xref: /rk3399_rockchip-uboot/drivers/mtd/spi/spi-nor-core.c (revision 01b8c4d110abb0dcbe36dc5b6b10d93b2b8e2667)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4  * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5  *
6  * Copyright (C) 2005, Intec Automation Inc.
7  * Copyright (C) 2014, Freescale Semiconductor, Inc.
8  *
9  * Synced from Linux v4.19
10  */
11 
12 #include <common.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/log2.h>
16 #include <linux/math64.h>
17 #include <linux/sizes.h>
18 
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/spi-nor.h>
21 #include <spi-mem.h>
22 #include <spi.h>
23 
24 #include "sf_internal.h"
25 
26 /* Define max times to check status register before we give up. */
27 
28 /*
29  * For everything but full-chip erase; probably could be much smaller, but kept
30  * around for safety for now
31  */
32 
33 #define HZ					CONFIG_SYS_HZ
34 
35 #define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)
36 
37 static int spi_nor_read_write_reg(struct spi_nor *nor, struct spi_mem_op
38 		*op, void *buf)
39 {
40 	if (op->data.dir == SPI_MEM_DATA_IN)
41 		op->data.buf.in = buf;
42 	else
43 		op->data.buf.out = buf;
44 	return spi_mem_exec_op(nor->spi, op);
45 }
46 
47 static int spi_nor_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len)
48 {
49 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(code, 1),
50 					  SPI_MEM_OP_NO_ADDR,
51 					  SPI_MEM_OP_NO_DUMMY,
52 					  SPI_MEM_OP_DATA_IN(len, NULL, 1));
53 	int ret;
54 
55 	ret = spi_nor_read_write_reg(nor, &op, val);
56 	if (ret < 0)
57 		dev_dbg(&flash->spimem->spi->dev, "error %d reading %x\n", ret,
58 			code);
59 
60 	return ret;
61 }
62 
63 static int spi_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
64 {
65 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 1),
66 					  SPI_MEM_OP_NO_ADDR,
67 					  SPI_MEM_OP_NO_DUMMY,
68 					  SPI_MEM_OP_DATA_OUT(len, NULL, 1));
69 
70 	return spi_nor_read_write_reg(nor, &op, buf);
71 }
72 
73 static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len,
74 				 u_char *buf)
75 {
76 	struct spi_mem_op op =
77 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
78 				   SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
79 				   SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
80 				   SPI_MEM_OP_DATA_IN(len, buf, 1));
81 	size_t remaining = len;
82 	int ret;
83 
84 	/* get transfer protocols. */
85 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
86 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
87 	op.dummy.buswidth = op.addr.buswidth;
88 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
89 
90 	/* convert the dummy cycles to the number of bytes */
91 	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
92 
93 	while (remaining) {
94 		op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX;
95 		ret = spi_mem_adjust_op_size(nor->spi, &op);
96 		if (ret)
97 			return ret;
98 
99 		ret = spi_mem_exec_op(nor->spi, &op);
100 		if (ret)
101 			return ret;
102 
103 		op.addr.val += op.data.nbytes;
104 		remaining -= op.data.nbytes;
105 		op.data.buf.in += op.data.nbytes;
106 	}
107 
108 	return len;
109 }
110 
111 static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
112 				  const u_char *buf)
113 {
114 	struct spi_mem_op op =
115 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
116 				   SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
117 				   SPI_MEM_OP_NO_DUMMY,
118 				   SPI_MEM_OP_DATA_OUT(len, buf, 1));
119 	int ret;
120 
121 	/* get transfer protocols. */
122 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
123 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
124 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
125 
126 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
127 		op.addr.nbytes = 0;
128 
129 	ret = spi_mem_adjust_op_size(nor->spi, &op);
130 	if (ret)
131 		return ret;
132 	op.data.nbytes = len < op.data.nbytes ? len : op.data.nbytes;
133 
134 	ret = spi_mem_exec_op(nor->spi, &op);
135 	if (ret)
136 		return ret;
137 
138 	return op.data.nbytes;
139 }
140 
141 /*
142  * Read the status register, returning its value in the location
143  * Return the status register value.
144  * Returns negative if error occurred.
145  */
146 static int read_sr(struct spi_nor *nor)
147 {
148 	int ret;
149 	u8 val;
150 
151 	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
152 	if (ret < 0) {
153 		pr_debug("error %d reading SR\n", (int)ret);
154 		return ret;
155 	}
156 
157 	return val;
158 }
159 
160 /*
161  * Read the flag status register, returning its value in the location
162  * Return the status register value.
163  * Returns negative if error occurred.
164  */
165 static int read_fsr(struct spi_nor *nor)
166 {
167 	int ret;
168 	u8 val;
169 
170 	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
171 	if (ret < 0) {
172 		pr_debug("error %d reading FSR\n", ret);
173 		return ret;
174 	}
175 
176 	return val;
177 }
178 
179 /*
180  * Read configuration register, returning its value in the
181  * location. Return the configuration register value.
182  * Returns negative if error occurred.
183  */
184 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
185 static int read_cr(struct spi_nor *nor)
186 {
187 	int ret;
188 	u8 val;
189 
190 	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
191 	if (ret < 0) {
192 		dev_dbg(nor->dev, "error %d reading CR\n", ret);
193 		return ret;
194 	}
195 
196 	return val;
197 }
198 #endif
199 
200 /*
201  * Write status register 1 byte
202  * Returns negative if error occurred.
203  */
204 static int write_sr(struct spi_nor *nor, u8 val)
205 {
206 	nor->cmd_buf[0] = val;
207 	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
208 }
209 
210 /*
211  * Set write enable latch with Write Enable command.
212  * Returns negative if error occurred.
213  */
214 static int write_enable(struct spi_nor *nor)
215 {
216 	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
217 }
218 
219 /*
220  * Send write disable instruction to the chip.
221  */
222 static int write_disable(struct spi_nor *nor)
223 {
224 	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
225 }
226 
227 static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
228 {
229 	return mtd->priv;
230 }
231 
232 #ifndef CONFIG_SPI_FLASH_BAR
233 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
234 {
235 	size_t i;
236 
237 	for (i = 0; i < size; i++)
238 		if (table[i][0] == opcode)
239 			return table[i][1];
240 
241 	/* No conversion found, keep input op code. */
242 	return opcode;
243 }
244 
245 static u8 spi_nor_convert_3to4_read(u8 opcode)
246 {
247 	static const u8 spi_nor_3to4_read[][2] = {
248 		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
249 		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
250 		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
251 		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
252 		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
253 		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
254 
255 		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
256 		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
257 		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
258 	};
259 
260 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
261 				      ARRAY_SIZE(spi_nor_3to4_read));
262 }
263 
264 static u8 spi_nor_convert_3to4_program(u8 opcode)
265 {
266 	static const u8 spi_nor_3to4_program[][2] = {
267 		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
268 		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
269 		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
270 	};
271 
272 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
273 				      ARRAY_SIZE(spi_nor_3to4_program));
274 }
275 
276 static u8 spi_nor_convert_3to4_erase(u8 opcode)
277 {
278 	static const u8 spi_nor_3to4_erase[][2] = {
279 		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
280 		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
281 		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
282 	};
283 
284 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
285 				      ARRAY_SIZE(spi_nor_3to4_erase));
286 }
287 
288 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
289 				      const struct flash_info *info)
290 {
291 	/* Do some manufacturer fixups first */
292 	switch (JEDEC_MFR(info)) {
293 	case SNOR_MFR_SPANSION:
294 		/* No small sector erase for 4-byte command set */
295 		nor->erase_opcode = SPINOR_OP_SE;
296 		nor->mtd.erasesize = info->sector_size;
297 		break;
298 
299 	default:
300 		break;
301 	}
302 
303 	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
304 	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
305 	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
306 }
307 #endif /* !CONFIG_SPI_FLASH_BAR */
308 
309 /* Enable/disable 4-byte addressing mode. */
310 static int set_4byte(struct spi_nor *nor, const struct flash_info *info,
311 		     int enable)
312 {
313 	int status;
314 	bool need_wren = false;
315 	u8 cmd;
316 
317 	switch (JEDEC_MFR(info)) {
318 	case SNOR_MFR_ST:
319 	case SNOR_MFR_MICRON:
320 		/* Some Micron need WREN command; all will accept it */
321 		need_wren = true;
322 	case SNOR_MFR_MACRONIX:
323 	case SNOR_MFR_WINBOND:
324 		if (need_wren)
325 			write_enable(nor);
326 
327 		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
328 		status = nor->write_reg(nor, cmd, NULL, 0);
329 		if (need_wren)
330 			write_disable(nor);
331 
332 		if (!status && !enable &&
333 		    JEDEC_MFR(info) == SNOR_MFR_WINBOND) {
334 			/*
335 			 * On Winbond W25Q256FV, leaving 4byte mode causes
336 			 * the Extended Address Register to be set to 1, so all
337 			 * 3-byte-address reads come from the second 16M.
338 			 * We must clear the register to enable normal behavior.
339 			 */
340 			write_enable(nor);
341 			nor->cmd_buf[0] = 0;
342 			nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1);
343 			write_disable(nor);
344 		}
345 
346 		return status;
347 	default:
348 		/* Spansion style */
349 		nor->cmd_buf[0] = enable << 7;
350 		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
351 	}
352 }
353 
354 static int spi_nor_sr_ready(struct spi_nor *nor)
355 {
356 	int sr = read_sr(nor);
357 
358 	if (sr < 0)
359 		return sr;
360 
361 	if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
362 		if (sr & SR_E_ERR)
363 			dev_dbg(nor->dev, "Erase Error occurred\n");
364 		else
365 			dev_dbg(nor->dev, "Programming Error occurred\n");
366 
367 		nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
368 		return -EIO;
369 	}
370 
371 	return !(sr & SR_WIP);
372 }
373 
374 static int spi_nor_fsr_ready(struct spi_nor *nor)
375 {
376 	int fsr = read_fsr(nor);
377 
378 	if (fsr < 0)
379 		return fsr;
380 
381 	if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
382 		if (fsr & FSR_E_ERR)
383 			dev_dbg(nor->dev, "Erase operation failed.\n");
384 		else
385 			dev_dbg(nor->dev, "Program operation failed.\n");
386 
387 		if (fsr & FSR_PT_ERR)
388 			dev_dbg(nor->dev,
389 				"Attempted to modify a protected sector.\n");
390 
391 		nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
392 		return -EIO;
393 	}
394 
395 	return fsr & FSR_READY;
396 }
397 
398 static int spi_nor_ready(struct spi_nor *nor)
399 {
400 	int sr, fsr;
401 
402 	sr = spi_nor_sr_ready(nor);
403 	if (sr < 0)
404 		return sr;
405 	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
406 	if (fsr < 0)
407 		return fsr;
408 	return sr && fsr;
409 }
410 
411 /*
412  * Service routine to read status register until ready, or timeout occurs.
413  * Returns non-zero if error.
414  */
415 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
416 						unsigned long timeout)
417 {
418 	unsigned long timebase;
419 	int ret;
420 
421 	timebase = get_timer(0);
422 
423 	while (get_timer(timebase) < timeout) {
424 		ret = spi_nor_ready(nor);
425 		if (ret < 0)
426 			return ret;
427 		if (ret)
428 			return 0;
429 	}
430 
431 	dev_err(nor->dev, "flash operation timed out\n");
432 
433 	return -ETIMEDOUT;
434 }
435 
436 static int spi_nor_wait_till_ready(struct spi_nor *nor)
437 {
438 	return spi_nor_wait_till_ready_with_timeout(nor,
439 						    DEFAULT_READY_WAIT_JIFFIES);
440 }
441 
442 #ifdef CONFIG_SPI_FLASH_BAR
443 /*
444  * This "clean_bar" is necessary in a situation when one was accessing
445  * spi flash memory > 16 MiB by using Bank Address Register's BA24 bit.
446  *
447  * After it the BA24 bit shall be cleared to allow access to correct
448  * memory region after SW reset (by calling "reset" command).
449  *
450  * Otherwise, the BA24 bit may be left set and then after reset, the
451  * ROM would read/write/erase SPL from 16 MiB * bank_sel address.
452  */
453 static int clean_bar(struct spi_nor *nor)
454 {
455 	u8 cmd, bank_sel = 0;
456 
457 	if (nor->bank_curr == 0)
458 		return 0;
459 	cmd = nor->bank_write_cmd;
460 	nor->bank_curr = 0;
461 	write_enable(nor);
462 
463 	return nor->write_reg(nor, cmd, &bank_sel, 1);
464 }
465 
466 static int write_bar(struct spi_nor *nor, u32 offset)
467 {
468 	u8 cmd, bank_sel;
469 	int ret;
470 
471 	bank_sel = offset / SZ_16M;
472 	if (bank_sel == nor->bank_curr)
473 		goto bar_end;
474 
475 	cmd = nor->bank_write_cmd;
476 	write_enable(nor);
477 	ret = nor->write_reg(nor, cmd, &bank_sel, 1);
478 	if (ret < 0) {
479 		debug("SF: fail to write bank register\n");
480 		return ret;
481 	}
482 
483 bar_end:
484 	nor->bank_curr = bank_sel;
485 	return nor->bank_curr;
486 }
487 
488 static int read_bar(struct spi_nor *nor, const struct flash_info *info)
489 {
490 	u8 curr_bank = 0;
491 	int ret;
492 
493 	switch (JEDEC_MFR(info)) {
494 	case SNOR_MFR_SPANSION:
495 		nor->bank_read_cmd = SPINOR_OP_BRRD;
496 		nor->bank_write_cmd = SPINOR_OP_BRWR;
497 		break;
498 	default:
499 		nor->bank_read_cmd = SPINOR_OP_RDEAR;
500 		nor->bank_write_cmd = SPINOR_OP_WREAR;
501 	}
502 
503 	ret = nor->read_reg(nor, nor->bank_read_cmd,
504 				    &curr_bank, 1);
505 	if (ret) {
506 		debug("SF: fail to read bank addr register\n");
507 		return ret;
508 	}
509 	nor->bank_curr = curr_bank;
510 
511 	return 0;
512 }
513 #endif
514 
515 /*
516  * Initiate the erasure of a single sector
517  */
518 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
519 {
520 	struct spi_mem_op op =
521 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
522 			   SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
523 			   SPI_MEM_OP_NO_DUMMY,
524 			   SPI_MEM_OP_NO_DATA);
525 
526 	if (nor->erase)
527 		return nor->erase(nor, addr);
528 
529 	/*
530 	 * Default implementation, if driver doesn't have a specialized HW
531 	 * control
532 	 */
533 	return spi_mem_exec_op(nor->spi, &op);
534 }
535 
536 /*
537  * Erase an address range on the nor chip.  The address range may extend
538  * one or more erase sectors.  Return an error is there is a problem erasing.
539  */
540 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
541 {
542 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
543 	u32 addr, len, rem;
544 	int ret;
545 
546 	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
547 		(long long)instr->len);
548 
549 	div_u64_rem(instr->len, mtd->erasesize, &rem);
550 	if (rem)
551 		return -EINVAL;
552 
553 	addr = instr->addr;
554 	len = instr->len;
555 
556 	while (len) {
557 #ifdef CONFIG_SPI_FLASH_BAR
558 		ret = write_bar(nor, addr);
559 		if (ret < 0)
560 			return ret;
561 #endif
562 		write_enable(nor);
563 
564 		ret = spi_nor_erase_sector(nor, addr);
565 		if (ret)
566 			goto erase_err;
567 
568 		addr += mtd->erasesize;
569 		len -= mtd->erasesize;
570 
571 		ret = spi_nor_wait_till_ready(nor);
572 		if (ret)
573 			goto erase_err;
574 	}
575 
576 erase_err:
577 #ifdef CONFIG_SPI_FLASH_BAR
578 	ret = clean_bar(nor);
579 #endif
580 	write_disable(nor);
581 
582 	return ret;
583 }
584 
585 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
586 /* Write status register and ensure bits in mask match written values */
587 static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
588 {
589 	int ret;
590 
591 	write_enable(nor);
592 	ret = write_sr(nor, status_new);
593 	if (ret)
594 		return ret;
595 
596 	ret = spi_nor_wait_till_ready(nor);
597 	if (ret)
598 		return ret;
599 
600 	ret = read_sr(nor);
601 	if (ret < 0)
602 		return ret;
603 
604 	return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
605 }
606 
607 static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
608 				 uint64_t *len)
609 {
610 	struct mtd_info *mtd = &nor->mtd;
611 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
612 	int shift = ffs(mask) - 1;
613 	int pow;
614 
615 	if (!(sr & mask)) {
616 		/* No protection */
617 		*ofs = 0;
618 		*len = 0;
619 	} else {
620 		pow = ((sr & mask) ^ mask) >> shift;
621 		*len = mtd->size >> pow;
622 		if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
623 			*ofs = 0;
624 		else
625 			*ofs = mtd->size - *len;
626 	}
627 }
628 
629 /*
630  * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
631  * @locked is false); 0 otherwise
632  */
633 static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, u64 len,
634 				    u8 sr, bool locked)
635 {
636 	loff_t lock_offs;
637 	uint64_t lock_len;
638 
639 	if (!len)
640 		return 1;
641 
642 	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
643 
644 	if (locked)
645 		/* Requested range is a sub-range of locked range */
646 		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
647 	else
648 		/* Requested range does not overlap with locked range */
649 		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
650 }
651 
652 static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
653 			    u8 sr)
654 {
655 	return stm_check_lock_status_sr(nor, ofs, len, sr, true);
656 }
657 
658 static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
659 			      u8 sr)
660 {
661 	return stm_check_lock_status_sr(nor, ofs, len, sr, false);
662 }
663 
664 /*
665  * Lock a region of the flash. Compatible with ST Micro and similar flash.
666  * Supports the block protection bits BP{0,1,2} in the status register
667  * (SR). Does not support these features found in newer SR bitfields:
668  *   - SEC: sector/block protect - only handle SEC=0 (block protect)
669  *   - CMP: complement protect - only support CMP=0 (range is not complemented)
670  *
671  * Support for the following is provided conditionally for some flash:
672  *   - TB: top/bottom protect
673  *
674  * Sample table portion for 8MB flash (Winbond w25q64fw):
675  *
676  *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
677  *  --------------------------------------------------------------------------
678  *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
679  *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
680  *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
681  *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
682  *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
683  *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
684  *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
685  *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
686  *  ------|-------|-------|-------|-------|---------------|-------------------
687  *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
688  *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
689  *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
690  *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
691  *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
692  *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
693  *
694  * Returns negative on errors, 0 on success.
695  */
696 static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
697 {
698 	struct mtd_info *mtd = &nor->mtd;
699 	int status_old, status_new;
700 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
701 	u8 shift = ffs(mask) - 1, pow, val;
702 	loff_t lock_len;
703 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
704 	bool use_top;
705 
706 	status_old = read_sr(nor);
707 	if (status_old < 0)
708 		return status_old;
709 
710 	/* If nothing in our range is unlocked, we don't need to do anything */
711 	if (stm_is_locked_sr(nor, ofs, len, status_old))
712 		return 0;
713 
714 	/* If anything below us is unlocked, we can't use 'bottom' protection */
715 	if (!stm_is_locked_sr(nor, 0, ofs, status_old))
716 		can_be_bottom = false;
717 
718 	/* If anything above us is unlocked, we can't use 'top' protection */
719 	if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
720 			      status_old))
721 		can_be_top = false;
722 
723 	if (!can_be_bottom && !can_be_top)
724 		return -EINVAL;
725 
726 	/* Prefer top, if both are valid */
727 	use_top = can_be_top;
728 
729 	/* lock_len: length of region that should end up locked */
730 	if (use_top)
731 		lock_len = mtd->size - ofs;
732 	else
733 		lock_len = ofs + len;
734 
735 	/*
736 	 * Need smallest pow such that:
737 	 *
738 	 *   1 / (2^pow) <= (len / size)
739 	 *
740 	 * so (assuming power-of-2 size) we do:
741 	 *
742 	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
743 	 */
744 	pow = ilog2(mtd->size) - ilog2(lock_len);
745 	val = mask - (pow << shift);
746 	if (val & ~mask)
747 		return -EINVAL;
748 	/* Don't "lock" with no region! */
749 	if (!(val & mask))
750 		return -EINVAL;
751 
752 	status_new = (status_old & ~mask & ~SR_TB) | val;
753 
754 	/* Disallow further writes if WP pin is asserted */
755 	status_new |= SR_SRWD;
756 
757 	if (!use_top)
758 		status_new |= SR_TB;
759 
760 	/* Don't bother if they're the same */
761 	if (status_new == status_old)
762 		return 0;
763 
764 	/* Only modify protection if it will not unlock other areas */
765 	if ((status_new & mask) < (status_old & mask))
766 		return -EINVAL;
767 
768 	return write_sr_and_check(nor, status_new, mask);
769 }
770 
771 /*
772  * Unlock a region of the flash. See stm_lock() for more info
773  *
774  * Returns negative on errors, 0 on success.
775  */
776 static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
777 {
778 	struct mtd_info *mtd = &nor->mtd;
779 	int status_old, status_new;
780 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
781 	u8 shift = ffs(mask) - 1, pow, val;
782 	loff_t lock_len;
783 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
784 	bool use_top;
785 
786 	status_old = read_sr(nor);
787 	if (status_old < 0)
788 		return status_old;
789 
790 	/* If nothing in our range is locked, we don't need to do anything */
791 	if (stm_is_unlocked_sr(nor, ofs, len, status_old))
792 		return 0;
793 
794 	/* If anything below us is locked, we can't use 'top' protection */
795 	if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
796 		can_be_top = false;
797 
798 	/* If anything above us is locked, we can't use 'bottom' protection */
799 	if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
800 				status_old))
801 		can_be_bottom = false;
802 
803 	if (!can_be_bottom && !can_be_top)
804 		return -EINVAL;
805 
806 	/* Prefer top, if both are valid */
807 	use_top = can_be_top;
808 
809 	/* lock_len: length of region that should remain locked */
810 	if (use_top)
811 		lock_len = mtd->size - (ofs + len);
812 	else
813 		lock_len = ofs;
814 
815 	/*
816 	 * Need largest pow such that:
817 	 *
818 	 *   1 / (2^pow) >= (len / size)
819 	 *
820 	 * so (assuming power-of-2 size) we do:
821 	 *
822 	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
823 	 */
824 	pow = ilog2(mtd->size) - order_base_2(lock_len);
825 	if (lock_len == 0) {
826 		val = 0; /* fully unlocked */
827 	} else {
828 		val = mask - (pow << shift);
829 		/* Some power-of-two sizes are not supported */
830 		if (val & ~mask)
831 			return -EINVAL;
832 	}
833 
834 	status_new = (status_old & ~mask & ~SR_TB) | val;
835 
836 	/* Don't protect status register if we're fully unlocked */
837 	if (lock_len == 0)
838 		status_new &= ~SR_SRWD;
839 
840 	if (!use_top)
841 		status_new |= SR_TB;
842 
843 	/* Don't bother if they're the same */
844 	if (status_new == status_old)
845 		return 0;
846 
847 	/* Only modify protection if it will not lock other areas */
848 	if ((status_new & mask) > (status_old & mask))
849 		return -EINVAL;
850 
851 	return write_sr_and_check(nor, status_new, mask);
852 }
853 
854 /*
855  * Check if a region of the flash is (completely) locked. See stm_lock() for
856  * more info.
857  *
858  * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
859  * negative on errors.
860  */
861 static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
862 {
863 	int status;
864 
865 	status = read_sr(nor);
866 	if (status < 0)
867 		return status;
868 
869 	return stm_is_locked_sr(nor, ofs, len, status);
870 }
871 #endif /* CONFIG_SPI_FLASH_STMICRO */
872 
873 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
874 {
875 	int			tmp;
876 	u8			id[SPI_NOR_MAX_ID_LEN];
877 	const struct flash_info	*info;
878 
879 	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
880 	if (tmp < 0) {
881 		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
882 		return ERR_PTR(tmp);
883 	}
884 
885 	info = spi_nor_ids;
886 	for (; info->name; info++) {
887 		if (info->id_len) {
888 			if (!memcmp(info->id, id, info->id_len))
889 				return info;
890 		}
891 	}
892 
893 	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
894 		id[0], id[1], id[2]);
895 	return ERR_PTR(-ENODEV);
896 }
897 
898 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
899 			size_t *retlen, u_char *buf)
900 {
901 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
902 	int ret;
903 
904 	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
905 
906 	while (len) {
907 		loff_t addr = from;
908 		size_t read_len = len;
909 
910 #ifdef CONFIG_SPI_FLASH_BAR
911 		u32 remain_len;
912 
913 		ret = write_bar(nor, addr);
914 		if (ret < 0)
915 			return log_ret(ret);
916 		remain_len = (SZ_16M * (nor->bank_curr + 1)) - addr;
917 
918 		if (len < remain_len)
919 			read_len = len;
920 		else
921 			read_len = remain_len;
922 #endif
923 
924 		ret = nor->read(nor, addr, read_len, buf);
925 		if (ret == 0) {
926 			/* We shouldn't see 0-length reads */
927 			ret = -EIO;
928 			goto read_err;
929 		}
930 		if (ret < 0)
931 			goto read_err;
932 
933 		*retlen += ret;
934 		buf += ret;
935 		from += ret;
936 		len -= ret;
937 	}
938 	ret = 0;
939 
940 read_err:
941 #ifdef CONFIG_SPI_FLASH_BAR
942 	ret = clean_bar(nor);
943 #endif
944 	return ret;
945 }
946 
947 #ifdef CONFIG_SPI_FLASH_SST
948 static int sst_write_byteprogram(struct spi_nor *nor, loff_t to, size_t len,
949 				 size_t *retlen, const u_char *buf)
950 {
951 	size_t actual;
952 	int ret = 0;
953 
954 	for (actual = 0; actual < len; actual++) {
955 		nor->program_opcode = SPINOR_OP_BP;
956 
957 		write_enable(nor);
958 		/* write one byte. */
959 		ret = nor->write(nor, to, 1, buf + actual);
960 		if (ret < 0)
961 			goto sst_write_err;
962 		ret = spi_nor_wait_till_ready(nor);
963 		if (ret)
964 			goto sst_write_err;
965 		to++;
966 	}
967 
968 sst_write_err:
969 	write_disable(nor);
970 	return ret;
971 }
972 
973 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
974 		     size_t *retlen, const u_char *buf)
975 {
976 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
977 	struct spi_slave *spi = nor->spi;
978 	size_t actual;
979 	int ret;
980 
981 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
982 	if (spi->mode & SPI_TX_BYTE)
983 		return sst_write_byteprogram(nor, to, len, retlen, buf);
984 
985 	write_enable(nor);
986 
987 	nor->sst_write_second = false;
988 
989 	actual = to % 2;
990 	/* Start write from odd address. */
991 	if (actual) {
992 		nor->program_opcode = SPINOR_OP_BP;
993 
994 		/* write one byte. */
995 		ret = nor->write(nor, to, 1, buf);
996 		if (ret < 0)
997 			goto sst_write_err;
998 		ret = spi_nor_wait_till_ready(nor);
999 		if (ret)
1000 			goto sst_write_err;
1001 	}
1002 	to += actual;
1003 
1004 	/* Write out most of the data here. */
1005 	for (; actual < len - 1; actual += 2) {
1006 		nor->program_opcode = SPINOR_OP_AAI_WP;
1007 
1008 		/* write two bytes. */
1009 		ret = nor->write(nor, to, 2, buf + actual);
1010 		if (ret < 0)
1011 			goto sst_write_err;
1012 		ret = spi_nor_wait_till_ready(nor);
1013 		if (ret)
1014 			goto sst_write_err;
1015 		to += 2;
1016 		nor->sst_write_second = true;
1017 	}
1018 	nor->sst_write_second = false;
1019 
1020 	write_disable(nor);
1021 	ret = spi_nor_wait_till_ready(nor);
1022 	if (ret)
1023 		goto sst_write_err;
1024 
1025 	/* Write out trailing byte if it exists. */
1026 	if (actual != len) {
1027 		write_enable(nor);
1028 
1029 		nor->program_opcode = SPINOR_OP_BP;
1030 		ret = nor->write(nor, to, 1, buf + actual);
1031 		if (ret < 0)
1032 			goto sst_write_err;
1033 		ret = spi_nor_wait_till_ready(nor);
1034 		if (ret)
1035 			goto sst_write_err;
1036 		write_disable(nor);
1037 		actual += 1;
1038 	}
1039 sst_write_err:
1040 	*retlen += actual;
1041 	return ret;
1042 }
1043 #endif
1044 /*
1045  * Write an address range to the nor chip.  Data must be written in
1046  * FLASH_PAGESIZE chunks.  The address range may be any size provided
1047  * it is within the physical boundaries.
1048  */
1049 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
1050 	size_t *retlen, const u_char *buf)
1051 {
1052 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1053 	size_t page_offset, page_remain, i;
1054 	ssize_t ret;
1055 
1056 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1057 
1058 	for (i = 0; i < len; ) {
1059 		ssize_t written;
1060 		loff_t addr = to + i;
1061 
1062 		/*
1063 		 * If page_size is a power of two, the offset can be quickly
1064 		 * calculated with an AND operation. On the other cases we
1065 		 * need to do a modulus operation (more expensive).
1066 		 * Power of two numbers have only one bit set and we can use
1067 		 * the instruction hweight32 to detect if we need to do a
1068 		 * modulus (do_div()) or not.
1069 		 */
1070 		if (hweight32(nor->page_size) == 1) {
1071 			page_offset = addr & (nor->page_size - 1);
1072 		} else {
1073 			u64 aux = addr;
1074 
1075 			page_offset = do_div(aux, nor->page_size);
1076 		}
1077 		/* the size of data remaining on the first page */
1078 		page_remain = min_t(size_t,
1079 				    nor->page_size - page_offset, len - i);
1080 
1081 #ifdef CONFIG_SPI_FLASH_BAR
1082 		ret = write_bar(nor, addr);
1083 		if (ret < 0)
1084 			return ret;
1085 #endif
1086 		write_enable(nor);
1087 		ret = nor->write(nor, addr, page_remain, buf + i);
1088 		if (ret < 0)
1089 			goto write_err;
1090 		written = ret;
1091 
1092 		ret = spi_nor_wait_till_ready(nor);
1093 		if (ret)
1094 			goto write_err;
1095 		*retlen += written;
1096 		i += written;
1097 	}
1098 
1099 write_err:
1100 #ifdef CONFIG_SPI_FLASH_BAR
1101 	ret = clean_bar(nor);
1102 #endif
1103 	return ret;
1104 }
1105 
1106 #ifdef CONFIG_SPI_FLASH_MACRONIX
1107 /**
1108  * macronix_quad_enable() - set QE bit in Status Register.
1109  * @nor:	pointer to a 'struct spi_nor'
1110  *
1111  * Set the Quad Enable (QE) bit in the Status Register.
1112  *
1113  * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
1114  *
1115  * Return: 0 on success, -errno otherwise.
1116  */
1117 static int macronix_quad_enable(struct spi_nor *nor)
1118 {
1119 	int ret, val;
1120 
1121 	val = read_sr(nor);
1122 	if (val < 0)
1123 		return val;
1124 	if (val & SR_QUAD_EN_MX)
1125 		return 0;
1126 
1127 	write_enable(nor);
1128 
1129 	write_sr(nor, val | SR_QUAD_EN_MX);
1130 
1131 	ret = spi_nor_wait_till_ready(nor);
1132 	if (ret)
1133 		return ret;
1134 
1135 	ret = read_sr(nor);
1136 	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
1137 		dev_err(nor->dev, "Macronix Quad bit not set\n");
1138 		return -EINVAL;
1139 	}
1140 
1141 	return 0;
1142 }
1143 #endif
1144 
1145 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1146 /*
1147  * Write status Register and configuration register with 2 bytes
1148  * The first byte will be written to the status register, while the
1149  * second byte will be written to the configuration register.
1150  * Return negative if error occurred.
1151  */
1152 static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
1153 {
1154 	int ret;
1155 
1156 	write_enable(nor);
1157 
1158 	ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
1159 	if (ret < 0) {
1160 		dev_dbg(nor->dev,
1161 			"error while writing configuration register\n");
1162 		return -EINVAL;
1163 	}
1164 
1165 	ret = spi_nor_wait_till_ready(nor);
1166 	if (ret) {
1167 		dev_dbg(nor->dev,
1168 			"timeout while writing configuration register\n");
1169 		return ret;
1170 	}
1171 
1172 	return 0;
1173 }
1174 
1175 /**
1176  * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
1177  * @nor:	pointer to a 'struct spi_nor'
1178  *
1179  * Set the Quad Enable (QE) bit in the Configuration Register.
1180  * This function should be used with QSPI memories supporting the Read
1181  * Configuration Register (35h) instruction.
1182  *
1183  * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1184  * memories.
1185  *
1186  * Return: 0 on success, -errno otherwise.
1187  */
1188 static int spansion_read_cr_quad_enable(struct spi_nor *nor)
1189 {
1190 	u8 sr_cr[2];
1191 	int ret;
1192 
1193 	/* Check current Quad Enable bit value. */
1194 	ret = read_cr(nor);
1195 	if (ret < 0) {
1196 		dev_dbg(dev, "error while reading configuration register\n");
1197 		return -EINVAL;
1198 	}
1199 
1200 	if (ret & CR_QUAD_EN_SPAN)
1201 		return 0;
1202 
1203 	sr_cr[1] = ret | CR_QUAD_EN_SPAN;
1204 
1205 	/* Keep the current value of the Status Register. */
1206 	ret = read_sr(nor);
1207 	if (ret < 0) {
1208 		dev_dbg(dev, "error while reading status register\n");
1209 		return -EINVAL;
1210 	}
1211 	sr_cr[0] = ret;
1212 
1213 	ret = write_sr_cr(nor, sr_cr);
1214 	if (ret)
1215 		return ret;
1216 
1217 	/* Read back and check it. */
1218 	ret = read_cr(nor);
1219 	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1220 		dev_dbg(nor->dev, "Spansion Quad bit not set\n");
1221 		return -EINVAL;
1222 	}
1223 
1224 	return 0;
1225 }
1226 
1227 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
1228 /**
1229  * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
1230  * @nor:	pointer to a 'struct spi_nor'
1231  *
1232  * Set the Quad Enable (QE) bit in the Configuration Register.
1233  * This function should be used with QSPI memories not supporting the Read
1234  * Configuration Register (35h) instruction.
1235  *
1236  * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1237  * memories.
1238  *
1239  * Return: 0 on success, -errno otherwise.
1240  */
1241 static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
1242 {
1243 	u8 sr_cr[2];
1244 	int ret;
1245 
1246 	/* Keep the current value of the Status Register. */
1247 	ret = read_sr(nor);
1248 	if (ret < 0) {
1249 		dev_dbg(nor->dev, "error while reading status register\n");
1250 		return -EINVAL;
1251 	}
1252 	sr_cr[0] = ret;
1253 	sr_cr[1] = CR_QUAD_EN_SPAN;
1254 
1255 	return write_sr_cr(nor, sr_cr);
1256 }
1257 
1258 #endif /* CONFIG_SPI_FLASH_SFDP_SUPPORT */
1259 #endif /* CONFIG_SPI_FLASH_SPANSION */
1260 
1261 struct spi_nor_read_command {
1262 	u8			num_mode_clocks;
1263 	u8			num_wait_states;
1264 	u8			opcode;
1265 	enum spi_nor_protocol	proto;
1266 };
1267 
1268 struct spi_nor_pp_command {
1269 	u8			opcode;
1270 	enum spi_nor_protocol	proto;
1271 };
1272 
1273 enum spi_nor_read_command_index {
1274 	SNOR_CMD_READ,
1275 	SNOR_CMD_READ_FAST,
1276 	SNOR_CMD_READ_1_1_1_DTR,
1277 
1278 	/* Dual SPI */
1279 	SNOR_CMD_READ_1_1_2,
1280 	SNOR_CMD_READ_1_2_2,
1281 	SNOR_CMD_READ_2_2_2,
1282 	SNOR_CMD_READ_1_2_2_DTR,
1283 
1284 	/* Quad SPI */
1285 	SNOR_CMD_READ_1_1_4,
1286 	SNOR_CMD_READ_1_4_4,
1287 	SNOR_CMD_READ_4_4_4,
1288 	SNOR_CMD_READ_1_4_4_DTR,
1289 
1290 	/* Octo SPI */
1291 	SNOR_CMD_READ_1_1_8,
1292 	SNOR_CMD_READ_1_8_8,
1293 	SNOR_CMD_READ_8_8_8,
1294 	SNOR_CMD_READ_1_8_8_DTR,
1295 
1296 	SNOR_CMD_READ_MAX
1297 };
1298 
1299 enum spi_nor_pp_command_index {
1300 	SNOR_CMD_PP,
1301 
1302 	/* Quad SPI */
1303 	SNOR_CMD_PP_1_1_4,
1304 	SNOR_CMD_PP_1_4_4,
1305 	SNOR_CMD_PP_4_4_4,
1306 
1307 	/* Octo SPI */
1308 	SNOR_CMD_PP_1_1_8,
1309 	SNOR_CMD_PP_1_8_8,
1310 	SNOR_CMD_PP_8_8_8,
1311 
1312 	SNOR_CMD_PP_MAX
1313 };
1314 
1315 struct spi_nor_flash_parameter {
1316 	u64				size;
1317 	u32				page_size;
1318 
1319 	struct spi_nor_hwcaps		hwcaps;
1320 	struct spi_nor_read_command	reads[SNOR_CMD_READ_MAX];
1321 	struct spi_nor_pp_command	page_programs[SNOR_CMD_PP_MAX];
1322 
1323 	int (*quad_enable)(struct spi_nor *nor);
1324 };
1325 
1326 static void
1327 spi_nor_set_read_settings(struct spi_nor_read_command *read,
1328 			  u8 num_mode_clocks,
1329 			  u8 num_wait_states,
1330 			  u8 opcode,
1331 			  enum spi_nor_protocol proto)
1332 {
1333 	read->num_mode_clocks = num_mode_clocks;
1334 	read->num_wait_states = num_wait_states;
1335 	read->opcode = opcode;
1336 	read->proto = proto;
1337 }
1338 
1339 static void
1340 spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
1341 			u8 opcode,
1342 			enum spi_nor_protocol proto)
1343 {
1344 	pp->opcode = opcode;
1345 	pp->proto = proto;
1346 }
1347 
1348 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
1349 /*
1350  * Serial Flash Discoverable Parameters (SFDP) parsing.
1351  */
1352 
1353 /**
1354  * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
1355  * @nor:	pointer to a 'struct spi_nor'
1356  * @addr:	offset in the SFDP area to start reading data from
1357  * @len:	number of bytes to read
1358  * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
1359  *
1360  * Whatever the actual numbers of bytes for address and dummy cycles are
1361  * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
1362  * followed by a 3-byte address and 8 dummy clock cycles.
1363  *
1364  * Return: 0 on success, -errno otherwise.
1365  */
1366 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
1367 			     size_t len, void *buf)
1368 {
1369 	u8 addr_width, read_opcode, read_dummy;
1370 	int ret;
1371 
1372 	read_opcode = nor->read_opcode;
1373 	addr_width = nor->addr_width;
1374 	read_dummy = nor->read_dummy;
1375 
1376 	nor->read_opcode = SPINOR_OP_RDSFDP;
1377 	nor->addr_width = 3;
1378 	nor->read_dummy = 8;
1379 
1380 	while (len) {
1381 		ret = nor->read(nor, addr, len, (u8 *)buf);
1382 		if (!ret || ret > len) {
1383 			ret = -EIO;
1384 			goto read_err;
1385 		}
1386 		if (ret < 0)
1387 			goto read_err;
1388 
1389 		buf += ret;
1390 		addr += ret;
1391 		len -= ret;
1392 	}
1393 	ret = 0;
1394 
1395 read_err:
1396 	nor->read_opcode = read_opcode;
1397 	nor->addr_width = addr_width;
1398 	nor->read_dummy = read_dummy;
1399 
1400 	return ret;
1401 }
1402 
1403 struct sfdp_parameter_header {
1404 	u8		id_lsb;
1405 	u8		minor;
1406 	u8		major;
1407 	u8		length; /* in double words */
1408 	u8		parameter_table_pointer[3]; /* byte address */
1409 	u8		id_msb;
1410 };
1411 
1412 #define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
1413 #define SFDP_PARAM_HEADER_PTP(p) \
1414 	(((p)->parameter_table_pointer[2] << 16) | \
1415 	 ((p)->parameter_table_pointer[1] <<  8) | \
1416 	 ((p)->parameter_table_pointer[0] <<  0))
1417 
1418 #define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
1419 #define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
1420 
1421 #define SFDP_SIGNATURE		0x50444653U
1422 #define SFDP_JESD216_MAJOR	1
1423 #define SFDP_JESD216_MINOR	0
1424 #define SFDP_JESD216A_MINOR	5
1425 #define SFDP_JESD216B_MINOR	6
1426 
1427 struct sfdp_header {
1428 	u32		signature; /* Ox50444653U <=> "SFDP" */
1429 	u8		minor;
1430 	u8		major;
1431 	u8		nph; /* 0-base number of parameter headers */
1432 	u8		unused;
1433 
1434 	/* Basic Flash Parameter Table. */
1435 	struct sfdp_parameter_header	bfpt_header;
1436 };
1437 
1438 /* Basic Flash Parameter Table */
1439 
1440 /*
1441  * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
1442  * They are indexed from 1 but C arrays are indexed from 0.
1443  */
1444 #define BFPT_DWORD(i)		((i) - 1)
1445 #define BFPT_DWORD_MAX		16
1446 
1447 /* The first version of JESB216 defined only 9 DWORDs. */
1448 #define BFPT_DWORD_MAX_JESD216			9
1449 
1450 /* 1st DWORD. */
1451 #define BFPT_DWORD1_FAST_READ_1_1_2		BIT(16)
1452 #define BFPT_DWORD1_ADDRESS_BYTES_MASK		GENMASK(18, 17)
1453 #define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY	(0x0UL << 17)
1454 #define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4	(0x1UL << 17)
1455 #define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY	(0x2UL << 17)
1456 #define BFPT_DWORD1_DTR				BIT(19)
1457 #define BFPT_DWORD1_FAST_READ_1_2_2		BIT(20)
1458 #define BFPT_DWORD1_FAST_READ_1_4_4		BIT(21)
1459 #define BFPT_DWORD1_FAST_READ_1_1_4		BIT(22)
1460 
1461 /* 5th DWORD. */
1462 #define BFPT_DWORD5_FAST_READ_2_2_2		BIT(0)
1463 #define BFPT_DWORD5_FAST_READ_4_4_4		BIT(4)
1464 
1465 /* 11th DWORD. */
1466 #define BFPT_DWORD11_PAGE_SIZE_SHIFT		4
1467 #define BFPT_DWORD11_PAGE_SIZE_MASK		GENMASK(7, 4)
1468 
1469 /* 15th DWORD. */
1470 
1471 /*
1472  * (from JESD216 rev B)
1473  * Quad Enable Requirements (QER):
1474  * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
1475  *         reads based on instruction. DQ3/HOLD# functions are hold during
1476  *         instruction phase.
1477  * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
1478  *         two data bytes where bit 1 of the second byte is one.
1479  *         [...]
1480  *         Writing only one byte to the status register has the side-effect of
1481  *         clearing status register 2, including the QE bit. The 100b code is
1482  *         used if writing one byte to the status register does not modify
1483  *         status register 2.
1484  * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
1485  *         one data byte where bit 6 is one.
1486  *         [...]
1487  * - 011b: QE is bit 7 of status register 2. It is set via Write status
1488  *         register 2 instruction 3Eh with one data byte where bit 7 is one.
1489  *         [...]
1490  *         The status register 2 is read using instruction 3Fh.
1491  * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
1492  *         two data bytes where bit 1 of the second byte is one.
1493  *         [...]
1494  *         In contrast to the 001b code, writing one byte to the status
1495  *         register does not modify status register 2.
1496  * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
1497  *         Read Status instruction 05h. Status register2 is read using
1498  *         instruction 35h. QE is set via Writ Status instruction 01h with
1499  *         two data bytes where bit 1 of the second byte is one.
1500  *         [...]
1501  */
1502 #define BFPT_DWORD15_QER_MASK			GENMASK(22, 20)
1503 #define BFPT_DWORD15_QER_NONE			(0x0UL << 20) /* Micron */
1504 #define BFPT_DWORD15_QER_SR2_BIT1_BUGGY		(0x1UL << 20)
1505 #define BFPT_DWORD15_QER_SR1_BIT6		(0x2UL << 20) /* Macronix */
1506 #define BFPT_DWORD15_QER_SR2_BIT7		(0x3UL << 20)
1507 #define BFPT_DWORD15_QER_SR2_BIT1_NO_RD		(0x4UL << 20)
1508 #define BFPT_DWORD15_QER_SR2_BIT1		(0x5UL << 20) /* Spansion */
1509 
1510 struct sfdp_bfpt {
1511 	u32	dwords[BFPT_DWORD_MAX];
1512 };
1513 
1514 /* Fast Read settings. */
1515 
1516 static void
1517 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
1518 				    u16 half,
1519 				    enum spi_nor_protocol proto)
1520 {
1521 	read->num_mode_clocks = (half >> 5) & 0x07;
1522 	read->num_wait_states = (half >> 0) & 0x1f;
1523 	read->opcode = (half >> 8) & 0xff;
1524 	read->proto = proto;
1525 }
1526 
1527 struct sfdp_bfpt_read {
1528 	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
1529 	u32			hwcaps;
1530 
1531 	/*
1532 	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
1533 	 * whether the Fast Read x-y-z command is supported.
1534 	 */
1535 	u32			supported_dword;
1536 	u32			supported_bit;
1537 
1538 	/*
1539 	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
1540 	 * encodes the op code, the number of mode clocks and the number of wait
1541 	 * states to be used by Fast Read x-y-z command.
1542 	 */
1543 	u32			settings_dword;
1544 	u32			settings_shift;
1545 
1546 	/* The SPI protocol for this Fast Read x-y-z command. */
1547 	enum spi_nor_protocol	proto;
1548 };
1549 
1550 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
1551 	/* Fast Read 1-1-2 */
1552 	{
1553 		SNOR_HWCAPS_READ_1_1_2,
1554 		BFPT_DWORD(1), BIT(16),	/* Supported bit */
1555 		BFPT_DWORD(4), 0,	/* Settings */
1556 		SNOR_PROTO_1_1_2,
1557 	},
1558 
1559 	/* Fast Read 1-2-2 */
1560 	{
1561 		SNOR_HWCAPS_READ_1_2_2,
1562 		BFPT_DWORD(1), BIT(20),	/* Supported bit */
1563 		BFPT_DWORD(4), 16,	/* Settings */
1564 		SNOR_PROTO_1_2_2,
1565 	},
1566 
1567 	/* Fast Read 2-2-2 */
1568 	{
1569 		SNOR_HWCAPS_READ_2_2_2,
1570 		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
1571 		BFPT_DWORD(6), 16,	/* Settings */
1572 		SNOR_PROTO_2_2_2,
1573 	},
1574 
1575 	/* Fast Read 1-1-4 */
1576 	{
1577 		SNOR_HWCAPS_READ_1_1_4,
1578 		BFPT_DWORD(1), BIT(22),	/* Supported bit */
1579 		BFPT_DWORD(3), 16,	/* Settings */
1580 		SNOR_PROTO_1_1_4,
1581 	},
1582 
1583 	/* Fast Read 1-4-4 */
1584 	{
1585 		SNOR_HWCAPS_READ_1_4_4,
1586 		BFPT_DWORD(1), BIT(21),	/* Supported bit */
1587 		BFPT_DWORD(3), 0,	/* Settings */
1588 		SNOR_PROTO_1_4_4,
1589 	},
1590 
1591 	/* Fast Read 4-4-4 */
1592 	{
1593 		SNOR_HWCAPS_READ_4_4_4,
1594 		BFPT_DWORD(5), BIT(4),	/* Supported bit */
1595 		BFPT_DWORD(7), 16,	/* Settings */
1596 		SNOR_PROTO_4_4_4,
1597 	},
1598 };
1599 
1600 struct sfdp_bfpt_erase {
1601 	/*
1602 	 * The half-word at offset <shift> in DWORD <dwoard> encodes the
1603 	 * op code and erase sector size to be used by Sector Erase commands.
1604 	 */
1605 	u32			dword;
1606 	u32			shift;
1607 };
1608 
1609 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
1610 	/* Erase Type 1 in DWORD8 bits[15:0] */
1611 	{BFPT_DWORD(8), 0},
1612 
1613 	/* Erase Type 2 in DWORD8 bits[31:16] */
1614 	{BFPT_DWORD(8), 16},
1615 
1616 	/* Erase Type 3 in DWORD9 bits[15:0] */
1617 	{BFPT_DWORD(9), 0},
1618 
1619 	/* Erase Type 4 in DWORD9 bits[31:16] */
1620 	{BFPT_DWORD(9), 16},
1621 };
1622 
1623 static int spi_nor_hwcaps_read2cmd(u32 hwcaps);
1624 
1625 /**
1626  * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
1627  * @nor:		pointer to a 'struct spi_nor'
1628  * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
1629  *			the Basic Flash Parameter Table length and version
1630  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
1631  *			filled
1632  *
1633  * The Basic Flash Parameter Table is the main and only mandatory table as
1634  * defined by the SFDP (JESD216) specification.
1635  * It provides us with the total size (memory density) of the data array and
1636  * the number of address bytes for Fast Read, Page Program and Sector Erase
1637  * commands.
1638  * For Fast READ commands, it also gives the number of mode clock cycles and
1639  * wait states (regrouped in the number of dummy clock cycles) for each
1640  * supported instruction op code.
1641  * For Page Program, the page size is now available since JESD216 rev A, however
1642  * the supported instruction op codes are still not provided.
1643  * For Sector Erase commands, this table stores the supported instruction op
1644  * codes and the associated sector sizes.
1645  * Finally, the Quad Enable Requirements (QER) are also available since JESD216
1646  * rev A. The QER bits encode the manufacturer dependent procedure to be
1647  * executed to set the Quad Enable (QE) bit in some internal register of the
1648  * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
1649  * sending any Quad SPI command to the memory. Actually, setting the QE bit
1650  * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
1651  * and IO3 hence enabling 4 (Quad) I/O lines.
1652  *
1653  * Return: 0 on success, -errno otherwise.
1654  */
1655 static int spi_nor_parse_bfpt(struct spi_nor *nor,
1656 			      const struct sfdp_parameter_header *bfpt_header,
1657 			      struct spi_nor_flash_parameter *params)
1658 {
1659 	struct mtd_info *mtd = &nor->mtd;
1660 	struct sfdp_bfpt bfpt;
1661 	size_t len;
1662 	int i, cmd, err;
1663 	u32 addr;
1664 	u16 half;
1665 
1666 	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
1667 	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
1668 		return -EINVAL;
1669 
1670 	/* Read the Basic Flash Parameter Table. */
1671 	len = min_t(size_t, sizeof(bfpt),
1672 		    bfpt_header->length * sizeof(u32));
1673 	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
1674 	memset(&bfpt, 0, sizeof(bfpt));
1675 	err = spi_nor_read_sfdp(nor,  addr, len, &bfpt);
1676 	if (err < 0)
1677 		return err;
1678 
1679 	/* Fix endianness of the BFPT DWORDs. */
1680 	for (i = 0; i < BFPT_DWORD_MAX; i++)
1681 		bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);
1682 
1683 	/* Number of address bytes. */
1684 	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
1685 	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
1686 		nor->addr_width = 3;
1687 		break;
1688 
1689 	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
1690 		nor->addr_width = 4;
1691 		break;
1692 
1693 	default:
1694 		break;
1695 	}
1696 
1697 	/* Flash Memory Density (in bits). */
1698 	params->size = bfpt.dwords[BFPT_DWORD(2)];
1699 	if (params->size & BIT(31)) {
1700 		params->size &= ~BIT(31);
1701 
1702 		/*
1703 		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
1704 		 * bits is unlikely to exist so this error probably means
1705 		 * the BFPT we are reading is corrupted/wrong.
1706 		 */
1707 		if (params->size > 63)
1708 			return -EINVAL;
1709 
1710 		params->size = 1ULL << params->size;
1711 	} else {
1712 		params->size++;
1713 	}
1714 	params->size >>= 3; /* Convert to bytes. */
1715 
1716 	/* Fast Read settings. */
1717 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
1718 		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
1719 		struct spi_nor_read_command *read;
1720 
1721 		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
1722 			params->hwcaps.mask &= ~rd->hwcaps;
1723 			continue;
1724 		}
1725 
1726 		params->hwcaps.mask |= rd->hwcaps;
1727 		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
1728 		read = &params->reads[cmd];
1729 		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
1730 		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
1731 	}
1732 
1733 	/* Sector Erase settings. */
1734 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
1735 		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
1736 		u32 erasesize;
1737 		u8 opcode;
1738 
1739 		half = bfpt.dwords[er->dword] >> er->shift;
1740 		erasesize = half & 0xff;
1741 
1742 		/* erasesize == 0 means this Erase Type is not supported. */
1743 		if (!erasesize)
1744 			continue;
1745 
1746 		erasesize = 1U << erasesize;
1747 		opcode = (half >> 8) & 0xff;
1748 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1749 		if (erasesize == SZ_4K) {
1750 			nor->erase_opcode = opcode;
1751 			mtd->erasesize = erasesize;
1752 			break;
1753 		}
1754 #endif
1755 		if (!mtd->erasesize || mtd->erasesize < erasesize) {
1756 			nor->erase_opcode = opcode;
1757 			mtd->erasesize = erasesize;
1758 		}
1759 	}
1760 
1761 	/* Stop here if not JESD216 rev A or later. */
1762 	if (bfpt_header->length < BFPT_DWORD_MAX)
1763 		return 0;
1764 
1765 	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
1766 	params->page_size = bfpt.dwords[BFPT_DWORD(11)];
1767 	params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
1768 	params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
1769 	params->page_size = 1U << params->page_size;
1770 
1771 	/* Quad Enable Requirements. */
1772 	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
1773 	case BFPT_DWORD15_QER_NONE:
1774 		params->quad_enable = NULL;
1775 		break;
1776 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1777 	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
1778 	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
1779 		params->quad_enable = spansion_no_read_cr_quad_enable;
1780 		break;
1781 #endif
1782 #ifdef CONFIG_SPI_FLASH_MACRONIX
1783 	case BFPT_DWORD15_QER_SR1_BIT6:
1784 		params->quad_enable = macronix_quad_enable;
1785 		break;
1786 #endif
1787 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1788 	case BFPT_DWORD15_QER_SR2_BIT1:
1789 		params->quad_enable = spansion_read_cr_quad_enable;
1790 		break;
1791 #endif
1792 	default:
1793 		return -EINVAL;
1794 	}
1795 
1796 	return 0;
1797 }
1798 
1799 /**
1800  * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1801  * @nor:		pointer to a 'struct spi_nor'
1802  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
1803  *			filled
1804  *
1805  * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1806  * specification. This is a standard which tends to supported by almost all
1807  * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1808  * runtime the main parameters needed to perform basic SPI flash operations such
1809  * as Fast Read, Page Program or Sector Erase commands.
1810  *
1811  * Return: 0 on success, -errno otherwise.
1812  */
1813 static int spi_nor_parse_sfdp(struct spi_nor *nor,
1814 			      struct spi_nor_flash_parameter *params)
1815 {
1816 	const struct sfdp_parameter_header *param_header, *bfpt_header;
1817 	struct sfdp_parameter_header *param_headers = NULL;
1818 	struct sfdp_header header;
1819 	size_t psize;
1820 	int i, err;
1821 
1822 	/* Get the SFDP header. */
1823 	err = spi_nor_read_sfdp(nor, 0, sizeof(header), &header);
1824 	if (err < 0)
1825 		return err;
1826 
1827 	/* Check the SFDP header version. */
1828 	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
1829 	    header.major != SFDP_JESD216_MAJOR)
1830 		return -EINVAL;
1831 
1832 	/*
1833 	 * Verify that the first and only mandatory parameter header is a
1834 	 * Basic Flash Parameter Table header as specified in JESD216.
1835 	 */
1836 	bfpt_header = &header.bfpt_header;
1837 	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
1838 	    bfpt_header->major != SFDP_JESD216_MAJOR)
1839 		return -EINVAL;
1840 
1841 	/*
1842 	 * Allocate memory then read all parameter headers with a single
1843 	 * Read SFDP command. These parameter headers will actually be parsed
1844 	 * twice: a first time to get the latest revision of the basic flash
1845 	 * parameter table, then a second time to handle the supported optional
1846 	 * tables.
1847 	 * Hence we read the parameter headers once for all to reduce the
1848 	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
1849 	 * because we don't need to keep these parameter headers: the allocated
1850 	 * memory is always released with kfree() before exiting this function.
1851 	 */
1852 	if (header.nph) {
1853 		psize = header.nph * sizeof(*param_headers);
1854 
1855 		param_headers = kmalloc(psize, GFP_KERNEL);
1856 		if (!param_headers)
1857 			return -ENOMEM;
1858 
1859 		err = spi_nor_read_sfdp(nor, sizeof(header),
1860 					psize, param_headers);
1861 		if (err < 0) {
1862 			dev_err(dev, "failed to read SFDP parameter headers\n");
1863 			goto exit;
1864 		}
1865 	}
1866 
1867 	/*
1868 	 * Check other parameter headers to get the latest revision of
1869 	 * the basic flash parameter table.
1870 	 */
1871 	for (i = 0; i < header.nph; i++) {
1872 		param_header = &param_headers[i];
1873 
1874 		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
1875 		    param_header->major == SFDP_JESD216_MAJOR &&
1876 		    (param_header->minor > bfpt_header->minor ||
1877 		     (param_header->minor == bfpt_header->minor &&
1878 		      param_header->length > bfpt_header->length)))
1879 			bfpt_header = param_header;
1880 	}
1881 
1882 	err = spi_nor_parse_bfpt(nor, bfpt_header, params);
1883 	if (err)
1884 		goto exit;
1885 
1886 	/* Parse other parameter headers. */
1887 	for (i = 0; i < header.nph; i++) {
1888 		param_header = &param_headers[i];
1889 
1890 		switch (SFDP_PARAM_HEADER_ID(param_header)) {
1891 		case SFDP_SECTOR_MAP_ID:
1892 			dev_info(dev, "non-uniform erase sector maps are not supported yet.\n");
1893 			break;
1894 
1895 		default:
1896 			break;
1897 		}
1898 
1899 		if (err)
1900 			goto exit;
1901 	}
1902 
1903 exit:
1904 	kfree(param_headers);
1905 	return err;
1906 }
1907 #else
1908 static int spi_nor_parse_sfdp(struct spi_nor *nor,
1909 			      struct spi_nor_flash_parameter *params)
1910 {
1911 	return -EINVAL;
1912 }
1913 #endif /* SPI_FLASH_SFDP_SUPPORT */
1914 
1915 static int spi_nor_init_params(struct spi_nor *nor,
1916 			       const struct flash_info *info,
1917 			       struct spi_nor_flash_parameter *params)
1918 {
1919 	/* Set legacy flash parameters as default. */
1920 	memset(params, 0, sizeof(*params));
1921 
1922 	/* Set SPI NOR sizes. */
1923 	params->size = info->sector_size * info->n_sectors;
1924 	params->page_size = info->page_size;
1925 
1926 	/* (Fast) Read settings. */
1927 	params->hwcaps.mask |= SNOR_HWCAPS_READ;
1928 	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
1929 				  0, 0, SPINOR_OP_READ,
1930 				  SNOR_PROTO_1_1_1);
1931 
1932 	if (!(info->flags & SPI_NOR_NO_FR)) {
1933 		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
1934 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
1935 					  0, 8, SPINOR_OP_READ_FAST,
1936 					  SNOR_PROTO_1_1_1);
1937 	}
1938 
1939 	if (info->flags & SPI_NOR_DUAL_READ) {
1940 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
1941 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
1942 					  0, 8, SPINOR_OP_READ_1_1_2,
1943 					  SNOR_PROTO_1_1_2);
1944 	}
1945 
1946 	if (info->flags & SPI_NOR_QUAD_READ) {
1947 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
1948 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
1949 					  0, 8, SPINOR_OP_READ_1_1_4,
1950 					  SNOR_PROTO_1_1_4);
1951 	}
1952 
1953 	/* Page Program settings. */
1954 	params->hwcaps.mask |= SNOR_HWCAPS_PP;
1955 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
1956 				SPINOR_OP_PP, SNOR_PROTO_1_1_1);
1957 
1958 	if (info->flags & SPI_NOR_QUAD_READ) {
1959 		params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
1960 		spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
1961 					SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
1962 	}
1963 
1964 	/* Select the procedure to set the Quad Enable bit. */
1965 	if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
1966 				   SNOR_HWCAPS_PP_QUAD)) {
1967 		switch (JEDEC_MFR(info)) {
1968 #ifdef CONFIG_SPI_FLASH_MACRONIX
1969 		case SNOR_MFR_MACRONIX:
1970 			params->quad_enable = macronix_quad_enable;
1971 			break;
1972 #endif
1973 		case SNOR_MFR_ST:
1974 		case SNOR_MFR_MICRON:
1975 			break;
1976 
1977 		default:
1978 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1979 			/* Kept only for backward compatibility purpose. */
1980 			params->quad_enable = spansion_read_cr_quad_enable;
1981 #endif
1982 			break;
1983 		}
1984 	}
1985 
1986 	/* Override the parameters with data read from SFDP tables. */
1987 	nor->addr_width = 0;
1988 	nor->mtd.erasesize = 0;
1989 	if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
1990 	    !(info->flags & SPI_NOR_SKIP_SFDP)) {
1991 		struct spi_nor_flash_parameter sfdp_params;
1992 
1993 		memcpy(&sfdp_params, params, sizeof(sfdp_params));
1994 		if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
1995 			nor->addr_width = 0;
1996 			nor->mtd.erasesize = 0;
1997 		} else {
1998 			memcpy(params, &sfdp_params, sizeof(*params));
1999 		}
2000 	}
2001 
2002 	return 0;
2003 }
2004 
2005 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2006 {
2007 	size_t i;
2008 
2009 	for (i = 0; i < size; i++)
2010 		if (table[i][0] == (int)hwcaps)
2011 			return table[i][1];
2012 
2013 	return -EINVAL;
2014 }
2015 
2016 static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2017 {
2018 	static const int hwcaps_read2cmd[][2] = {
2019 		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
2020 		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
2021 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
2022 		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
2023 		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
2024 		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
2025 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
2026 		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
2027 		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
2028 		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
2029 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
2030 		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
2031 		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
2032 		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
2033 		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
2034 	};
2035 
2036 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2037 				  ARRAY_SIZE(hwcaps_read2cmd));
2038 }
2039 
2040 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2041 {
2042 	static const int hwcaps_pp2cmd[][2] = {
2043 		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
2044 		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
2045 		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
2046 		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
2047 		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
2048 		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
2049 		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
2050 	};
2051 
2052 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2053 				  ARRAY_SIZE(hwcaps_pp2cmd));
2054 }
2055 
2056 static int spi_nor_select_read(struct spi_nor *nor,
2057 			       const struct spi_nor_flash_parameter *params,
2058 			       u32 shared_hwcaps)
2059 {
2060 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2061 	const struct spi_nor_read_command *read;
2062 
2063 	if (best_match < 0)
2064 		return -EINVAL;
2065 
2066 	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2067 	if (cmd < 0)
2068 		return -EINVAL;
2069 
2070 	read = &params->reads[cmd];
2071 	nor->read_opcode = read->opcode;
2072 	nor->read_proto = read->proto;
2073 
2074 	/*
2075 	 * In the spi-nor framework, we don't need to make the difference
2076 	 * between mode clock cycles and wait state clock cycles.
2077 	 * Indeed, the value of the mode clock cycles is used by a QSPI
2078 	 * flash memory to know whether it should enter or leave its 0-4-4
2079 	 * (Continuous Read / XIP) mode.
2080 	 * eXecution In Place is out of the scope of the mtd sub-system.
2081 	 * Hence we choose to merge both mode and wait state clock cycles
2082 	 * into the so called dummy clock cycles.
2083 	 */
2084 	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2085 	return 0;
2086 }
2087 
2088 static int spi_nor_select_pp(struct spi_nor *nor,
2089 			     const struct spi_nor_flash_parameter *params,
2090 			     u32 shared_hwcaps)
2091 {
2092 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2093 	const struct spi_nor_pp_command *pp;
2094 
2095 	if (best_match < 0)
2096 		return -EINVAL;
2097 
2098 	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2099 	if (cmd < 0)
2100 		return -EINVAL;
2101 
2102 	pp = &params->page_programs[cmd];
2103 	nor->program_opcode = pp->opcode;
2104 	nor->write_proto = pp->proto;
2105 	return 0;
2106 }
2107 
2108 static int spi_nor_select_erase(struct spi_nor *nor,
2109 				const struct flash_info *info)
2110 {
2111 	struct mtd_info *mtd = &nor->mtd;
2112 
2113 	/* Do nothing if already configured from SFDP. */
2114 	if (mtd->erasesize)
2115 		return 0;
2116 
2117 #ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
2118 	/* prefer "small sector" erase if possible */
2119 	if (info->flags & SECT_4K) {
2120 		nor->erase_opcode = SPINOR_OP_BE_4K;
2121 		mtd->erasesize = 4096;
2122 	} else if (info->flags & SECT_4K_PMC) {
2123 		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
2124 		mtd->erasesize = 4096;
2125 	} else
2126 #endif
2127 	{
2128 		nor->erase_opcode = SPINOR_OP_SE;
2129 		mtd->erasesize = info->sector_size;
2130 	}
2131 	return 0;
2132 }
2133 
2134 static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
2135 			 const struct spi_nor_flash_parameter *params,
2136 			 const struct spi_nor_hwcaps *hwcaps)
2137 {
2138 	u32 ignored_mask, shared_mask;
2139 	bool enable_quad_io;
2140 	int err;
2141 
2142 	/*
2143 	 * Keep only the hardware capabilities supported by both the SPI
2144 	 * controller and the SPI flash memory.
2145 	 */
2146 	shared_mask = hwcaps->mask & params->hwcaps.mask;
2147 
2148 	/* SPI n-n-n protocols are not supported yet. */
2149 	ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
2150 			SNOR_HWCAPS_READ_4_4_4 |
2151 			SNOR_HWCAPS_READ_8_8_8 |
2152 			SNOR_HWCAPS_PP_4_4_4 |
2153 			SNOR_HWCAPS_PP_8_8_8);
2154 	if (shared_mask & ignored_mask) {
2155 		dev_dbg(nor->dev,
2156 			"SPI n-n-n protocols are not supported yet.\n");
2157 		shared_mask &= ~ignored_mask;
2158 	}
2159 
2160 	/* Select the (Fast) Read command. */
2161 	err = spi_nor_select_read(nor, params, shared_mask);
2162 	if (err) {
2163 		dev_dbg(nor->dev,
2164 			"can't select read settings supported by both the SPI controller and memory.\n");
2165 		return err;
2166 	}
2167 
2168 	/* Select the Page Program command. */
2169 	err = spi_nor_select_pp(nor, params, shared_mask);
2170 	if (err) {
2171 		dev_dbg(nor->dev,
2172 			"can't select write settings supported by both the SPI controller and memory.\n");
2173 		return err;
2174 	}
2175 
2176 	/* Select the Sector Erase command. */
2177 	err = spi_nor_select_erase(nor, info);
2178 	if (err) {
2179 		dev_dbg(nor->dev,
2180 			"can't select erase settings supported by both the SPI controller and memory.\n");
2181 		return err;
2182 	}
2183 
2184 	/* Enable Quad I/O if needed. */
2185 	enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
2186 			  spi_nor_get_protocol_width(nor->write_proto) == 4);
2187 	if (enable_quad_io && params->quad_enable)
2188 		nor->quad_enable = params->quad_enable;
2189 	else
2190 		nor->quad_enable = NULL;
2191 
2192 	return 0;
2193 }
2194 
2195 static int spi_nor_init(struct spi_nor *nor)
2196 {
2197 	int err;
2198 
2199 	/*
2200 	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
2201 	 * with the software protection bits set
2202 	 */
2203 	if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
2204 	    JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
2205 	    JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
2206 	    nor->info->flags & SPI_NOR_HAS_LOCK) {
2207 		write_enable(nor);
2208 		write_sr(nor, 0);
2209 		spi_nor_wait_till_ready(nor);
2210 	}
2211 
2212 	if (nor->quad_enable) {
2213 		err = nor->quad_enable(nor);
2214 		if (err) {
2215 			dev_dbg(nor->dev, "quad mode not supported\n");
2216 			return err;
2217 		}
2218 	}
2219 
2220 	if (nor->addr_width == 4 &&
2221 	    (JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION) &&
2222 	    !(nor->info->flags & SPI_NOR_4B_OPCODES)) {
2223 		/*
2224 		 * If the RESET# pin isn't hooked up properly, or the system
2225 		 * otherwise doesn't perform a reset command in the boot
2226 		 * sequence, it's impossible to 100% protect against unexpected
2227 		 * reboots (e.g., crashes). Warn the user (or hopefully, system
2228 		 * designer) that this is bad.
2229 		 */
2230 		if (nor->flags & SNOR_F_BROKEN_RESET)
2231 			printf("enabling reset hack; may not recover from unexpected reboots\n");
2232 		set_4byte(nor, nor->info, 1);
2233 	}
2234 
2235 	return 0;
2236 }
2237 
2238 int spi_nor_scan(struct spi_nor *nor)
2239 {
2240 	struct spi_nor_flash_parameter params;
2241 	const struct flash_info *info = NULL;
2242 	struct mtd_info *mtd = &nor->mtd;
2243 	struct spi_nor_hwcaps hwcaps = {
2244 		.mask = SNOR_HWCAPS_READ |
2245 			SNOR_HWCAPS_READ_FAST |
2246 			SNOR_HWCAPS_PP,
2247 	};
2248 	struct spi_slave *spi = nor->spi;
2249 	int ret;
2250 
2251 	/* Reset SPI protocol for all commands. */
2252 	nor->reg_proto = SNOR_PROTO_1_1_1;
2253 	nor->read_proto = SNOR_PROTO_1_1_1;
2254 	nor->write_proto = SNOR_PROTO_1_1_1;
2255 	nor->read = spi_nor_read_data;
2256 	nor->write = spi_nor_write_data;
2257 	nor->read_reg = spi_nor_read_reg;
2258 	nor->write_reg = spi_nor_write_reg;
2259 
2260 	if (spi->mode & SPI_RX_QUAD) {
2261 		hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2262 
2263 		if (spi->mode & SPI_TX_QUAD)
2264 			hwcaps.mask |= (SNOR_HWCAPS_READ_1_4_4 |
2265 					SNOR_HWCAPS_PP_1_1_4 |
2266 					SNOR_HWCAPS_PP_1_4_4);
2267 	} else if (spi->mode & SPI_RX_DUAL) {
2268 		hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2269 
2270 		if (spi->mode & SPI_TX_DUAL)
2271 			hwcaps.mask |= SNOR_HWCAPS_READ_1_2_2;
2272 	}
2273 
2274 	info = spi_nor_read_id(nor);
2275 	if (IS_ERR_OR_NULL(info))
2276 		return -ENOENT;
2277 	/* Parse the Serial Flash Discoverable Parameters table. */
2278 	ret = spi_nor_init_params(nor, info, &params);
2279 	if (ret)
2280 		return ret;
2281 
2282 	if (!mtd->name)
2283 		mtd->name = info->name;
2284 	mtd->priv = nor;
2285 	mtd->type = MTD_NORFLASH;
2286 	mtd->writesize = 1;
2287 	mtd->flags = MTD_CAP_NORFLASH;
2288 	mtd->size = params.size;
2289 	mtd->_erase = spi_nor_erase;
2290 	mtd->_read = spi_nor_read;
2291 
2292 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
2293 	/* NOR protection support for STmicro/Micron chips and similar */
2294 	if (JEDEC_MFR(info) == SNOR_MFR_ST ||
2295 	    JEDEC_MFR(info) == SNOR_MFR_MICRON ||
2296 	    JEDEC_MFR(info) == SNOR_MFR_SST ||
2297 			info->flags & SPI_NOR_HAS_LOCK) {
2298 		nor->flash_lock = stm_lock;
2299 		nor->flash_unlock = stm_unlock;
2300 		nor->flash_is_locked = stm_is_locked;
2301 	}
2302 #endif
2303 
2304 #ifdef CONFIG_SPI_FLASH_SST
2305 	/* sst nor chips use AAI word program */
2306 	if (info->flags & SST_WRITE)
2307 		mtd->_write = sst_write;
2308 	else
2309 #endif
2310 		mtd->_write = spi_nor_write;
2311 
2312 	if (info->flags & USE_FSR)
2313 		nor->flags |= SNOR_F_USE_FSR;
2314 	if (info->flags & SPI_NOR_HAS_TB)
2315 		nor->flags |= SNOR_F_HAS_SR_TB;
2316 	if (info->flags & NO_CHIP_ERASE)
2317 		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
2318 	if (info->flags & USE_CLSR)
2319 		nor->flags |= SNOR_F_USE_CLSR;
2320 
2321 	if (info->flags & SPI_NOR_NO_ERASE)
2322 		mtd->flags |= MTD_NO_ERASE;
2323 
2324 	nor->page_size = params.page_size;
2325 	mtd->writebufsize = nor->page_size;
2326 
2327 	/* Some devices cannot do fast-read, no matter what DT tells us */
2328 	if ((info->flags & SPI_NOR_NO_FR) || (spi->mode & SPI_RX_SLOW))
2329 		params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2330 
2331 	/*
2332 	 * Configure the SPI memory:
2333 	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
2334 	 * - set the number of dummy cycles (mode cycles + wait states).
2335 	 * - set the SPI protocols for register and memory accesses.
2336 	 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
2337 	 */
2338 	ret = spi_nor_setup(nor, info, &params, &hwcaps);
2339 	if (ret)
2340 		return ret;
2341 
2342 	if (nor->addr_width) {
2343 		/* already configured from SFDP */
2344 	} else if (info->addr_width) {
2345 		nor->addr_width = info->addr_width;
2346 	} else if (mtd->size > SZ_16M) {
2347 #ifndef CONFIG_SPI_FLASH_BAR
2348 		/* enable 4-byte addressing if the device exceeds 16MiB */
2349 		nor->addr_width = 4;
2350 		if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
2351 		    info->flags & SPI_NOR_4B_OPCODES)
2352 			spi_nor_set_4byte_opcodes(nor, info);
2353 #else
2354 	/* Configure the BAR - discover bank cmds and read current bank */
2355 	nor->addr_width = 3;
2356 	ret = read_bar(nor, info);
2357 	if (ret < 0)
2358 		return ret;
2359 #endif
2360 	} else {
2361 		nor->addr_width = 3;
2362 	}
2363 
2364 	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
2365 		dev_dbg(dev, "address width is too large: %u\n",
2366 			nor->addr_width);
2367 		return -EINVAL;
2368 	}
2369 
2370 	/* Send all the required SPI flash commands to initialize device */
2371 	nor->info = info;
2372 	ret = spi_nor_init(nor);
2373 	if (ret)
2374 		return ret;
2375 
2376 	nor->name = mtd->name;
2377 	nor->size = mtd->size;
2378 	nor->erase_size = mtd->erasesize;
2379 	nor->sector_size = mtd->erasesize;
2380 
2381 #ifndef CONFIG_SPL_BUILD
2382 	printf("SF: Detected %s with page size ", nor->name);
2383 	print_size(nor->page_size, ", erase size ");
2384 	print_size(nor->erase_size, ", total ");
2385 	print_size(nor->size, "");
2386 	puts("\n");
2387 #endif
2388 
2389 	return 0;
2390 }
2391 
2392 /* U-Boot specific functions, need to extend MTD to support these */
2393 int spi_flash_cmd_get_sw_write_prot(struct spi_nor *nor)
2394 {
2395 	int sr = read_sr(nor);
2396 
2397 	if (sr < 0)
2398 		return sr;
2399 
2400 	return (sr >> 2) & 7;
2401 }
2402