xref: /rk3399_ARM-atf/services/std_svc/sdei/sdei_intr_mgmt.c (revision 61f72a34250d063da67f4fc2b0eb8c3fda3376be)
1 /*
2  * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch_helpers.h>
8 #include <assert.h>
9 #include <bl_common.h>
10 #include <cassert.h>
11 #include <debug.h>
12 #include <ehf.h>
13 #include <interrupt_mgmt.h>
14 #include <runtime_svc.h>
15 #include <sdei.h>
16 #include <string.h>
17 #include "sdei_private.h"
18 
19 #define PE_MASKED	1
20 #define PE_NOT_MASKED	0
21 
22 /* x0-x17 GPREGS context */
23 #define SDEI_SAVED_GPREGS	18
24 
25 /* Maximum preemption nesting levels: Critical priority and Normal priority */
26 #define MAX_EVENT_NESTING	2
27 
28 /* Per-CPU SDEI state access macro */
29 #define sdei_get_this_pe_state()	(&sdei_cpu_state[plat_my_core_pos()])
30 
31 /* Structure to store information about an outstanding dispatch */
32 typedef struct sdei_dispatch_context {
33 	sdei_ev_map_t *map;
34 	uint64_t x[SDEI_SAVED_GPREGS];
35 	struct jmpbuf *dispatch_jmp;
36 
37 	/* Exception state registers */
38 	uint64_t elr_el3;
39 	uint64_t spsr_el3;
40 
41 #if DYNAMIC_WORKAROUND_CVE_2018_3639
42 	/* CVE-2018-3639 mitigation state */
43 	uint64_t disable_cve_2018_3639;
44 #endif
45 } sdei_dispatch_context_t;
46 
47 /* Per-CPU SDEI state data */
48 typedef struct sdei_cpu_state {
49 	sdei_dispatch_context_t dispatch_stack[MAX_EVENT_NESTING];
50 	unsigned short stack_top; /* Empty ascending */
51 	unsigned int pe_masked:1;
52 	unsigned int pending_enables:1;
53 } sdei_cpu_state_t;
54 
55 /* SDEI states for all cores in the system */
56 static sdei_cpu_state_t sdei_cpu_state[PLATFORM_CORE_COUNT];
57 
58 unsigned int sdei_pe_mask(void)
59 {
60 	unsigned int ret;
61 	sdei_cpu_state_t *state = sdei_get_this_pe_state();
62 
63 	/*
64 	 * Return value indicates whether this call had any effect in the mask
65 	 * status of this PE.
66 	 */
67 	ret = (state->pe_masked ^ PE_MASKED);
68 	state->pe_masked = PE_MASKED;
69 
70 	return ret;
71 }
72 
73 void sdei_pe_unmask(void)
74 {
75 	int i;
76 	sdei_ev_map_t *map;
77 	sdei_entry_t *se;
78 	sdei_cpu_state_t *state = sdei_get_this_pe_state();
79 	uint64_t my_mpidr = read_mpidr_el1() & MPIDR_AFFINITY_MASK;
80 
81 	/*
82 	 * If there are pending enables, iterate through the private mappings
83 	 * and enable those bound maps that are in enabled state. Also, iterate
84 	 * through shared mappings and enable interrupts of events that are
85 	 * targeted to this PE.
86 	 */
87 	if (state->pending_enables) {
88 		for_each_private_map(i, map) {
89 			se = get_event_entry(map);
90 			if (is_map_bound(map) && GET_EV_STATE(se, ENABLED))
91 				plat_ic_enable_interrupt(map->intr);
92 		}
93 
94 		for_each_shared_map(i, map) {
95 			se = get_event_entry(map);
96 
97 			sdei_map_lock(map);
98 			if (is_map_bound(map) &&
99 					GET_EV_STATE(se, ENABLED) &&
100 					(se->reg_flags == SDEI_REGF_RM_PE) &&
101 					(se->affinity == my_mpidr)) {
102 				plat_ic_enable_interrupt(map->intr);
103 			}
104 			sdei_map_unlock(map);
105 		}
106 	}
107 
108 	state->pending_enables = 0;
109 	state->pe_masked = PE_NOT_MASKED;
110 }
111 
112 /* Push a dispatch context to the dispatch stack */
113 static sdei_dispatch_context_t *push_dispatch(void)
114 {
115 	sdei_cpu_state_t *state = sdei_get_this_pe_state();
116 	sdei_dispatch_context_t *disp_ctx;
117 
118 	/* Cannot have more than max events */
119 	assert(state->stack_top < MAX_EVENT_NESTING);
120 
121 	disp_ctx = &state->dispatch_stack[state->stack_top];
122 	state->stack_top++;
123 
124 	return disp_ctx;
125 }
126 
127 /* Pop a dispatch context to the dispatch stack */
128 static sdei_dispatch_context_t *pop_dispatch(void)
129 {
130 	sdei_cpu_state_t *state = sdei_get_this_pe_state();
131 
132 	if (state->stack_top == 0)
133 		return NULL;
134 
135 	assert(state->stack_top <= MAX_EVENT_NESTING);
136 
137 	state->stack_top--;
138 
139 	return &state->dispatch_stack[state->stack_top];
140 }
141 
142 /* Retrieve the context at the top of dispatch stack */
143 static sdei_dispatch_context_t *get_outstanding_dispatch(void)
144 {
145 	sdei_cpu_state_t *state = sdei_get_this_pe_state();
146 
147 	if (state->stack_top == 0)
148 		return NULL;
149 
150 	assert(state->stack_top <= MAX_EVENT_NESTING);
151 
152 	return &state->dispatch_stack[state->stack_top - 1];
153 }
154 
155 static sdei_dispatch_context_t *save_event_ctx(sdei_ev_map_t *map,
156 		void *tgt_ctx)
157 {
158 	sdei_dispatch_context_t *disp_ctx;
159 	gp_regs_t *tgt_gpregs;
160 	el3_state_t *tgt_el3;
161 
162 	assert(tgt_ctx);
163 	tgt_gpregs = get_gpregs_ctx(tgt_ctx);
164 	tgt_el3 = get_el3state_ctx(tgt_ctx);
165 
166 	disp_ctx = push_dispatch();
167 	assert(disp_ctx);
168 	disp_ctx->map = map;
169 
170 	/* Save general purpose and exception registers */
171 	memcpy(disp_ctx->x, tgt_gpregs, sizeof(disp_ctx->x));
172 	disp_ctx->spsr_el3 = read_ctx_reg(tgt_el3, CTX_SPSR_EL3);
173 	disp_ctx->elr_el3 = read_ctx_reg(tgt_el3, CTX_ELR_EL3);
174 
175 	return disp_ctx;
176 }
177 
178 static void restore_event_ctx(sdei_dispatch_context_t *disp_ctx, void *tgt_ctx)
179 {
180 	gp_regs_t *tgt_gpregs;
181 	el3_state_t *tgt_el3;
182 
183 	assert(tgt_ctx);
184 	tgt_gpregs = get_gpregs_ctx(tgt_ctx);
185 	tgt_el3 = get_el3state_ctx(tgt_ctx);
186 
187 	CASSERT(sizeof(disp_ctx->x) == (SDEI_SAVED_GPREGS * sizeof(uint64_t)),
188 			foo);
189 
190 	/* Restore general purpose and exception registers */
191 	memcpy(tgt_gpregs, disp_ctx->x, sizeof(disp_ctx->x));
192 	write_ctx_reg(tgt_el3, CTX_SPSR_EL3, disp_ctx->spsr_el3);
193 	write_ctx_reg(tgt_el3, CTX_ELR_EL3, disp_ctx->elr_el3);
194 
195 #if DYNAMIC_WORKAROUND_CVE_2018_3639
196 	cve_2018_3639_t *tgt_cve_2018_3639;
197 	tgt_cve_2018_3639 = get_cve_2018_3639_ctx(tgt_ctx);
198 
199 	/* Restore CVE-2018-3639 mitigation state */
200 	write_ctx_reg(tgt_cve_2018_3639, CTX_CVE_2018_3639_DISABLE,
201 		disp_ctx->disable_cve_2018_3639);
202 #endif
203 }
204 
205 static void save_secure_context(void)
206 {
207 	cm_el1_sysregs_context_save(SECURE);
208 }
209 
210 /* Restore Secure context and arrange to resume it at the next ERET */
211 static void restore_and_resume_secure_context(void)
212 {
213 	cm_el1_sysregs_context_restore(SECURE);
214 	cm_set_next_eret_context(SECURE);
215 }
216 
217 /*
218  * Restore Non-secure context and arrange to resume it at the next ERET. Return
219  * pointer to the Non-secure context.
220  */
221 static cpu_context_t *restore_and_resume_ns_context(void)
222 {
223 	cpu_context_t *ns_ctx;
224 
225 	cm_el1_sysregs_context_restore(NON_SECURE);
226 	cm_set_next_eret_context(NON_SECURE);
227 
228 	ns_ctx = cm_get_context(NON_SECURE);
229 	assert(ns_ctx);
230 
231 	return ns_ctx;
232 }
233 
234 /*
235  * Populate the Non-secure context so that the next ERET will dispatch to the
236  * SDEI client.
237  */
238 static void setup_ns_dispatch(sdei_ev_map_t *map, sdei_entry_t *se,
239 		cpu_context_t *ctx, struct jmpbuf *dispatch_jmp)
240 {
241 	sdei_dispatch_context_t *disp_ctx;
242 
243 	/* Push the event and context */
244 	disp_ctx = save_event_ctx(map, ctx);
245 
246 	/*
247 	 * Setup handler arguments:
248 	 *
249 	 * - x0: Event number
250 	 * - x1: Handler argument supplied at the time of event registration
251 	 * - x2: Interrupted PC
252 	 * - x3: Interrupted SPSR
253 	 */
254 	SMC_SET_GP(ctx, CTX_GPREG_X0, map->ev_num);
255 	SMC_SET_GP(ctx, CTX_GPREG_X1, se->arg);
256 	SMC_SET_GP(ctx, CTX_GPREG_X2, disp_ctx->elr_el3);
257 	SMC_SET_GP(ctx, CTX_GPREG_X3, disp_ctx->spsr_el3);
258 
259 	/*
260 	 * Prepare for ERET:
261 	 *
262 	 * - Set PC to the registered handler address
263 	 * - Set SPSR to jump to client EL with exceptions masked
264 	 */
265 	cm_set_elr_spsr_el3(NON_SECURE, (uintptr_t) se->ep,
266 			SPSR_64(sdei_client_el(), MODE_SP_ELX,
267 				DISABLE_ALL_EXCEPTIONS));
268 
269 #if DYNAMIC_WORKAROUND_CVE_2018_3639
270 	cve_2018_3639_t *tgt_cve_2018_3639;
271 	tgt_cve_2018_3639 = get_cve_2018_3639_ctx(ctx);
272 
273 	/* Save CVE-2018-3639 mitigation state */
274 	disp_ctx->disable_cve_2018_3639 = read_ctx_reg(tgt_cve_2018_3639,
275 		CTX_CVE_2018_3639_DISABLE);
276 
277 	/* Force SDEI handler to execute with mitigation enabled by default */
278 	write_ctx_reg(tgt_cve_2018_3639, CTX_CVE_2018_3639_DISABLE, 0);
279 #endif
280 
281 	disp_ctx->dispatch_jmp = dispatch_jmp;
282 }
283 
284 /* Handle a triggered SDEI interrupt while events were masked on this PE */
285 static void handle_masked_trigger(sdei_ev_map_t *map, sdei_entry_t *se,
286 		sdei_cpu_state_t *state, unsigned int intr_raw)
287 {
288 	uint64_t my_mpidr __unused = (read_mpidr_el1() & MPIDR_AFFINITY_MASK);
289 	int disable = 0;
290 
291 	/* Nothing to do for event 0 */
292 	if (map->ev_num == SDEI_EVENT_0)
293 		return;
294 
295 	/*
296 	 * For a private event, or for a shared event specifically routed to
297 	 * this CPU, we disable interrupt, leave the interrupt pending, and do
298 	 * EOI.
299 	 */
300 	if (is_event_private(map)) {
301 		disable = 1;
302 	} else if (se->reg_flags == SDEI_REGF_RM_PE) {
303 		assert(se->affinity == my_mpidr);
304 		disable = 1;
305 	}
306 
307 	if (disable) {
308 		plat_ic_disable_interrupt(map->intr);
309 		plat_ic_set_interrupt_pending(map->intr);
310 		plat_ic_end_of_interrupt(intr_raw);
311 		state->pending_enables = 1;
312 
313 		return;
314 	}
315 
316 	/*
317 	 * We just received a shared event with routing set to ANY PE. The
318 	 * interrupt can't be delegated on this PE as SDEI events are masked.
319 	 * However, because its routing mode is ANY, it is possible that the
320 	 * event can be delegated on any other PE that hasn't masked events.
321 	 * Therefore, we set the interrupt back pending so as to give other
322 	 * suitable PEs a chance of handling it.
323 	 */
324 	assert(plat_ic_is_spi(map->intr));
325 	plat_ic_set_interrupt_pending(map->intr);
326 
327 	/*
328 	 * Leaving the same interrupt pending also means that the same interrupt
329 	 * can target this PE again as soon as this PE leaves EL3. Whether and
330 	 * how often that happens depends on the implementation of GIC.
331 	 *
332 	 * We therefore call a platform handler to resolve this situation.
333 	 */
334 	plat_sdei_handle_masked_trigger(my_mpidr, map->intr);
335 
336 	/* This PE is masked. We EOI the interrupt, as it can't be delegated */
337 	plat_ic_end_of_interrupt(intr_raw);
338 }
339 
340 /* SDEI main interrupt handler */
341 int sdei_intr_handler(uint32_t intr_raw, uint32_t flags, void *handle,
342 		void *cookie)
343 {
344 	sdei_entry_t *se;
345 	cpu_context_t *ctx;
346 	sdei_ev_map_t *map;
347 	sdei_dispatch_context_t *disp_ctx;
348 	unsigned int sec_state;
349 	sdei_cpu_state_t *state;
350 	uint32_t intr;
351 	struct jmpbuf dispatch_jmp;
352 
353 	/*
354 	 * To handle an event, the following conditions must be true:
355 	 *
356 	 * 1. Event must be signalled
357 	 * 2. Event must be enabled
358 	 * 3. This PE must be a target PE for the event
359 	 * 4. PE must be unmasked for SDEI
360 	 * 5. If this is a normal event, no event must be running
361 	 * 6. If this is a critical event, no critical event must be running
362 	 *
363 	 * (1) and (2) are true when this function is running
364 	 * (3) is enforced in GIC by selecting the appropriate routing option
365 	 * (4) is satisfied by client calling PE_UNMASK
366 	 * (5) and (6) is enforced using interrupt priority, the RPR, in GIC:
367 	 *   - Normal SDEI events belong to Normal SDE priority class
368 	 *   - Critical SDEI events belong to Critical CSDE priority class
369 	 *
370 	 * The interrupt has already been acknowledged, and therefore is active,
371 	 * so no other PE can handle this event while we are at it.
372 	 *
373 	 * Find if this is an SDEI interrupt. There must be an event mapped to
374 	 * this interrupt
375 	 */
376 	intr = plat_ic_get_interrupt_id(intr_raw);
377 	map = find_event_map_by_intr(intr, plat_ic_is_spi(intr));
378 	if (!map) {
379 		ERROR("No SDEI map for interrupt %u\n", intr);
380 		panic();
381 	}
382 
383 	/*
384 	 * Received interrupt number must either correspond to event 0, or must
385 	 * be bound interrupt.
386 	 */
387 	assert((map->ev_num == SDEI_EVENT_0) || is_map_bound(map));
388 
389 	se = get_event_entry(map);
390 	state = sdei_get_this_pe_state();
391 
392 	if (state->pe_masked == PE_MASKED) {
393 		/*
394 		 * Interrupts received while this PE was masked can't be
395 		 * dispatched.
396 		 */
397 		SDEI_LOG("interrupt %u on %lx while PE masked\n", map->intr,
398 				read_mpidr_el1());
399 		if (is_event_shared(map))
400 			sdei_map_lock(map);
401 
402 		handle_masked_trigger(map, se, state, intr_raw);
403 
404 		if (is_event_shared(map))
405 			sdei_map_unlock(map);
406 
407 		return 0;
408 	}
409 
410 	/* Insert load barrier for signalled SDEI event */
411 	if (map->ev_num == SDEI_EVENT_0)
412 		dmbld();
413 
414 	if (is_event_shared(map))
415 		sdei_map_lock(map);
416 
417 	/* Assert shared event routed to this PE had been configured so */
418 	if (is_event_shared(map) && (se->reg_flags == SDEI_REGF_RM_PE)) {
419 		assert(se->affinity ==
420 				(read_mpidr_el1() & MPIDR_AFFINITY_MASK));
421 	}
422 
423 	if (!can_sdei_state_trans(se, DO_DISPATCH)) {
424 		SDEI_LOG("SDEI event 0x%x can't be dispatched; state=0x%x\n",
425 				map->ev_num, se->state);
426 
427 		/*
428 		 * If the event is registered, leave the interrupt pending so
429 		 * that it's delivered when the event is enabled.
430 		 */
431 		if (GET_EV_STATE(se, REGISTERED))
432 			plat_ic_set_interrupt_pending(map->intr);
433 
434 		/*
435 		 * The interrupt was disabled or unregistered after the handler
436 		 * started to execute, which means now the interrupt is already
437 		 * disabled and we just need to EOI the interrupt.
438 		 */
439 		plat_ic_end_of_interrupt(intr_raw);
440 
441 		if (is_event_shared(map))
442 			sdei_map_unlock(map);
443 
444 		return 0;
445 	}
446 
447 	disp_ctx = get_outstanding_dispatch();
448 	if (is_event_critical(map)) {
449 		/*
450 		 * If this event is Critical, and if there's an outstanding
451 		 * dispatch, assert the latter is a Normal dispatch. Critical
452 		 * events can preempt an outstanding Normal event dispatch.
453 		 */
454 		if (disp_ctx)
455 			assert(is_event_normal(disp_ctx->map));
456 	} else {
457 		/*
458 		 * If this event is Normal, assert that there are no outstanding
459 		 * dispatches. Normal events can't preempt any outstanding event
460 		 * dispatches.
461 		 */
462 		assert(disp_ctx == NULL);
463 	}
464 
465 	sec_state = get_interrupt_src_ss(flags);
466 
467 	if (is_event_shared(map))
468 		sdei_map_unlock(map);
469 
470 	SDEI_LOG("ACK %lx, ev:%d ss:%d spsr:%lx ELR:%lx\n", read_mpidr_el1(),
471 			map->ev_num, sec_state, read_spsr_el3(),
472 			read_elr_el3());
473 
474 	ctx = handle;
475 
476 	/*
477 	 * Check if we interrupted secure state. Perform a context switch so
478 	 * that we can delegate to NS.
479 	 */
480 	if (sec_state == SECURE) {
481 		save_secure_context();
482 		ctx = restore_and_resume_ns_context();
483 	}
484 
485 	/* Synchronously dispatch event */
486 	setup_ns_dispatch(map, se, ctx, &dispatch_jmp);
487 	begin_sdei_synchronous_dispatch(&dispatch_jmp);
488 
489 	/*
490 	 * We reach here when client completes the event.
491 	 *
492 	 * If the cause of dispatch originally interrupted the Secure world, and
493 	 * if Non-secure world wasn't allowed to preempt Secure execution,
494 	 * resume Secure.
495 	 *
496 	 * No need to save the Non-secure context ahead of a world switch: the
497 	 * Non-secure context was fully saved before dispatch, and has been
498 	 * returned to its pre-dispatch state.
499 	 */
500 	if ((sec_state == SECURE) && (ehf_is_ns_preemption_allowed() == 0))
501 		restore_and_resume_secure_context();
502 
503 	/*
504 	 * The event was dispatched after receiving SDEI interrupt. With
505 	 * the event handling completed, EOI the corresponding
506 	 * interrupt.
507 	 */
508 	if ((map->ev_num != SDEI_EVENT_0) && !is_map_bound(map)) {
509 		ERROR("Invalid SDEI mapping: ev=%u\n", map->ev_num);
510 		panic();
511 	}
512 	plat_ic_end_of_interrupt(intr_raw);
513 
514 	if (is_event_shared(map))
515 		sdei_map_unlock(map);
516 
517 	return 0;
518 }
519 
520 /*
521  * Explicitly dispatch the given SDEI event.
522  *
523  * When calling this API, the caller must be prepared for the SDEI dispatcher to
524  * restore and make Non-secure context as active. This call returns only after
525  * the client has completed the dispatch. Then, the Non-secure context will be
526  * active, and the following ERET will return to Non-secure.
527  *
528  * Should the caller require re-entry to Secure, it must restore the Secure
529  * context and program registers for ERET.
530  */
531 int sdei_dispatch_event(int ev_num)
532 {
533 	sdei_entry_t *se;
534 	sdei_ev_map_t *map;
535 	cpu_context_t *ns_ctx;
536 	sdei_dispatch_context_t *disp_ctx;
537 	sdei_cpu_state_t *state;
538 	struct jmpbuf dispatch_jmp;
539 
540 	/* Can't dispatch if events are masked on this PE */
541 	state = sdei_get_this_pe_state();
542 	if (state->pe_masked == PE_MASKED)
543 		return -1;
544 
545 	/* Event 0 can't be dispatched */
546 	if (ev_num == SDEI_EVENT_0)
547 		return -1;
548 
549 	/* Locate mapping corresponding to this event */
550 	map = find_event_map(ev_num);
551 	if (!map)
552 		return -1;
553 
554 	/* Only explicit events can be dispatched */
555 	if (!is_map_explicit(map))
556 		return -1;
557 
558 	/* Examine state of dispatch stack */
559 	disp_ctx = get_outstanding_dispatch();
560 	if (disp_ctx) {
561 		/*
562 		 * There's an outstanding dispatch. If the outstanding dispatch
563 		 * is critical, no more dispatches are possible.
564 		 */
565 		if (is_event_critical(disp_ctx->map))
566 			return -1;
567 
568 		/*
569 		 * If the outstanding dispatch is Normal, only critical events
570 		 * can be dispatched.
571 		 */
572 		if (is_event_normal(map))
573 			return -1;
574 	}
575 
576 	se = get_event_entry(map);
577 	if (!can_sdei_state_trans(se, DO_DISPATCH))
578 		return -1;
579 
580 	/* Activate the priority corresponding to the event being dispatched */
581 	ehf_activate_priority(sdei_event_priority(map));
582 
583 	/*
584 	 * Prepare for NS dispatch by restoring the Non-secure context and
585 	 * marking that as active.
586 	 */
587 	ns_ctx = restore_and_resume_ns_context();
588 
589 	/* Dispatch event synchronously */
590 	setup_ns_dispatch(map, se, ns_ctx, &dispatch_jmp);
591 	begin_sdei_synchronous_dispatch(&dispatch_jmp);
592 
593 	/*
594 	 * We reach here when client completes the event.
595 	 *
596 	 * Deactivate the priority level that was activated at the time of
597 	 * explicit dispatch.
598 	 */
599 	ehf_deactivate_priority(sdei_event_priority(map));
600 
601 	return 0;
602 }
603 
604 static void end_sdei_synchronous_dispatch(struct jmpbuf *buffer)
605 {
606 	longjmp(buffer);
607 }
608 
609 int sdei_event_complete(int resume, uint64_t pc)
610 {
611 	sdei_dispatch_context_t *disp_ctx;
612 	sdei_entry_t *se;
613 	sdei_ev_map_t *map;
614 	cpu_context_t *ctx;
615 	sdei_action_t act;
616 	unsigned int client_el = sdei_client_el();
617 
618 	/* Return error if called without an active event */
619 	disp_ctx = get_outstanding_dispatch();
620 	if (!disp_ctx)
621 		return SDEI_EDENY;
622 
623 	/* Validate resumption point */
624 	if (resume && (plat_sdei_validate_entry_point(pc, client_el) != 0))
625 		return SDEI_EDENY;
626 
627 	map = disp_ctx->map;
628 	assert(map);
629 	se = get_event_entry(map);
630 
631 	act = resume ? DO_COMPLETE_RESUME : DO_COMPLETE;
632 	if (!can_sdei_state_trans(se, act)) {
633 		if (is_event_shared(map))
634 			sdei_map_unlock(map);
635 		return SDEI_EDENY;
636 	}
637 
638 	/* Having done sanity checks, pop dispatch */
639 	pop_dispatch();
640 
641 	SDEI_LOG("EOI:%lx, %d spsr:%lx elr:%lx\n", read_mpidr_el1(),
642 			map->ev_num, read_spsr_el3(), read_elr_el3());
643 
644 	if (is_event_shared(map))
645 		sdei_map_lock(map);
646 
647 	/*
648 	 * Restore Non-secure to how it was originally interrupted. Once done,
649 	 * it's up-to-date with the saved copy.
650 	 */
651 	ctx = cm_get_context(NON_SECURE);
652 	restore_event_ctx(disp_ctx, ctx);
653 
654 	if (resume) {
655 		/*
656 		 * Complete-and-resume call. Prepare the Non-secure context
657 		 * (currently active) for complete and resume.
658 		 */
659 		cm_set_elr_spsr_el3(NON_SECURE, pc, SPSR_64(client_el,
660 					MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
661 
662 		/*
663 		 * Make it look as if a synchronous exception were taken at the
664 		 * supplied Non-secure resumption point. Populate SPSR and
665 		 * ELR_ELx so that an ERET from there works as expected.
666 		 *
667 		 * The assumption is that the client, if necessary, would have
668 		 * saved any live content in these registers before making this
669 		 * call.
670 		 */
671 		if (client_el == MODE_EL2) {
672 			write_elr_el2(disp_ctx->elr_el3);
673 			write_spsr_el2(disp_ctx->spsr_el3);
674 		} else {
675 			/* EL1 */
676 			write_elr_el1(disp_ctx->elr_el3);
677 			write_spsr_el1(disp_ctx->spsr_el3);
678 		}
679 	}
680 
681 	/* End the outstanding dispatch */
682 	end_sdei_synchronous_dispatch(disp_ctx->dispatch_jmp);
683 
684 	return 0;
685 }
686 
687 int sdei_event_context(void *handle, unsigned int param)
688 {
689 	sdei_dispatch_context_t *disp_ctx;
690 
691 	if (param >= SDEI_SAVED_GPREGS)
692 		return SDEI_EINVAL;
693 
694 	/* Get outstanding dispatch on this CPU */
695 	disp_ctx = get_outstanding_dispatch();
696 	if (!disp_ctx)
697 		return SDEI_EDENY;
698 
699 	assert(disp_ctx->map);
700 
701 	if (!can_sdei_state_trans(get_event_entry(disp_ctx->map), DO_CONTEXT))
702 		return SDEI_EDENY;
703 
704 	/*
705 	 * No locking is required for the Running status as this is the only CPU
706 	 * which can complete the event
707 	 */
708 
709 	return disp_ctx->x[param];
710 }
711