xref: /rk3399_ARM-atf/services/std_svc/spm/spm_mm/spm_mm_main.c (revision 10ecd58093a34e95e2dfad65b1180610f29397cc)
1 /*
2  * Copyright (c) 2017-2024, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch_helpers.h>
8 #include <assert.h>
9 #include <errno.h>
10 
11 #include <bl31/bl31.h>
12 #include <bl31/ehf.h>
13 #include <common/debug.h>
14 #include <common/runtime_svc.h>
15 #include <lib/el3_runtime/context_mgmt.h>
16 #include <lib/el3_runtime/simd_ctx.h>
17 #include <lib/smccc.h>
18 #include <lib/spinlock.h>
19 #include <lib/utils.h>
20 #include <lib/xlat_tables/xlat_tables_v2.h>
21 #include <plat/common/platform.h>
22 #include <services/spm_mm_partition.h>
23 #include <services/spm_mm_svc.h>
24 #include <smccc_helpers.h>
25 
26 #include "spm_common.h"
27 #include "spm_mm_private.h"
28 
29 /*******************************************************************************
30  * Secure Partition context information.
31  ******************************************************************************/
32 static sp_context_t sp_ctx;
33 
34 /*******************************************************************************
35  * Set state of a Secure Partition context.
36  ******************************************************************************/
37 void sp_state_set(sp_context_t *sp_ptr, sp_state_t state)
38 {
39 	spin_lock(&(sp_ptr->state_lock));
40 	sp_ptr->state = state;
41 	spin_unlock(&(sp_ptr->state_lock));
42 }
43 
44 /*******************************************************************************
45  * Wait until the state of a Secure Partition is the specified one and change it
46  * to the desired state.
47  ******************************************************************************/
48 void sp_state_wait_switch(sp_context_t *sp_ptr, sp_state_t from, sp_state_t to)
49 {
50 	int success = 0;
51 
52 	while (success == 0) {
53 		spin_lock(&(sp_ptr->state_lock));
54 
55 		if (sp_ptr->state == from) {
56 			sp_ptr->state = to;
57 
58 			success = 1;
59 		}
60 
61 		spin_unlock(&(sp_ptr->state_lock));
62 	}
63 }
64 
65 /*******************************************************************************
66  * Check if the state of a Secure Partition is the specified one and, if so,
67  * change it to the desired state. Returns 0 on success, -1 on error.
68  ******************************************************************************/
69 int sp_state_try_switch(sp_context_t *sp_ptr, sp_state_t from, sp_state_t to)
70 {
71 	int ret = -1;
72 
73 	spin_lock(&(sp_ptr->state_lock));
74 
75 	if (sp_ptr->state == from) {
76 		sp_ptr->state = to;
77 
78 		ret = 0;
79 	}
80 
81 	spin_unlock(&(sp_ptr->state_lock));
82 
83 	return ret;
84 }
85 
86 /*******************************************************************************
87  * This function takes an SP context pointer and performs a synchronous entry
88  * into it.
89  ******************************************************************************/
90 static uint64_t spm_sp_synchronous_entry(sp_context_t *ctx)
91 {
92 	uint64_t rc;
93 
94 	assert(ctx != NULL);
95 
96 	/* Assign the context of the SP to this CPU */
97 	cm_set_context(&(ctx->cpu_ctx), SECURE);
98 
99 	/* Restore the context assigned above */
100 	cm_el1_sysregs_context_restore(SECURE);
101 	cm_set_next_eret_context(SECURE);
102 
103 	/* Invalidate TLBs at EL1. */
104 	tlbivmalle1();
105 	dsbish();
106 
107 	/* Enter Secure Partition */
108 	rc = spm_secure_partition_enter(&ctx->c_rt_ctx);
109 
110 	/* Save secure state */
111 	cm_el1_sysregs_context_save(SECURE);
112 
113 	return rc;
114 }
115 
116 /*******************************************************************************
117  * This function returns to the place where spm_sp_synchronous_entry() was
118  * called originally.
119  ******************************************************************************/
120 __dead2 static void spm_sp_synchronous_exit(uint64_t rc)
121 {
122 	sp_context_t *ctx = &sp_ctx;
123 
124 	/*
125 	 * The SPM must have initiated the original request through a
126 	 * synchronous entry into the secure partition. Jump back to the
127 	 * original C runtime context with the value of rc in x0;
128 	 */
129 	spm_secure_partition_exit(ctx->c_rt_ctx, rc);
130 
131 	panic();
132 }
133 
134 /*******************************************************************************
135  * Jump to each Secure Partition for the first time.
136  ******************************************************************************/
137 static int32_t spm_init(void)
138 {
139 	uint64_t rc;
140 	sp_context_t *ctx;
141 
142 	INFO("Secure Partition init...\n");
143 
144 	ctx = &sp_ctx;
145 
146 	ctx->state = SP_STATE_RESET;
147 
148 	rc = spm_sp_synchronous_entry(ctx);
149 	assert(rc == 0);
150 
151 	ctx->state = SP_STATE_IDLE;
152 
153 	INFO("Secure Partition initialized.\n");
154 
155 	return !rc;
156 }
157 
158 /*******************************************************************************
159  * Initialize contexts of all Secure Partitions.
160  ******************************************************************************/
161 int32_t spm_mm_setup(void)
162 {
163 	sp_context_t *ctx;
164 
165 	/* Disable MMU at EL1 (initialized by BL2) */
166 	disable_mmu_icache_el1();
167 
168 	/* Initialize context of the SP */
169 	INFO("Secure Partition context setup start...\n");
170 
171 	ctx = &sp_ctx;
172 
173 	/* Assign translation tables context. */
174 	ctx->xlat_ctx_handle = spm_get_sp_xlat_context();
175 
176 	spm_sp_setup(ctx);
177 
178 	/* Register init function for deferred init.  */
179 	bl31_register_bl32_init(&spm_init);
180 
181 	INFO("Secure Partition setup done.\n");
182 
183 	return 0;
184 }
185 
186 /*******************************************************************************
187  * Function to perform a call to a Secure Partition.
188  ******************************************************************************/
189 uint64_t spm_mm_sp_call(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3)
190 {
191 	uint64_t rc;
192 	sp_context_t *sp_ptr = &sp_ctx;
193 
194 #if CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS
195 	/*
196 	 * SP runs to completion, no need to restore FP/SVE registers of secure context.
197 	 * Save FP/SVE registers only for non secure context.
198 	 */
199 	simd_ctx_save(NON_SECURE, false);
200 #endif /* CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS */
201 
202 	/* Wait until the Secure Partition is idle and set it to busy. */
203 	sp_state_wait_switch(sp_ptr, SP_STATE_IDLE, SP_STATE_BUSY);
204 
205 	/* Set values for registers on SP entry */
206 	cpu_context_t *cpu_ctx = &(sp_ptr->cpu_ctx);
207 
208 	write_ctx_reg(get_gpregs_ctx(cpu_ctx), CTX_GPREG_X0, smc_fid);
209 	write_ctx_reg(get_gpregs_ctx(cpu_ctx), CTX_GPREG_X1, x1);
210 	write_ctx_reg(get_gpregs_ctx(cpu_ctx), CTX_GPREG_X2, x2);
211 	write_ctx_reg(get_gpregs_ctx(cpu_ctx), CTX_GPREG_X3, x3);
212 
213 	/* Jump to the Secure Partition. */
214 	rc = spm_sp_synchronous_entry(sp_ptr);
215 
216 	/* Flag Secure Partition as idle. */
217 	assert(sp_ptr->state == SP_STATE_BUSY);
218 	sp_state_set(sp_ptr, SP_STATE_IDLE);
219 
220 #if CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS
221 	/*
222 	 * SP runs to completion, no need to save FP/SVE registers of secure context.
223 	 * Restore only non secure world FP/SVE registers.
224 	 */
225 	simd_ctx_restore(NON_SECURE);
226 #endif /* CTX_INCLUDE_FPREGS || CTX_INCLUDE_SVE_REGS */
227 
228 	return rc;
229 }
230 
231 /*******************************************************************************
232  * MM_COMMUNICATE handler
233  ******************************************************************************/
234 static uint64_t mm_communicate(uint32_t smc_fid, uint64_t mm_cookie,
235 			       uint64_t comm_buffer_address,
236 			       uint64_t comm_size_address, void *handle)
237 {
238 	uint64_t rc;
239 
240 	/* Cookie. Reserved for future use. It must be zero. */
241 	if (mm_cookie != 0U) {
242 		ERROR("MM_COMMUNICATE: cookie is not zero\n");
243 		SMC_RET1(handle, SPM_MM_INVALID_PARAMETER);
244 	}
245 
246 	if (comm_buffer_address == 0U) {
247 		ERROR("MM_COMMUNICATE: comm_buffer_address is zero\n");
248 		SMC_RET1(handle, SPM_MM_INVALID_PARAMETER);
249 	}
250 
251 	if (comm_size_address != 0U) {
252 		VERBOSE("MM_COMMUNICATE: comm_size_address is not 0 as recommended.\n");
253 	}
254 
255 	/*
256 	 * The current secure partition design mandates
257 	 * - at any point, only a single core can be
258 	 *   executing in the secure partition.
259 	 * - a core cannot be preempted by an interrupt
260 	 *   while executing in secure partition.
261 	 * Raise the running priority of the core to the
262 	 * interrupt level configured for secure partition
263 	 * so as to block any interrupt from preempting this
264 	 * core.
265 	 */
266 	ehf_activate_priority(PLAT_SP_PRI);
267 
268 	/* Save the Normal world context */
269 	cm_el1_sysregs_context_save(NON_SECURE);
270 
271 	rc = spm_mm_sp_call(smc_fid, comm_buffer_address, comm_size_address,
272 			    plat_my_core_pos());
273 
274 	/* Restore non-secure state */
275 	cm_el1_sysregs_context_restore(NON_SECURE);
276 	cm_set_next_eret_context(NON_SECURE);
277 
278 	/*
279 	 * Exited from secure partition. This core can take
280 	 * interrupts now.
281 	 */
282 	ehf_deactivate_priority(PLAT_SP_PRI);
283 
284 	SMC_RET1(handle, rc);
285 }
286 
287 /*******************************************************************************
288  * Secure Partition Manager SMC handler.
289  ******************************************************************************/
290 uint64_t spm_mm_smc_handler(uint32_t smc_fid,
291 			 uint64_t x1,
292 			 uint64_t x2,
293 			 uint64_t x3,
294 			 uint64_t x4,
295 			 void *cookie,
296 			 void *handle,
297 			 uint64_t flags)
298 {
299 	unsigned int ns;
300 
301 	/* Determine which security state this SMC originated from */
302 	ns = is_caller_non_secure(flags);
303 
304 	if (ns == SMC_FROM_SECURE) {
305 
306 		/* Handle SMCs from Secure world. */
307 
308 		assert(handle == cm_get_context(SECURE));
309 
310 		/* Make next ERET jump to S-EL0 instead of S-EL1. */
311 		cm_set_elr_spsr_el3(SECURE, read_elr_el1(), read_spsr_el1());
312 
313 		switch (smc_fid) {
314 
315 		case SPM_MM_VERSION_AARCH32:
316 			SMC_RET1(handle, SPM_MM_VERSION_COMPILED);
317 
318 		case MM_SP_EVENT_COMPLETE_AARCH64:
319 			spm_sp_synchronous_exit(x1);
320 
321 		case MM_SP_MEMORY_ATTRIBUTES_GET_AARCH64:
322 			INFO("Received MM_SP_MEMORY_ATTRIBUTES_GET_AARCH64 SMC\n");
323 
324 			if (sp_ctx.state != SP_STATE_RESET) {
325 				WARN("MM_SP_MEMORY_ATTRIBUTES_GET_AARCH64 is available at boot time only\n");
326 				SMC_RET1(handle, SPM_MM_NOT_SUPPORTED);
327 			}
328 			SMC_RET1(handle,
329 				 spm_memory_attributes_get_smc_handler(
330 					 &sp_ctx, x1));
331 
332 		case MM_SP_MEMORY_ATTRIBUTES_SET_AARCH64:
333 			INFO("Received MM_SP_MEMORY_ATTRIBUTES_SET_AARCH64 SMC\n");
334 
335 			if (sp_ctx.state != SP_STATE_RESET) {
336 				WARN("MM_SP_MEMORY_ATTRIBUTES_SET_AARCH64 is available at boot time only\n");
337 				SMC_RET1(handle, SPM_MM_NOT_SUPPORTED);
338 			}
339 			SMC_RET1(handle,
340 				 spm_memory_attributes_set_smc_handler(
341 					&sp_ctx, x1, x2, x3));
342 		default:
343 			break;
344 		}
345 	} else {
346 
347 		/* Handle SMCs from Non-secure world. */
348 
349 		assert(handle == cm_get_context(NON_SECURE));
350 
351 		switch (smc_fid) {
352 
353 		case MM_VERSION_AARCH32:
354 			SMC_RET1(handle, MM_VERSION_COMPILED);
355 
356 		case MM_COMMUNICATE_AARCH32:
357 		case MM_COMMUNICATE_AARCH64:
358 			return mm_communicate(smc_fid, x1, x2, x3, handle);
359 
360 		case MM_SP_MEMORY_ATTRIBUTES_GET_AARCH64:
361 		case MM_SP_MEMORY_ATTRIBUTES_SET_AARCH64:
362 			/* SMC interfaces reserved for secure callers. */
363 			SMC_RET1(handle, SPM_MM_NOT_SUPPORTED);
364 
365 		default:
366 			break;
367 		}
368 	}
369 
370 	SMC_RET1(handle, SMC_UNK);
371 }
372