xref: /rk3399_ARM-atf/plat/nvidia/tegra/soc/t186/drivers/mce/ari.c (revision 936840f143ca6eba09a78367afe047136c33a4ee)
1 /*
2  * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/debug.h>
13 #include <drivers/delay_timer.h>
14 #include <denver.h>
15 #include <lib/mmio.h>
16 #include <plat/common/platform.h>
17 
18 #include <mce_private.h>
19 #include <t18x_ari.h>
20 
21 /*******************************************************************************
22  * Register offsets for ARI request/results
23  ******************************************************************************/
24 #define ARI_REQUEST			0x0U
25 #define ARI_REQUEST_EVENT_MASK		0x4U
26 #define ARI_STATUS			0x8U
27 #define ARI_REQUEST_DATA_LO		0xCU
28 #define ARI_REQUEST_DATA_HI		0x10U
29 #define ARI_RESPONSE_DATA_LO		0x14U
30 #define ARI_RESPONSE_DATA_HI		0x18U
31 
32 /* Status values for the current request */
33 #define ARI_REQ_PENDING			1U
34 #define ARI_REQ_ONGOING			3U
35 #define ARI_REQUEST_VALID_BIT		(1U << 8)
36 #define ARI_EVT_MASK_STANDBYWFI_BIT	(1U << 7)
37 
38 /* default timeout (ms) to wait for ARI completion */
39 #define ARI_MAX_RETRY_COUNT		2000
40 
41 /*******************************************************************************
42  * ARI helper functions
43  ******************************************************************************/
44 static inline uint32_t ari_read_32(uint32_t ari_base, uint32_t reg)
45 {
46 	return mmio_read_32((uint64_t)ari_base + (uint64_t)reg);
47 }
48 
49 static inline void ari_write_32(uint32_t ari_base, uint32_t val, uint32_t reg)
50 {
51 	mmio_write_32((uint64_t)ari_base + (uint64_t)reg, val);
52 }
53 
54 static inline uint32_t ari_get_request_low(uint32_t ari_base)
55 {
56 	return ari_read_32(ari_base, ARI_REQUEST_DATA_LO);
57 }
58 
59 static inline uint32_t ari_get_request_high(uint32_t ari_base)
60 {
61 	return ari_read_32(ari_base, ARI_REQUEST_DATA_HI);
62 }
63 
64 static inline uint32_t ari_get_response_low(uint32_t ari_base)
65 {
66 	return ari_read_32(ari_base, ARI_RESPONSE_DATA_LO);
67 }
68 
69 static inline uint32_t ari_get_response_high(uint32_t ari_base)
70 {
71 	return ari_read_32(ari_base, ARI_RESPONSE_DATA_HI);
72 }
73 
74 static inline void ari_clobber_response(uint32_t ari_base)
75 {
76 	ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_LO);
77 	ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_HI);
78 }
79 
80 static int32_t ari_request_wait(uint32_t ari_base, uint32_t evt_mask, uint32_t req,
81 		uint32_t lo, uint32_t hi)
82 {
83 	uint32_t retries = ARI_MAX_RETRY_COUNT;
84 	uint32_t status;
85 	int32_t ret = 0;
86 
87 	/* program the request, event_mask, hi and lo registers */
88 	ari_write_32(ari_base, lo, ARI_REQUEST_DATA_LO);
89 	ari_write_32(ari_base, hi, ARI_REQUEST_DATA_HI);
90 	ari_write_32(ari_base, evt_mask, ARI_REQUEST_EVENT_MASK);
91 	ari_write_32(ari_base, req | ARI_REQUEST_VALID_BIT, ARI_REQUEST);
92 
93 	/*
94 	 * For commands that have an event trigger, we should bypass
95 	 * ARI_STATUS polling, since MCE is waiting for SW to trigger
96 	 * the event.
97 	 */
98 	if (evt_mask != 0U) {
99 		ret = 0;
100 	} else {
101 		/* For shutdown/reboot commands, we dont have to check for timeouts */
102 		if ((req == TEGRA_ARI_MISC_CCPLEX) &&
103 		    ((lo == TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF) ||
104 		     (lo == TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT))) {
105 				ret = 0;
106 		} else {
107 			/*
108 			 * Wait for the command response for not more than the timeout
109 			 */
110 			while (retries != 0U) {
111 
112 				/* read the command status */
113 				status = ari_read_32(ari_base, ARI_STATUS);
114 				if ((status & (ARI_REQ_ONGOING | ARI_REQ_PENDING)) == 0U) {
115 					break;
116 				}
117 
118 				/* delay 1 ms */
119 				mdelay(1);
120 
121 				/* decrement the retry count */
122 				retries--;
123 			}
124 
125 			/* assert if the command timed out */
126 			if (retries == 0U) {
127 				ERROR("ARI request timed out: req %d on CPU %d\n",
128 					req, plat_my_core_pos());
129 				assert(retries != 0U);
130 			}
131 		}
132 	}
133 
134 	return ret;
135 }
136 
137 int32_t ari_enter_cstate(uint32_t ari_base, uint32_t state, uint32_t wake_time)
138 {
139 	int32_t ret = 0;
140 
141 	/* check for allowed power state */
142 	if ((state != TEGRA_ARI_CORE_C0) &&
143 	    (state != TEGRA_ARI_CORE_C1) &&
144 	    (state != TEGRA_ARI_CORE_C6) &&
145 	    (state != TEGRA_ARI_CORE_C7)) {
146 		ERROR("%s: unknown cstate (%d)\n", __func__, state);
147 		ret = EINVAL;
148 	} else {
149 		/* clean the previous response state */
150 		ari_clobber_response(ari_base);
151 
152 		/* Enter the cstate, to be woken up after wake_time (TSC ticks) */
153 		ret = ari_request_wait(ari_base, ARI_EVT_MASK_STANDBYWFI_BIT,
154 		TEGRA_ARI_ENTER_CSTATE, state, wake_time);
155 	}
156 
157 	return ret;
158 }
159 
160 int32_t ari_update_cstate_info(uint32_t ari_base, uint32_t cluster, uint32_t ccplex,
161 	uint32_t system, uint8_t sys_state_force, uint32_t wake_mask,
162 	uint8_t update_wake_mask)
163 {
164 	uint64_t val = 0U;
165 
166 	/* clean the previous response state */
167 	ari_clobber_response(ari_base);
168 
169 	/* update CLUSTER_CSTATE? */
170 	if (cluster != 0U) {
171 		val |= (cluster & CLUSTER_CSTATE_MASK) |
172 			CLUSTER_CSTATE_UPDATE_BIT;
173 	}
174 
175 	/* update CCPLEX_CSTATE? */
176 	if (ccplex != 0U) {
177 		val |= ((ccplex & CCPLEX_CSTATE_MASK) << CCPLEX_CSTATE_SHIFT) |
178 			CCPLEX_CSTATE_UPDATE_BIT;
179 	}
180 
181 	/* update SYSTEM_CSTATE? */
182 	if (system != 0U) {
183 		val |= ((system & SYSTEM_CSTATE_MASK) << SYSTEM_CSTATE_SHIFT) |
184 		       (((uint64_t)sys_state_force << SYSTEM_CSTATE_FORCE_UPDATE_SHIFT) |
185 			SYSTEM_CSTATE_UPDATE_BIT);
186 	}
187 
188 	/* update wake mask value? */
189 	if (update_wake_mask != 0U) {
190 		val |= CSTATE_WAKE_MASK_UPDATE_BIT;
191 	}
192 
193 	/* set the updated cstate info */
194 	return ari_request_wait(ari_base, 0U, TEGRA_ARI_UPDATE_CSTATE_INFO,
195 				(uint32_t)val, wake_mask);
196 }
197 
198 int32_t ari_update_crossover_time(uint32_t ari_base, uint32_t type, uint32_t time)
199 {
200 	int32_t ret = 0;
201 
202 	/* sanity check crossover type */
203 	if ((type == TEGRA_ARI_CROSSOVER_C1_C6) ||
204 	    (type > TEGRA_ARI_CROSSOVER_CCP3_SC1)) {
205 		ret = EINVAL;
206 	} else {
207 		/* clean the previous response state */
208 		ari_clobber_response(ari_base);
209 
210 		/* update crossover threshold time */
211 		ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_UPDATE_CROSSOVER,
212 			type, time);
213 	}
214 
215 	return ret;
216 }
217 
218 uint64_t ari_read_cstate_stats(uint32_t ari_base, uint32_t state)
219 {
220 	int32_t ret;
221 	uint64_t result;
222 
223 	/* sanity check crossover type */
224 	if (state == 0U) {
225 		result = EINVAL;
226 	} else {
227 		/* clean the previous response state */
228 		ari_clobber_response(ari_base);
229 
230 		ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_CSTATE_STATS, state, 0U);
231 		if (ret != 0) {
232 			result = EINVAL;
233 		} else {
234 			result = (uint64_t)ari_get_response_low(ari_base);
235 		}
236 	}
237 	return result;
238 }
239 
240 int32_t ari_write_cstate_stats(uint32_t ari_base, uint32_t state, uint32_t stats)
241 {
242 	/* clean the previous response state */
243 	ari_clobber_response(ari_base);
244 
245 	/* write the cstate stats */
246 	return ari_request_wait(ari_base, 0U, TEGRA_ARI_WRITE_CSTATE_STATS, state,
247 			stats);
248 }
249 
250 uint64_t ari_enumeration_misc(uint32_t ari_base, uint32_t cmd, uint32_t data)
251 {
252 	uint64_t resp;
253 	int32_t ret;
254 	uint32_t local_data = data;
255 
256 	/* clean the previous response state */
257 	ari_clobber_response(ari_base);
258 
259 	/* ARI_REQUEST_DATA_HI is reserved for commands other than 'ECHO' */
260 	if (cmd != TEGRA_ARI_MISC_ECHO) {
261 		local_data = 0U;
262 	}
263 
264 	ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_MISC, cmd, local_data);
265 	if (ret != 0) {
266 		resp = (uint64_t)ret;
267 	} else {
268 		/* get the command response */
269 		resp = ari_get_response_low(ari_base);
270 		resp |= ((uint64_t)ari_get_response_high(ari_base) << 32);
271 	}
272 
273 	return resp;
274 }
275 
276 int32_t ari_is_ccx_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
277 {
278 	int32_t ret;
279 	uint32_t result;
280 
281 	/* clean the previous response state */
282 	ari_clobber_response(ari_base);
283 
284 	ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_IS_CCX_ALLOWED, state & 0x7U,
285 			wake_time);
286 	if (ret != 0) {
287 		ERROR("%s: failed (%d)\n", __func__, ret);
288 		result = 0U;
289 	} else {
290 		result = ari_get_response_low(ari_base) & 0x1U;
291 	}
292 
293 	/* 1 = CCx allowed, 0 = CCx not allowed */
294 	return (int32_t)result;
295 }
296 
297 int32_t ari_is_sc7_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
298 {
299 	int32_t ret, result;
300 
301 	/* check for allowed power state */
302 	if ((state != TEGRA_ARI_CORE_C0) && (state != TEGRA_ARI_CORE_C1) &&
303 	    (state != TEGRA_ARI_CORE_C6) && (state != TEGRA_ARI_CORE_C7)) {
304 		ERROR("%s: unknown cstate (%d)\n", __func__, state);
305 		result = EINVAL;
306 	} else {
307 		/* clean the previous response state */
308 		ari_clobber_response(ari_base);
309 
310 		ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_IS_SC7_ALLOWED, state,
311 				wake_time);
312 		if (ret != 0) {
313 			ERROR("%s: failed (%d)\n", __func__, ret);
314 			result = 0;
315 		} else {
316 			/* 1 = SC7 allowed, 0 = SC7 not allowed */
317 			result = (ari_get_response_low(ari_base) != 0U) ? 1 : 0;
318 		}
319 	}
320 
321 	return result;
322 }
323 
324 int32_t ari_online_core(uint32_t ari_base, uint32_t core)
325 {
326 	uint64_t cpu = read_mpidr() & (MPIDR_CPU_MASK);
327 	uint64_t cluster = (read_mpidr() & (MPIDR_CLUSTER_MASK)) >>
328 			   (MPIDR_AFFINITY_BITS);
329 	uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;
330 	int32_t ret;
331 
332 	/* construct the current CPU # */
333 	cpu |= (cluster << 2);
334 
335 	/* sanity check target core id */
336 	if ((core >= MCE_CORE_ID_MAX) || (cpu == (uint64_t)core)) {
337 		ERROR("%s: unsupported core id (%d)\n", __func__, core);
338 		ret = EINVAL;
339 	} else {
340 		/*
341 		 * The Denver cluster has 2 CPUs only - 0, 1.
342 		 */
343 		if ((impl == DENVER_IMPL) && ((core == 2U) || (core == 3U))) {
344 			ERROR("%s: unknown core id (%d)\n", __func__, core);
345 			ret = EINVAL;
346 		} else {
347 			/* clean the previous response state */
348 			ari_clobber_response(ari_base);
349 			ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_ONLINE_CORE, core, 0U);
350 		}
351 	}
352 
353 	return ret;
354 }
355 
356 int32_t ari_cc3_ctrl(uint32_t ari_base, uint32_t freq, uint32_t volt, uint8_t enable)
357 {
358 	uint32_t val;
359 
360 	/* clean the previous response state */
361 	ari_clobber_response(ari_base);
362 
363 	/*
364 	 * If the enable bit is cleared, Auto-CC3 will be disabled by setting
365 	 * the SW visible voltage/frequency request registers for all non
366 	 * floorswept cores valid independent of StandbyWFI and disabling
367 	 * the IDLE voltage/frequency request register. If set, Auto-CC3
368 	 * will be enabled by setting the ARM SW visible voltage/frequency
369 	 * request registers for all non floorswept cores to be enabled by
370 	 * StandbyWFI or the equivalent signal, and always keeping the IDLE
371 	 * voltage/frequency request register enabled.
372 	 */
373 	val = (((freq & MCE_AUTO_CC3_FREQ_MASK) << MCE_AUTO_CC3_FREQ_SHIFT) |\
374 		((volt & MCE_AUTO_CC3_VTG_MASK) << MCE_AUTO_CC3_VTG_SHIFT) |\
375 		((enable != 0U) ? MCE_AUTO_CC3_ENABLE_BIT : 0U));
376 
377 	return ari_request_wait(ari_base, 0U, TEGRA_ARI_CC3_CTRL, val, 0U);
378 }
379 
380 int32_t ari_reset_vector_update(uint32_t ari_base)
381 {
382 	/* clean the previous response state */
383 	ari_clobber_response(ari_base);
384 
385 	/*
386 	 * Need to program the CPU reset vector one time during cold boot
387 	 * and SC7 exit
388 	 */
389 	(void)ari_request_wait(ari_base, 0U, TEGRA_ARI_COPY_MISCREG_AA64_RST, 0U, 0U);
390 
391 	return 0;
392 }
393 
394 int32_t ari_roc_flush_cache_trbits(uint32_t ari_base)
395 {
396 	/* clean the previous response state */
397 	ari_clobber_response(ari_base);
398 
399 	return ari_request_wait(ari_base, 0U, TEGRA_ARI_ROC_FLUSH_CACHE_TRBITS,
400 			0U, 0U);
401 }
402 
403 int32_t ari_roc_flush_cache(uint32_t ari_base)
404 {
405 	/* clean the previous response state */
406 	ari_clobber_response(ari_base);
407 
408 	return ari_request_wait(ari_base, 0U, TEGRA_ARI_ROC_FLUSH_CACHE_ONLY,
409 			0U, 0U);
410 }
411 
412 int32_t ari_roc_clean_cache(uint32_t ari_base)
413 {
414 	/* clean the previous response state */
415 	ari_clobber_response(ari_base);
416 
417 	return ari_request_wait(ari_base, 0U, TEGRA_ARI_ROC_CLEAN_CACHE_ONLY,
418 			0U, 0U);
419 }
420 
421 uint64_t ari_read_write_mca(uint32_t ari_base, uint64_t cmd, uint64_t *data)
422 {
423 	uint64_t mca_arg_data, result = 0;
424 	uint32_t resp_lo, resp_hi;
425 	uint32_t mca_arg_err, mca_arg_finish;
426 	int32_t ret;
427 
428 	/* Set data (write) */
429 	mca_arg_data = (data != NULL) ? *data : 0ULL;
430 
431 	/* Set command */
432 	ari_write_32(ari_base, (uint32_t)cmd, ARI_RESPONSE_DATA_LO);
433 	ari_write_32(ari_base, (uint32_t)(cmd >> 32U), ARI_RESPONSE_DATA_HI);
434 
435 	ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_MCA,
436 			       (uint32_t)mca_arg_data,
437 			       (uint32_t)(mca_arg_data >> 32U));
438 	if (ret == 0) {
439 		resp_lo = ari_get_response_low(ari_base);
440 		resp_hi = ari_get_response_high(ari_base);
441 
442 		mca_arg_err = resp_lo & MCA_ARG_ERROR_MASK;
443 		mca_arg_finish = (resp_hi >> MCA_ARG_FINISH_SHIFT) &
444 				 MCA_ARG_FINISH_MASK;
445 
446 		if (mca_arg_finish == 0U) {
447 			result = (uint64_t)mca_arg_err;
448 		} else {
449 			if (data != NULL) {
450 				resp_lo = ari_get_request_low(ari_base);
451 				resp_hi = ari_get_request_high(ari_base);
452 				*data = ((uint64_t)resp_hi << 32U) |
453 					 (uint64_t)resp_lo;
454 			}
455 		}
456 	}
457 
458 	return result;
459 }
460 
461 int32_t ari_update_ccplex_gsc(uint32_t ari_base, uint32_t gsc_idx)
462 {
463 	int32_t ret = 0;
464 	/* sanity check GSC ID */
465 	if (gsc_idx > TEGRA_ARI_GSC_VPR_IDX) {
466 		ret = EINVAL;
467 	} else {
468 		/* clean the previous response state */
469 		ari_clobber_response(ari_base);
470 
471 		/*
472 		 * The MCE code will read the GSC carveout value, corrseponding to
473 		 * the ID, from the MC registers and update the internal GSC registers
474 		 * of the CCPLEX.
475 		 */
476 		(void)ari_request_wait(ari_base, 0U, TEGRA_ARI_UPDATE_CCPLEX_GSC, gsc_idx, 0U);
477 	}
478 
479 	return ret;
480 }
481 
482 void ari_enter_ccplex_state(uint32_t ari_base, uint32_t state_idx)
483 {
484 	/* clean the previous response state */
485 	ari_clobber_response(ari_base);
486 
487 	/*
488 	 * The MCE will shutdown or restart the entire system
489 	 */
490 	(void)ari_request_wait(ari_base, 0U, TEGRA_ARI_MISC_CCPLEX, state_idx, 0U);
491 }
492 
493 int32_t ari_read_write_uncore_perfmon(uint32_t ari_base, uint64_t req,
494 		uint64_t *data)
495 {
496 	int32_t ret, result;
497 	uint32_t val, req_status;
498 	uint8_t req_cmd;
499 
500 	req_cmd = (uint8_t)(req >> UNCORE_PERFMON_CMD_SHIFT);
501 
502 	/* clean the previous response state */
503 	ari_clobber_response(ari_base);
504 
505 	/* sanity check input parameters */
506 	if ((req_cmd == UNCORE_PERFMON_CMD_READ) && (data == NULL)) {
507 		ERROR("invalid parameters\n");
508 		result = EINVAL;
509 	} else {
510 		/*
511 		 * For "write" commands get the value that has to be written
512 		 * to the uncore perfmon registers
513 		 */
514 		val = (req_cmd == UNCORE_PERFMON_CMD_WRITE) ?
515 			(uint32_t)*data : 0U;
516 
517 		ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_PERFMON, val,
518 				       (uint32_t)req);
519 		if (ret != 0) {
520 			result = ret;
521 		} else {
522 			/* read the command status value */
523 			req_status = ari_get_response_high(ari_base) &
524 					 UNCORE_PERFMON_RESP_STATUS_MASK;
525 
526 			/*
527 			 * For "read" commands get the data from the uncore
528 			 * perfmon registers
529 			 */
530 			req_status >>= UNCORE_PERFMON_RESP_STATUS_SHIFT;
531 			if ((req_status == 0U) && (req_cmd == UNCORE_PERFMON_CMD_READ)) {
532 				*data = ari_get_response_low(ari_base);
533 			}
534 			result = (int32_t)req_status;
535 		}
536 	}
537 
538 	return result;
539 }
540 
541 void ari_misc_ccplex(uint32_t ari_base, uint32_t index, uint32_t value)
542 {
543 	/*
544 	 * This invokes the ARI_MISC_CCPLEX commands. This can be
545 	 * used to enable/disable coresight clock gating.
546 	 */
547 
548 	if ((index > TEGRA_ARI_MISC_CCPLEX_EDBGREQ) ||
549 		((index == TEGRA_ARI_MISC_CCPLEX_CORESIGHT_CG_CTRL) &&
550 		(value > 1U))) {
551 		ERROR("%s: invalid parameters \n", __func__);
552 	} else {
553 		/* clean the previous response state */
554 		ari_clobber_response(ari_base);
555 		(void)ari_request_wait(ari_base, 0U, TEGRA_ARI_MISC_CCPLEX, index, value);
556 	}
557 }
558