xref: /rk3399_ARM-atf/services/std_svc/spm/el3_spmc/spmc_setup.c (revision 5e0be8c0241e5075b34bd5b14df2df9f048715d3)
1 /*
2  * Copyright (c) 2022-2024, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <string.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/debug.h>
13 #include <common/fdt_wrappers.h>
14 #include <context.h>
15 #include <lib/el3_runtime/context_mgmt.h>
16 #include <lib/utils.h>
17 #include <lib/xlat_tables/xlat_tables_v2.h>
18 #include <libfdt.h>
19 #include <plat/common/common_def.h>
20 #include <plat/common/platform.h>
21 #include <services/ffa_svc.h>
22 #include "spm_common.h"
23 #include "spm_shim_private.h"
24 #include "spmc.h"
25 #include <tools_share/firmware_image_package.h>
26 
27 #include <platform_def.h>
28 
29 /*
30  * Statically allocate a page of memory for passing boot information to an SP.
31  */
32 static uint8_t ffa_boot_info_mem[PAGE_SIZE] __aligned(PAGE_SIZE);
33 
34 /*
35  * We need to choose one execution context from all those available for a S-EL0
36  * SP. This execution context will be used subsequently irrespective of which
37  * physical CPU the SP runs on.
38  */
39 #define SEL0_SP_EC_INDEX 0
40 #define SP_MEM_READ 0x1
41 #define SP_MEM_WRITE 0x2
42 #define SP_MEM_EXECUTE 0x4
43 #define SP_MEM_NON_SECURE 0x8
44 #define SP_MEM_READ_ONLY SP_MEM_READ
45 #define SP_MEM_READ_WRITE (SP_MEM_READ | SP_MEM_WRITE)
46 
47 /* Type of the memory region in SP's manifest. */
48 enum sp_memory_region_type {
49 	SP_MEM_REGION_DEVICE,
50 	SP_MEM_REGION_MEMORY,
51 	SP_MEM_REGION_NOT_SPECIFIED
52 };
53 
54 /*
55  * This function creates a initialization descriptor in the memory reserved
56  * for passing boot information to an SP. It then copies the partition manifest
57  * into this region and ensures that its reference in the initialization
58  * descriptor is updated.
59  */
60 static void spmc_create_boot_info(entry_point_info_t *ep_info,
61 				  struct secure_partition_desc *sp)
62 {
63 	struct ffa_boot_info_header *boot_header;
64 	struct ffa_boot_info_desc *boot_descriptor;
65 	uintptr_t manifest_addr;
66 
67 	/*
68 	 * Calculate the maximum size of the manifest that can be accommodated
69 	 * in the boot information memory region.
70 	 */
71 	const unsigned int
72 	max_manifest_sz = sizeof(ffa_boot_info_mem) -
73 			  (sizeof(struct ffa_boot_info_header) +
74 			   sizeof(struct ffa_boot_info_desc));
75 
76 	/*
77 	 * The current implementation only supports the FF-A v1.1
78 	 * implementation of the boot protocol, therefore check
79 	 * that a v1.0 SP has not requested use of the protocol.
80 	 */
81 	if (sp->ffa_version == MAKE_FFA_VERSION(1, 0)) {
82 		ERROR("FF-A boot protocol not supported for v1.0 clients\n");
83 		return;
84 	}
85 
86 	/*
87 	 * Check if the manifest will fit into the boot info memory region else
88 	 * bail.
89 	 */
90 	if (ep_info->args.arg1 > max_manifest_sz) {
91 		WARN("Unable to copy manifest into boot information. ");
92 		WARN("Max sz = %u bytes. Manifest sz = %lu bytes\n",
93 		     max_manifest_sz, ep_info->args.arg1);
94 		return;
95 	}
96 
97 	/* Zero the memory region before populating. */
98 	memset(ffa_boot_info_mem, 0, PAGE_SIZE);
99 
100 	/*
101 	 * Populate the ffa_boot_info_header at the start of the boot info
102 	 * region.
103 	 */
104 	boot_header = (struct ffa_boot_info_header *) ffa_boot_info_mem;
105 
106 	/* Position the ffa_boot_info_desc after the ffa_boot_info_header. */
107 	boot_header->offset_boot_info_desc =
108 					sizeof(struct ffa_boot_info_header);
109 	boot_descriptor = (struct ffa_boot_info_desc *)
110 			  (ffa_boot_info_mem +
111 			   boot_header->offset_boot_info_desc);
112 
113 	/*
114 	 * We must use the FF-A version corresponding to the version implemented
115 	 * by the SP. Currently this can only be v1.1.
116 	 */
117 	boot_header->version = sp->ffa_version;
118 
119 	/* Populate the boot information header. */
120 	boot_header->size_boot_info_desc = sizeof(struct ffa_boot_info_desc);
121 
122 	/* Set the signature "0xFFA". */
123 	boot_header->signature = FFA_INIT_DESC_SIGNATURE;
124 
125 	/* Set the count. Currently 1 since only the manifest is specified. */
126 	boot_header->count_boot_info_desc = 1;
127 
128 	/* Populate the boot information descriptor for the manifest. */
129 	boot_descriptor->type =
130 		FFA_BOOT_INFO_TYPE(FFA_BOOT_INFO_TYPE_STD) |
131 		FFA_BOOT_INFO_TYPE_ID(FFA_BOOT_INFO_TYPE_ID_FDT);
132 
133 	boot_descriptor->flags =
134 		FFA_BOOT_INFO_FLAG_NAME(FFA_BOOT_INFO_FLAG_NAME_UUID) |
135 		FFA_BOOT_INFO_FLAG_CONTENT(FFA_BOOT_INFO_FLAG_CONTENT_ADR);
136 
137 	/*
138 	 * Copy the manifest into boot info region after the boot information
139 	 * descriptor.
140 	 */
141 	boot_descriptor->size_boot_info = (uint32_t) ep_info->args.arg1;
142 
143 	manifest_addr = (uintptr_t) (ffa_boot_info_mem +
144 				     boot_header->offset_boot_info_desc +
145 				     boot_header->size_boot_info_desc);
146 
147 	memcpy((void *) manifest_addr, (void *) ep_info->args.arg0,
148 	       boot_descriptor->size_boot_info);
149 
150 	boot_descriptor->content = manifest_addr;
151 
152 	/* Calculate the size of the total boot info blob. */
153 	boot_header->size_boot_info_blob = boot_header->offset_boot_info_desc +
154 					   boot_descriptor->size_boot_info +
155 					   (boot_header->count_boot_info_desc *
156 					    boot_header->size_boot_info_desc);
157 
158 	INFO("SP boot info @ 0x%lx, size: %u bytes.\n",
159 	     (uintptr_t) ffa_boot_info_mem,
160 	     boot_header->size_boot_info_blob);
161 	INFO("SP manifest @ 0x%lx, size: %u bytes.\n",
162 	     boot_descriptor->content,
163 	     boot_descriptor->size_boot_info);
164 }
165 
166 /*
167  * S-EL1 partitions can be assigned with multiple execution contexts, each
168  * pinned to the physical CPU. Each execution context index corresponds to the
169  * respective liner core position.
170  * S-EL0 partitions execute in a single execution context (index 0).
171  */
172 unsigned int get_ec_index(struct secure_partition_desc *sp)
173 {
174 	return (sp->runtime_el == S_EL0) ?
175 		SEL0_SP_EC_INDEX : plat_my_core_pos();
176 }
177 
178 #if SPMC_AT_EL3_SEL0_SP
179 /* Setup spsr in entry point info for common context management code to use. */
180 void spmc_el0_sp_spsr_setup(entry_point_info_t *ep_info)
181 {
182 	/* Setup Secure Partition SPSR for S-EL0 SP. */
183 	ep_info->spsr = SPSR_64(MODE_EL0, MODE_SP_EL0, DISABLE_ALL_EXCEPTIONS);
184 }
185 
186 static void read_optional_string(void *manifest, int32_t offset,
187 				 char *property, char *out, size_t len)
188 {
189 	const fdt32_t *prop;
190 	int lenp;
191 
192 	prop = fdt_getprop(manifest, offset, property, &lenp);
193 	if (prop == NULL) {
194 		out[0] = '\0';
195 	} else {
196 		memcpy(out, prop, MIN(lenp, (int)len));
197 	}
198 }
199 
200 /*******************************************************************************
201  * This function will parse the Secure Partition Manifest for fetching secure
202  * partition specific memory/device region details. It will find base address,
203  * size, memory attributes for each region and then add the respective region
204  * into secure parition's translation context.
205  ******************************************************************************/
206 static void populate_sp_regions(struct secure_partition_desc *sp,
207 				void *sp_manifest, int node,
208 				enum sp_memory_region_type type)
209 {
210 	uintptr_t base_address;
211 	uint32_t mem_attr, mem_region, size;
212 	struct mmap_region sp_mem_regions = {0};
213 	int32_t offset, ret;
214 	char *compatibility[SP_MEM_REGION_NOT_SPECIFIED] = {
215 		"arm,ffa-manifest-device-regions",
216 		"arm,ffa-manifest-memory-regions"
217 	};
218 	char description[10];
219 	char *property;
220 	char *region[SP_MEM_REGION_NOT_SPECIFIED] = {
221 		"device regions",
222 		"memory regions"
223 	};
224 
225 	if (type >= SP_MEM_REGION_NOT_SPECIFIED) {
226 		WARN("Invalid region type\n");
227 		return;
228 	}
229 
230 	INFO("Mapping SP's %s\n", region[type]);
231 
232 	if (fdt_node_check_compatible(sp_manifest, node,
233 				      compatibility[type]) != 0) {
234 		WARN("Incompatible region node in manifest\n");
235 		return;
236 	}
237 
238 	for (offset = fdt_first_subnode(sp_manifest, node), mem_region = 0;
239 	     offset >= 0;
240 	     offset = fdt_next_subnode(sp_manifest, offset), mem_region++) {
241 		read_optional_string(sp_manifest, offset, "description",
242 				     description, sizeof(description));
243 
244 		INFO("Mapping: region: %d, %s\n", mem_region, description);
245 
246 		property = "base-address";
247 		ret = fdt_read_uint64(sp_manifest, offset, property,
248 					&base_address);
249 		if (ret < 0) {
250 			WARN("Missing:%s for %s.\n", property, description);
251 			continue;
252 		}
253 
254 		property = "pages-count";
255 		ret = fdt_read_uint32(sp_manifest, offset, property, &size);
256 		if (ret < 0) {
257 			WARN("Missing: %s for %s.\n", property, description);
258 			continue;
259 		}
260 		size *= PAGE_SIZE;
261 
262 		property = "attributes";
263 		ret = fdt_read_uint32(sp_manifest, offset, property, &mem_attr);
264 		if (ret < 0) {
265 			WARN("Missing: %s for %s.\n", property, description);
266 			continue;
267 		}
268 
269 		sp_mem_regions.attr = MT_USER;
270 		if (type == SP_MEM_REGION_DEVICE) {
271 			sp_mem_regions.attr |= MT_EXECUTE_NEVER;
272 		} else {
273 			sp_mem_regions.attr |= MT_MEMORY;
274 			if ((mem_attr & SP_MEM_EXECUTE) == SP_MEM_EXECUTE) {
275 				sp_mem_regions.attr &= ~MT_EXECUTE_NEVER;
276 			} else {
277 				sp_mem_regions.attr |= MT_EXECUTE_NEVER;
278 			}
279 		}
280 
281 		if ((mem_attr & SP_MEM_READ_WRITE) == SP_MEM_READ_WRITE) {
282 			sp_mem_regions.attr |= MT_RW;
283 		}
284 
285 		if ((mem_attr & SP_MEM_NON_SECURE) == SP_MEM_NON_SECURE) {
286 			sp_mem_regions.attr |= MT_NS;
287 		} else {
288 			sp_mem_regions.attr |= MT_SECURE;
289 		}
290 
291 		sp_mem_regions.base_pa = base_address;
292 		sp_mem_regions.base_va = base_address;
293 		sp_mem_regions.size = size;
294 
295 		INFO("Adding PA: 0x%llx VA: 0x%lx Size: 0x%lx attr:0x%x\n",
296 		     sp_mem_regions.base_pa,
297 		     sp_mem_regions.base_va,
298 		     sp_mem_regions.size,
299 		     sp_mem_regions.attr);
300 
301 		if (type == SP_MEM_REGION_DEVICE) {
302 			sp_mem_regions.granularity = XLAT_BLOCK_SIZE(1);
303 		} else {
304 			sp_mem_regions.granularity = XLAT_BLOCK_SIZE(3);
305 		}
306 		mmap_add_region_ctx(sp->xlat_ctx_handle, &sp_mem_regions);
307 	}
308 }
309 
310 static void spmc_el0_sp_setup_mmu(struct secure_partition_desc *sp,
311 				  cpu_context_t *ctx)
312 {
313 	xlat_ctx_t *xlat_ctx;
314 	uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX];
315 
316 	xlat_ctx = sp->xlat_ctx_handle;
317 	init_xlat_tables_ctx(sp->xlat_ctx_handle);
318 	setup_mmu_cfg((uint64_t *)&mmu_cfg_params, 0, xlat_ctx->base_table,
319 		      xlat_ctx->pa_max_address, xlat_ctx->va_max_address,
320 		      EL1_EL0_REGIME);
321 
322 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), mair_el1,
323 		      mmu_cfg_params[MMU_CFG_MAIR]);
324 
325 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
326 #if (ERRATA_SPECULATIVE_AT)
327 	write_ctx_reg(get_errata_speculative_at_ctx(ctx),
328 		      CTX_ERRATA_SPEC_AT_TCR_EL1, mmu_cfg_params[MMU_CFG_TCR]);
329 #else
330 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), tcr_el1,
331 		      mmu_cfg_params[MMU_CFG_TCR]);
332 #endif /* ERRATA_SPECULATIVE_AT */
333 
334 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), ttbr0_el1,
335 		      mmu_cfg_params[MMU_CFG_TTBR0]);
336 }
337 
338 static void spmc_el0_sp_setup_sctlr_el1(cpu_context_t *ctx)
339 {
340 	u_register_t sctlr_el1_val;
341 
342 	/* Setup SCTLR_EL1 */
343 #if (ERRATA_SPECULATIVE_AT)
344 	sctlr_el1_val = read_ctx_reg(get_errata_speculative_at_ctx(ctx),
345 				 CTX_ERRATA_SPEC_AT_SCTLR_EL1);
346 #else
347 	sctlr_el1_val = read_el1_ctx_common(get_el1_sysregs_ctx(ctx), sctlr_el1);
348 #endif /* ERRATA_SPECULATIVE_AT */
349 
350 	sctlr_el1_val |=
351 		/*SCTLR_EL1_RES1 |*/
352 		/* Don't trap DC CVAU, DC CIVAC, DC CVAC, DC CVAP, or IC IVAU */
353 		SCTLR_UCI_BIT |
354 		/* RW regions at xlat regime EL1&0 are forced to be XN. */
355 		SCTLR_WXN_BIT |
356 		/* Don't trap to EL1 execution of WFI or WFE at EL0. */
357 		SCTLR_NTWI_BIT | SCTLR_NTWE_BIT |
358 		/* Don't trap to EL1 accesses to CTR_EL0 from EL0. */
359 		SCTLR_UCT_BIT |
360 		/* Don't trap to EL1 execution of DZ ZVA at EL0. */
361 		SCTLR_DZE_BIT |
362 		/* Enable SP Alignment check for EL0 */
363 		SCTLR_SA0_BIT |
364 		/* Don't change PSTATE.PAN on taking an exception to EL1 */
365 		SCTLR_SPAN_BIT |
366 		/* Allow cacheable data and instr. accesses to normal memory. */
367 		SCTLR_C_BIT | SCTLR_I_BIT |
368 		/* Enable MMU. */
369 		SCTLR_M_BIT;
370 
371 	sctlr_el1_val &= ~(
372 		/* Explicit data accesses at EL0 are little-endian. */
373 		SCTLR_E0E_BIT |
374 		/*
375 		 * Alignment fault checking disabled when at EL1 and EL0 as
376 		 * the UEFI spec permits unaligned accesses.
377 		 */
378 		SCTLR_A_BIT |
379 		/* Accesses to DAIF from EL0 are trapped to EL1. */
380 		SCTLR_UMA_BIT
381 	);
382 
383 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
384 #if (ERRATA_SPECULATIVE_AT)
385 	write_ctx_reg(get_errata_speculative_at_ctx(ctx),
386 		      CTX_ERRATA_SPEC_AT_SCTLR_EL1, sctlr_el1_val);
387 #else
388 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), sctlr_el1, sctlr_el1_val);
389 #endif /* ERRATA_SPECULATIVE_AT */
390 }
391 
392 static void spmc_el0_sp_setup_system_registers(struct secure_partition_desc *sp,
393 					       cpu_context_t *ctx)
394 {
395 
396 	spmc_el0_sp_setup_mmu(sp, ctx);
397 
398 	spmc_el0_sp_setup_sctlr_el1(ctx);
399 
400 	/* Setup other system registers. */
401 
402 	/* Shim Exception Vector Base Address */
403 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), vbar_el1,
404 			SPM_SHIM_EXCEPTIONS_PTR);
405 #if NS_TIMER_SWITCH
406 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), cntkctl_el1,
407 		      EL0PTEN_BIT | EL0VTEN_BIT | EL0PCTEN_BIT | EL0VCTEN_BIT);
408 #endif
409 
410 	/*
411 	 * FPEN: Allow the Secure Partition to access FP/SIMD registers.
412 	 * Note that SPM will not do any saving/restoring of these registers on
413 	 * behalf of the SP. This falls under the SP's responsibility.
414 	 * TTA: Enable access to trace registers.
415 	 * ZEN (v8.2): Trap SVE instructions and access to SVE registers.
416 	 */
417 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), cpacr_el1,
418 			CPACR_EL1_FPEN(CPACR_EL1_FP_TRAP_NONE));
419 }
420 
421 /* Setup context of an EL0 Secure Partition.  */
422 void spmc_el0_sp_setup(struct secure_partition_desc *sp,
423 		       int32_t boot_info_reg,
424 		       void *sp_manifest)
425 {
426 	mmap_region_t sel1_exception_vectors =
427 		MAP_REGION_FLAT(SPM_SHIM_EXCEPTIONS_START,
428 				SPM_SHIM_EXCEPTIONS_SIZE,
429 				MT_CODE | MT_SECURE | MT_PRIVILEGED);
430 	cpu_context_t *ctx;
431 	int node;
432 	int offset = 0;
433 
434 	ctx = &sp->ec[SEL0_SP_EC_INDEX].cpu_ctx;
435 
436 	sp->xlat_ctx_handle->xlat_regime = EL1_EL0_REGIME;
437 
438 	/* This region contains the exception vectors used at S-EL1. */
439 	mmap_add_region_ctx(sp->xlat_ctx_handle,
440 			    &sel1_exception_vectors);
441 
442 	/*
443 	 * If the SP manifest specified the register to pass the address of the
444 	 * boot information, then map the memory region to pass boot
445 	 * information.
446 	 */
447 	if (boot_info_reg >= 0) {
448 		mmap_region_t ffa_boot_info_region = MAP_REGION_FLAT(
449 			(uintptr_t) ffa_boot_info_mem,
450 			PAGE_SIZE,
451 			MT_RO_DATA | MT_SECURE | MT_USER);
452 		mmap_add_region_ctx(sp->xlat_ctx_handle, &ffa_boot_info_region);
453 	}
454 
455 	/*
456 	 * Parse the manifest for any device regions that the SP wants to be
457 	 * mapped in its translation regime.
458 	 */
459 	node = fdt_subnode_offset_namelen(sp_manifest, offset,
460 					  "device-regions",
461 					  sizeof("device-regions") - 1);
462 	if (node < 0) {
463 		WARN("Not found device-region configuration for SP.\n");
464 	} else {
465 		populate_sp_regions(sp, sp_manifest, node,
466 				    SP_MEM_REGION_DEVICE);
467 	}
468 
469 	/*
470 	 * Parse the manifest for any memory regions that the SP wants to be
471 	 * mapped in its translation regime.
472 	 */
473 	node = fdt_subnode_offset_namelen(sp_manifest, offset,
474 					  "memory-regions",
475 					  sizeof("memory-regions") - 1);
476 	if (node < 0) {
477 		WARN("Not found memory-region configuration for SP.\n");
478 	} else {
479 		populate_sp_regions(sp, sp_manifest, node,
480 				    SP_MEM_REGION_MEMORY);
481 	}
482 
483 	spmc_el0_sp_setup_system_registers(sp, ctx);
484 
485 }
486 #endif /* SPMC_AT_EL3_SEL0_SP */
487 
488 /* S-EL1 partition specific initialisation. */
489 void spmc_el1_sp_setup(struct secure_partition_desc *sp,
490 		       entry_point_info_t *ep_info)
491 {
492 	/* Sanity check input arguments. */
493 	assert(sp != NULL);
494 	assert(ep_info != NULL);
495 
496 	/* Initialise the SPSR for S-EL1 SPs. */
497 	ep_info->spsr =	SPSR_64(MODE_EL1, MODE_SP_ELX,
498 				DISABLE_ALL_EXCEPTIONS);
499 
500 	/*
501 	 * TF-A Implementation defined behaviour to provide the linear
502 	 * core ID in the x4 register.
503 	 */
504 	ep_info->args.arg4 = (uintptr_t) plat_my_core_pos();
505 
506 	/*
507 	 * Check whether setup is being performed for the primary or a secondary
508 	 * execution context. In the latter case, indicate to the SP that this
509 	 * is a warm boot.
510 	 * TODO: This check would need to be reworked if the same entry point is
511 	 * used for both primary and secondary initialisation.
512 	 */
513 	if (sp->secondary_ep != 0U) {
514 		/*
515 		 * Sanity check that the secondary entry point is still what was
516 		 * originally set.
517 		 */
518 		assert(sp->secondary_ep == ep_info->pc);
519 		ep_info->args.arg0 = FFA_WB_TYPE_S2RAM;
520 	}
521 }
522 
523 /* Common initialisation for all SPs. */
524 void spmc_sp_common_setup(struct secure_partition_desc *sp,
525 			  entry_point_info_t *ep_info,
526 			  int32_t boot_info_reg)
527 {
528 	uint16_t sp_id;
529 
530 	/* Assign FF-A Partition ID if not already assigned. */
531 	if (sp->sp_id == INV_SP_ID) {
532 		sp_id = FFA_SP_ID_BASE + ACTIVE_SP_DESC_INDEX;
533 		/*
534 		 * Ensure we don't clash with previously assigned partition
535 		 * IDs.
536 		 */
537 		while (!is_ffa_secure_id_valid(sp_id)) {
538 			sp_id++;
539 
540 			if (sp_id == FFA_SWD_ID_LIMIT) {
541 				ERROR("Unable to determine valid SP ID.\n");
542 				panic();
543 			}
544 		}
545 		sp->sp_id = sp_id;
546 	}
547 
548 	/* Check if the SP wants to use the FF-A boot protocol. */
549 	if (boot_info_reg >= 0) {
550 		/*
551 		 * Create a boot information descriptor and copy the partition
552 		 * manifest into the reserved memory region for consumption by
553 		 * the SP.
554 		 */
555 		spmc_create_boot_info(ep_info, sp);
556 
557 		/*
558 		 * We have consumed what we need from ep args so we can now
559 		 * zero them before we start populating with new information
560 		 * specifically for the SP.
561 		 */
562 		zeromem(&ep_info->args, sizeof(ep_info->args));
563 
564 		/*
565 		 * Pass the address of the boot information in the
566 		 * boot_info_reg.
567 		 */
568 		switch (boot_info_reg) {
569 		case 0:
570 			ep_info->args.arg0 = (uintptr_t) ffa_boot_info_mem;
571 			break;
572 		case 1:
573 			ep_info->args.arg1 = (uintptr_t) ffa_boot_info_mem;
574 			break;
575 		case 2:
576 			ep_info->args.arg2 = (uintptr_t) ffa_boot_info_mem;
577 			break;
578 		case 3:
579 			ep_info->args.arg3 = (uintptr_t) ffa_boot_info_mem;
580 			break;
581 		default:
582 			ERROR("Invalid value for \"gp-register-num\" %d.\n",
583 			      boot_info_reg);
584 		}
585 	} else {
586 		/*
587 		 * We don't need any of the information that was populated
588 		 * in ep_args so we can clear them.
589 		 */
590 		zeromem(&ep_info->args, sizeof(ep_info->args));
591 	}
592 }
593 
594 /*
595  * Initialise the SP context now we have populated the common and EL specific
596  * entrypoint information.
597  */
598 void spmc_sp_common_ep_commit(struct secure_partition_desc *sp,
599 			      entry_point_info_t *ep_info)
600 {
601 	cpu_context_t *cpu_ctx;
602 
603 	cpu_ctx = &(spmc_get_sp_ec(sp)->cpu_ctx);
604 	print_entry_point_info(ep_info);
605 	cm_setup_context(cpu_ctx, ep_info);
606 }
607