n");
2486 		return err;
2487 	}
2488 
2489 	/* Enable Quad I/O if needed. */
2490 	enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
2491 			  spi_nor_get_protocol_width(nor->write_proto) == 4);
2492 	if (enable_quad_io && params->quad_enable)
2493 		nor->quad_enable = params->quad_enable;
2494 	else
2495 		nor->quad_enable = NULL;
2496 
2497 	return 0;
2498 }
2499 
2500 static int spi_nor_init(struct spi_nor *nor)
2501 {
2502 	int err;
2503 
2504 	/*
2505 	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
2506 	 * with the software protection bits set
2507 	 */
2508 	if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
2509 	    JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
2510 	    JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
2511 	    nor->info->flags & SPI_NOR_HAS_LOCK) {
2512 		write_enable(nor);
2513 		write_sr(nor, 0);
2514 		spi_nor_wait_till_ready(nor);
2515 	}
2516 
2517 	if (nor->quad_enable) {
2518 		err = nor->quad_enable(nor);
2519 		if (err) {
2520 			dev_dbg(nor->dev, "quad mode not supported\n");
2521 			return err;
2522 		}
2523 	}
2524 
2525 	if (nor->addr_width == 4 &&
2526 	    (JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION) &&
2527 	    !(nor->info->flags & SPI_NOR_4B_OPCODES)) {
2528 		/*
2529 		 * If the RESET# pin isn't hooked up properly, or the system
2530 		 * otherwise doesn't perform a reset command in the boot
2531 		 * sequence, it's impossible to 100% protect against unexpected
2532 		 * reboots (e.g., crashes). Warn the user (or hopefully, system
2533 		 * designer) that this is bad.
2534 		 */
2535 		if (nor->flags & SNOR_F_BROKEN_RESET)
2536 			printf("enabling reset hack; may not recover from unexpected reboots\n");
2537 		set_4byte(nor, nor->info, 1);
2538 	}
2539 
2540 	return 0;
2541 }
2542 
2543 int spi_nor_scan(struct spi_nor *nor)
2544 {
2545 	struct spi_nor_flash_parameter params;
2546 	const struct flash_info *info = NULL;
2547 	struct mtd_info *mtd = &nor->mtd;
2548 	struct spi_nor_hwcaps hwcaps = {
2549 		.mask = SNOR_HWCAPS_READ |
2550 			SNOR_HWCAPS_READ_FAST |
2551 			SNOR_HWCAPS_PP,
2552 	};
2553 	struct spi_slave *spi = nor->spi;
2554 	int ret;
2555 
2556 	/* Reset SPI protocol for all commands. */
2557 	nor->reg_proto = SNOR_PROTO_1_1_1;
2558 	nor->read_proto = SNOR_PROTO_1_1_1;
2559 	nor->write_proto = SNOR_PROTO_1_1_1;
2560 	nor->read = spi_nor_read_data;
2561 	nor->write = spi_nor_write_data;
2562 	nor->read_reg = spi_nor_read_reg;
2563 	nor->write_reg = spi_nor_write_reg;
2564 
2565 	if (spi->mode & SPI_RX_OCTAL) {
2566 		hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2567 
2568 		if (spi->mode & SPI_TX_OCTAL)
2569 			hwcaps.mask |= (SNOR_HWCAPS_READ_1_8_8 |
2570 					SNOR_HWCAPS_PP_1_1_8 |
2571 					SNOR_HWCAPS_PP_1_8_8);
2572 	} else if (spi->mode & SPI_RX_QUAD) {
2573 		hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2574 
2575 		if (spi->mode & SPI_TX_QUAD)
2576 			hwcaps.mask |= (SNOR_HWCAPS_READ_1_4_4 |
2577 					SNOR_HWCAPS_PP_1_1_4 |
2578 					SNOR_HWCAPS_PP_1_4_4);
2579 	} else if (spi->mode & SPI_RX_DUAL) {
2580 		hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2581 
2582 		if (spi->mode & SPI_TX_DUAL)
2583 			hwcaps.mask |= SNOR_HWCAPS_READ_1_2_2;
2584 	}
2585 
2586 	info = spi_nor_read_id(nor);
2587 	if (IS_ERR_OR_NULL(info))
2588 		return -ENOENT;
2589 	/* Parse the Serial Flash Discoverable Parameters table. */
2590 	ret = spi_nor_init_params(nor, info, &params);
2591 	if (ret)
2592 		return ret;
2593 
2594 	if (!mtd->name)
2595 		mtd->name = info->name;
2596 	mtd->priv = nor;
2597 	mtd->type = MTD_NORFLASH;
2598 	mtd->writesize = 1;
2599 	mtd->flags = MTD_CAP_NORFLASH;
2600 	mtd->size = params.size;
2601 	mtd->_erase = spi_nor_erase;
2602 	mtd->_read = spi_nor_read;
2603 
2604 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
2605 	/* NOR protection support for STmicro/Micron chips and similar */
2606 	if (JEDEC_MFR(info) == SNOR_MFR_ST ||
2607 	    JEDEC_MFR(info) == SNOR_MFR_MICRON ||
2608 	    JEDEC_MFR(info) == SNOR_MFR_SST ||
2609 			info->flags & SPI_NOR_HAS_LOCK) {
2610 		nor->flash_lock = stm_lock;
2611 		nor->flash_unlock = stm_unlock;
2612 		nor->flash_is_locked = stm_is_locked;
2613 	}
2614 #endif
2615 
2616 #ifdef CONFIG_SPI_FLASH_SST
2617 	/*
2618 	 * sst26 series block protection implementation differs from other
2619 	 * series.
2620 	 */
2621 	if (info->flags & SPI_NOR_HAS_SST26LOCK) {
2622 		nor->flash_lock = sst26_lock;
2623 		nor->flash_unlock = sst26_unlock;
2624 		nor->flash_is_locked = sst26_is_locked;
2625 	}
2626 
2627 	/* sst nor chips use AAI word program */
2628 	if (info->flags & SST_WRITE)
2629 		mtd->_write = sst_write;
2630 	else
2631 #endif
2632 		mtd->_write = spi_nor_write;
2633 
2634 	if (info->flags & USE_FSR)
2635 		nor->flags |= SNOR_F_USE_FSR;
2636 	if (info->flags & SPI_NOR_HAS_TB)
2637 		nor->flags |= SNOR_F_HAS_SR_TB;
2638 	if (info->flags & NO_CHIP_ERASE)
2639 		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
2640 	if (info->flags & USE_CLSR)
2641 		nor->flags |= SNOR_F_USE_CLSR;
2642 
2643 	if (info->flags & SPI_NOR_NO_ERASE)
2644 		mtd->flags |= MTD_NO_ERASE;
2645 
2646 	nor->page_size = params.page_size;
2647 	mtd->writebufsize = nor->page_size;
2648 
2649 	/* Some devices cannot do fast-read, no matter what DT tells us */
2650 	if ((info->flags & SPI_NOR_NO_FR) || (spi->mode & SPI_RX_SLOW))
2651 		params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2652 
2653 	/*
2654 	 * Configure the SPI memory:
2655 	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
2656 	 * - set the number of dummy cycles (mode cycles + wait states).
2657 	 * - set the SPI protocols for register and memory accesses.
2658 	 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
2659 	 */
2660 	ret = spi_nor_setup(nor, info, &params, &hwcaps);
2661 	if (ret)
2662 		return ret;
2663 
2664 	if (nor->addr_width) {
2665 		/* already configured from SFDP */
2666 	} else if (info->addr_width) {
2667 		nor->addr_width = info->addr_width;
2668 	} else if (mtd->size > SZ_16M) {
2669 #ifndef CONFIG_SPI_FLASH_BAR
2670 		/* enable 4-byte addressing if the device exceeds 16MiB */
2671 		nor->addr_width = 4;
2672 		if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
2673 		    info->flags & SPI_NOR_4B_OPCODES)
2674 			spi_nor_set_4byte_opcodes(nor, info);
2675 #else
2676 	/* Configure the BAR - discover bank cmds and read current bank */
2677 	nor->addr_width = 3;
2678 	ret = read_bar(nor, info);
2679 	if (ret < 0)
2680 		return ret;
2681 #endif
2682 	} else {
2683 		nor->addr_width = 3;
2684 	}
2685 
2686 	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
2687 		dev_dbg(dev, "address width is too large: %u\n",
2688 			nor->addr_width);
2689 		return -EINVAL;
2690 	}
2691 
2692 	/* Send all the required SPI flash commands to initialize device */
2693 	nor->info = info;
2694 	ret = spi_nor_init(nor);
2695 	if (ret)
2696 		return ret;
2697 
2698 	nor->name = mtd->name;
2699 	nor->size = mtd->size;
2700 	nor->erase_size = mtd->erasesize;
2701 	nor->sector_size = mtd->erasesize;
2702 
2703 #ifndef CONFIG_SPL_BUILD
2704 	printf("JEDEC id bytes: %02x, %02x, %02x\n", info->id[0], info->id[1], info->id[2]);
2705 	printf("SF: Detected %s with page size ", nor->name);
2706 	print_size(nor->page_size, ", erase size ");
2707 	print_size(nor->erase_size, ", total ");
2708 	print_size(nor->size, "");
2709 	puts("\n");
2710 #endif
2711 
2712 #if defined(CONFIG_SPI_FLASH_AUTO_MERGE)
2713 	nor->auto_merge_single_chip_size = nor->size;
2714 	nor->spi->auto_merge_cs_cur = 1;
2715 	if (IS_ERR(spi_nor_read_id(nor))) {
2716 		printf("spinor enable auto_merge, but only cs0 valid\n");
2717 		return 0;
2718 	}
2719 	ret = spi_nor_init(nor);
2720 	if (!ret) {
2721 		mtd->size = mtd->size * 2;
2722 		nor->size = nor->size * 2;
2723 		printf("spinor enable auto_merge\n");
2724 	}
2725 #endif
2726 
2727 	return 0;
2728 }
2729 
2730 /* U-Boot specific functions, need to extend MTD to support these */
2731 int spi_flash_cmd_get_sw_write_prot(struct spi_nor *nor)
2732 {
2733 	int sr = read_sr(nor);
2734 
2735 	if (sr < 0)
2736 		return sr;
2737 
2738 	return (sr >> 2) & 7;
2739 }
2740