xref: /rk3399_ARM-atf/plat/nvidia/tegra/soc/t186/drivers/mce/ari.c (revision 8668fe0c80bf579d697f1e71c62cd8e8d5e7231d)
1 /*
2  * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/debug.h>
13 #include <drivers/delay_timer.h>
14 #include <denver.h>
15 #include <lib/mmio.h>
16 #include <plat/common/platform.h>
17 
18 #include <mce_private.h>
19 #include <t18x_ari.h>
20 
21 /*******************************************************************************
22  * Register offsets for ARI request/results
23  ******************************************************************************/
24 #define ARI_REQUEST			0x0U
25 #define ARI_REQUEST_EVENT_MASK		0x4U
26 #define ARI_STATUS			0x8U
27 #define ARI_REQUEST_DATA_LO		0xCU
28 #define ARI_REQUEST_DATA_HI		0x10U
29 #define ARI_RESPONSE_DATA_LO		0x14U
30 #define ARI_RESPONSE_DATA_HI		0x18U
31 
32 /* Status values for the current request */
33 #define ARI_REQ_PENDING			1U
34 #define ARI_REQ_ONGOING			3U
35 #define ARI_REQUEST_VALID_BIT		(1U << 8)
36 #define ARI_EVT_MASK_STANDBYWFI_BIT	(1U << 7)
37 
38 /* default timeout (ms) to wait for ARI completion */
39 #define ARI_MAX_RETRY_COUNT		2000
40 
41 /*******************************************************************************
42  * ARI helper functions
43  ******************************************************************************/
44 static inline uint32_t ari_read_32(uint32_t ari_base, uint32_t reg)
45 {
46 	return mmio_read_32((uint64_t)ari_base + (uint64_t)reg);
47 }
48 
49 static inline void ari_write_32(uint32_t ari_base, uint32_t val, uint32_t reg)
50 {
51 	mmio_write_32((uint64_t)ari_base + (uint64_t)reg, val);
52 }
53 
54 static inline uint32_t ari_get_request_low(uint32_t ari_base)
55 {
56 	return ari_read_32(ari_base, ARI_REQUEST_DATA_LO);
57 }
58 
59 static inline uint32_t ari_get_request_high(uint32_t ari_base)
60 {
61 	return ari_read_32(ari_base, ARI_REQUEST_DATA_HI);
62 }
63 
64 static inline uint32_t ari_get_response_low(uint32_t ari_base)
65 {
66 	return ari_read_32(ari_base, ARI_RESPONSE_DATA_LO);
67 }
68 
69 static inline uint32_t ari_get_response_high(uint32_t ari_base)
70 {
71 	return ari_read_32(ari_base, ARI_RESPONSE_DATA_HI);
72 }
73 
74 static inline void ari_clobber_response(uint32_t ari_base)
75 {
76 	ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_LO);
77 	ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_HI);
78 }
79 
80 static int32_t ari_request_wait(uint32_t ari_base, uint32_t evt_mask, uint32_t req,
81 		uint32_t lo, uint32_t hi)
82 {
83 	uint32_t retries = ARI_MAX_RETRY_COUNT;
84 	uint32_t status;
85 	int32_t ret = 0;
86 
87 	/* program the request, event_mask, hi and lo registers */
88 	ari_write_32(ari_base, lo, ARI_REQUEST_DATA_LO);
89 	ari_write_32(ari_base, hi, ARI_REQUEST_DATA_HI);
90 	ari_write_32(ari_base, evt_mask, ARI_REQUEST_EVENT_MASK);
91 	ari_write_32(ari_base, req | ARI_REQUEST_VALID_BIT, ARI_REQUEST);
92 
93 	/*
94 	 * For commands that have an event trigger, we should bypass
95 	 * ARI_STATUS polling, since MCE is waiting for SW to trigger
96 	 * the event.
97 	 */
98 	if (evt_mask != 0U) {
99 		ret = 0;
100 	} else {
101 		/* For shutdown/reboot commands, we dont have to check for timeouts */
102 		if ((req == (uint32_t)TEGRA_ARI_MISC_CCPLEX) &&
103 		    ((lo == (uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF) ||
104 		     (lo == (uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT))) {
105 				ret = 0;
106 		} else {
107 			/*
108 			 * Wait for the command response for not more than the timeout
109 			 */
110 			while (retries != 0U) {
111 
112 				/* read the command status */
113 				status = ari_read_32(ari_base, ARI_STATUS);
114 				if ((status & (ARI_REQ_ONGOING | ARI_REQ_PENDING)) == 0U) {
115 					break;
116 				}
117 
118 				/* delay 1 ms */
119 				mdelay(1);
120 
121 				/* decrement the retry count */
122 				retries--;
123 			}
124 
125 			/* assert if the command timed out */
126 			if (retries == 0U) {
127 				ERROR("ARI request timed out: req %d on CPU %d\n",
128 					req, plat_my_core_pos());
129 				assert(retries != 0U);
130 			}
131 		}
132 	}
133 
134 	return ret;
135 }
136 
137 int32_t ari_enter_cstate(uint32_t ari_base, uint32_t state, uint32_t wake_time)
138 {
139 	int32_t ret = 0;
140 
141 	/* check for allowed power state */
142 	if ((state != TEGRA_ARI_CORE_C0) &&
143 	    (state != TEGRA_ARI_CORE_C1) &&
144 	    (state != TEGRA_ARI_CORE_C6) &&
145 	    (state != TEGRA_ARI_CORE_C7)) {
146 		ERROR("%s: unknown cstate (%d)\n", __func__, state);
147 		ret = EINVAL;
148 	} else {
149 		/* clean the previous response state */
150 		ari_clobber_response(ari_base);
151 
152 		/* Enter the cstate, to be woken up after wake_time (TSC ticks) */
153 		ret = ari_request_wait(ari_base, ARI_EVT_MASK_STANDBYWFI_BIT,
154 		TEGRA_ARI_ENTER_CSTATE, state, wake_time);
155 	}
156 
157 	return ret;
158 }
159 
160 int32_t ari_update_cstate_info(uint32_t ari_base, uint32_t cluster, uint32_t ccplex,
161 	uint32_t system, uint8_t sys_state_force, uint32_t wake_mask,
162 	uint8_t update_wake_mask)
163 {
164 	uint32_t val = 0U;
165 
166 	/* clean the previous response state */
167 	ari_clobber_response(ari_base);
168 
169 	/* update CLUSTER_CSTATE? */
170 	if (cluster != 0U) {
171 		val |= (cluster & (uint32_t)CLUSTER_CSTATE_MASK) |
172 			(uint32_t)CLUSTER_CSTATE_UPDATE_BIT;
173 	}
174 
175 	/* update CCPLEX_CSTATE? */
176 	if (ccplex != 0U) {
177 		val |= ((ccplex & (uint32_t)CCPLEX_CSTATE_MASK) << (uint32_t)CCPLEX_CSTATE_SHIFT) |
178 			(uint32_t)CCPLEX_CSTATE_UPDATE_BIT;
179 	}
180 
181 	/* update SYSTEM_CSTATE? */
182 	if (system != 0U) {
183 		val |= ((system & (uint32_t)SYSTEM_CSTATE_MASK) << (uint32_t)SYSTEM_CSTATE_SHIFT) |
184 		       (((uint32_t)sys_state_force << SYSTEM_CSTATE_FORCE_UPDATE_SHIFT) |
185 			(uint32_t)SYSTEM_CSTATE_UPDATE_BIT);
186 	}
187 
188 	/* update wake mask value? */
189 	if (update_wake_mask != 0U) {
190 		val |= (uint32_t)CSTATE_WAKE_MASK_UPDATE_BIT;
191 	}
192 
193 	/* set the updated cstate info */
194 	return ari_request_wait(ari_base, 0U, TEGRA_ARI_UPDATE_CSTATE_INFO, val,
195 			wake_mask);
196 }
197 
198 int32_t ari_update_crossover_time(uint32_t ari_base, uint32_t type, uint32_t time)
199 {
200 	int32_t ret = 0;
201 
202 	/* sanity check crossover type */
203 	if ((type == TEGRA_ARI_CROSSOVER_C1_C6) ||
204 	    (type > TEGRA_ARI_CROSSOVER_CCP3_SC1)) {
205 		ret = EINVAL;
206 	} else {
207 		/* clean the previous response state */
208 		ari_clobber_response(ari_base);
209 
210 		/* update crossover threshold time */
211 		ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_UPDATE_CROSSOVER,
212 			type, time);
213 	}
214 
215 	return ret;
216 }
217 
218 uint64_t ari_read_cstate_stats(uint32_t ari_base, uint32_t state)
219 {
220 	int32_t ret;
221 	uint64_t result;
222 
223 	/* sanity check crossover type */
224 	if (state == 0U) {
225 		result = EINVAL;
226 	} else {
227 		/* clean the previous response state */
228 		ari_clobber_response(ari_base);
229 
230 		ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_CSTATE_STATS, state, 0U);
231 		if (ret != 0) {
232 			result = EINVAL;
233 		} else {
234 			result = (uint64_t)ari_get_response_low(ari_base);
235 		}
236 	}
237 	return result;
238 }
239 
240 int32_t ari_write_cstate_stats(uint32_t ari_base, uint32_t state, uint32_t stats)
241 {
242 	/* clean the previous response state */
243 	ari_clobber_response(ari_base);
244 
245 	/* write the cstate stats */
246 	return ari_request_wait(ari_base, 0U, TEGRA_ARI_WRITE_CSTATE_STATS, state,
247 			stats);
248 }
249 
250 uint64_t ari_enumeration_misc(uint32_t ari_base, uint32_t cmd, uint32_t data)
251 {
252 	uint64_t resp;
253 	int32_t ret;
254 	uint32_t local_data = data;
255 
256 	/* clean the previous response state */
257 	ari_clobber_response(ari_base);
258 
259 	/* ARI_REQUEST_DATA_HI is reserved for commands other than 'ECHO' */
260 	if (cmd != TEGRA_ARI_MISC_ECHO) {
261 		local_data = 0U;
262 	}
263 
264 	ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_MISC, cmd, local_data);
265 	if (ret != 0) {
266 		resp = (uint64_t)ret;
267 	} else {
268 		/* get the command response */
269 		resp = ari_get_response_low(ari_base);
270 		resp |= ((uint64_t)ari_get_response_high(ari_base) << 32);
271 	}
272 
273 	return resp;
274 }
275 
276 int32_t ari_is_ccx_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
277 {
278 	int32_t ret;
279 	uint32_t result;
280 
281 	/* clean the previous response state */
282 	ari_clobber_response(ari_base);
283 
284 	ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_IS_CCX_ALLOWED, state & 0x7U,
285 			wake_time);
286 	if (ret != 0) {
287 		ERROR("%s: failed (%d)\n", __func__, ret);
288 		result = 0U;
289 	} else {
290 		result = ari_get_response_low(ari_base) & 0x1U;
291 	}
292 
293 	/* 1 = CCx allowed, 0 = CCx not allowed */
294 	return (int32_t)result;
295 }
296 
297 int32_t ari_is_sc7_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
298 {
299 	int32_t ret, result;
300 
301 	/* check for allowed power state */
302 	if ((state != TEGRA_ARI_CORE_C0) &&
303 	    (state != TEGRA_ARI_CORE_C1) &&
304 	    (state != TEGRA_ARI_CORE_C6) &&
305 	    (state != TEGRA_ARI_CORE_C7)) {
306 		ERROR("%s: unknown cstate (%d)\n", __func__, state);
307 		result = EINVAL;
308 	} else {
309 		/* clean the previous response state */
310 		ari_clobber_response(ari_base);
311 
312 		ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_IS_SC7_ALLOWED, state,
313 				wake_time);
314 		if (ret != 0) {
315 			ERROR("%s: failed (%d)\n", __func__, ret);
316 			result = 0;
317 		} else {
318 			/* 1 = SC7 allowed, 0 = SC7 not allowed */
319 			result = (ari_get_response_low(ari_base) != 0U) ? 1 : 0;
320 		}
321 	}
322 
323 	return result;
324 }
325 
326 int32_t ari_online_core(uint32_t ari_base, uint32_t core)
327 {
328 	uint64_t cpu = read_mpidr() & (uint64_t)(MPIDR_CPU_MASK);
329 	uint64_t cluster = (read_mpidr() & ((uint64_t)(MPIDR_AFFLVL_MASK) <<
330 			   (uint64_t)(MPIDR_AFFINITY_BITS))) >>
331 			   (uint64_t)(MPIDR_AFFINITY_BITS);
332 	uint64_t impl = (read_midr() >> (uint64_t)MIDR_IMPL_SHIFT) &
333 			(uint64_t)MIDR_IMPL_MASK;
334 	int32_t ret;
335 
336 	/* construct the current CPU # */
337 	cpu |= (cluster << 2);
338 
339 	/* sanity check target core id */
340 	if ((core >= MCE_CORE_ID_MAX) || (cpu == (uint64_t)core)) {
341 		ERROR("%s: unsupported core id (%d)\n", __func__, core);
342 		ret = EINVAL;
343 	} else {
344 		/*
345 		 * The Denver cluster has 2 CPUs only - 0, 1.
346 		 */
347 		if ((impl == (uint32_t)DENVER_IMPL) &&
348 		    ((core == 2U) || (core == 3U))) {
349 			ERROR("%s: unknown core id (%d)\n", __func__, core);
350 			ret = EINVAL;
351 		} else {
352 			/* clean the previous response state */
353 			ari_clobber_response(ari_base);
354 			ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_ONLINE_CORE, core, 0U);
355 		}
356 	}
357 
358 	return ret;
359 }
360 
361 int32_t ari_cc3_ctrl(uint32_t ari_base, uint32_t freq, uint32_t volt, uint8_t enable)
362 {
363 	uint32_t val;
364 
365 	/* clean the previous response state */
366 	ari_clobber_response(ari_base);
367 
368 	/*
369 	 * If the enable bit is cleared, Auto-CC3 will be disabled by setting
370 	 * the SW visible voltage/frequency request registers for all non
371 	 * floorswept cores valid independent of StandbyWFI and disabling
372 	 * the IDLE voltage/frequency request register. If set, Auto-CC3
373 	 * will be enabled by setting the ARM SW visible voltage/frequency
374 	 * request registers for all non floorswept cores to be enabled by
375 	 * StandbyWFI or the equivalent signal, and always keeping the IDLE
376 	 * voltage/frequency request register enabled.
377 	 */
378 	val = (((freq & MCE_AUTO_CC3_FREQ_MASK) << MCE_AUTO_CC3_FREQ_SHIFT) |\
379 		((volt & MCE_AUTO_CC3_VTG_MASK) << MCE_AUTO_CC3_VTG_SHIFT) |\
380 		((enable != 0U) ? MCE_AUTO_CC3_ENABLE_BIT : 0U));
381 
382 	return ari_request_wait(ari_base, 0U, TEGRA_ARI_CC3_CTRL, val, 0U);
383 }
384 
385 int32_t ari_reset_vector_update(uint32_t ari_base)
386 {
387 	/* clean the previous response state */
388 	ari_clobber_response(ari_base);
389 
390 	/*
391 	 * Need to program the CPU reset vector one time during cold boot
392 	 * and SC7 exit
393 	 */
394 	(void)ari_request_wait(ari_base, 0U, TEGRA_ARI_COPY_MISCREG_AA64_RST, 0U, 0U);
395 
396 	return 0;
397 }
398 
399 int32_t ari_roc_flush_cache_trbits(uint32_t ari_base)
400 {
401 	/* clean the previous response state */
402 	ari_clobber_response(ari_base);
403 
404 	return ari_request_wait(ari_base, 0U, TEGRA_ARI_ROC_FLUSH_CACHE_TRBITS,
405 			0U, 0U);
406 }
407 
408 int32_t ari_roc_flush_cache(uint32_t ari_base)
409 {
410 	/* clean the previous response state */
411 	ari_clobber_response(ari_base);
412 
413 	return ari_request_wait(ari_base, 0U, TEGRA_ARI_ROC_FLUSH_CACHE_ONLY,
414 			0U, 0U);
415 }
416 
417 int32_t ari_roc_clean_cache(uint32_t ari_base)
418 {
419 	/* clean the previous response state */
420 	ari_clobber_response(ari_base);
421 
422 	return ari_request_wait(ari_base, 0U, TEGRA_ARI_ROC_CLEAN_CACHE_ONLY,
423 			0U, 0U);
424 }
425 
426 uint64_t ari_read_write_mca(uint32_t ari_base, uint64_t cmd, uint64_t *data)
427 {
428 	uint64_t mca_arg_data, result = 0;
429 	uint32_t resp_lo, resp_hi;
430 	uint32_t mca_arg_err, mca_arg_finish;
431 	int32_t ret;
432 
433 	/* Set data (write) */
434 	mca_arg_data = (data != NULL) ? *data : 0ULL;
435 
436 	/* Set command */
437 	ari_write_32(ari_base, (uint32_t)cmd, ARI_RESPONSE_DATA_LO);
438 	ari_write_32(ari_base, (uint32_t)(cmd >> 32U), ARI_RESPONSE_DATA_HI);
439 
440 	ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_MCA,
441 			       (uint32_t)mca_arg_data,
442 			       (uint32_t)(mca_arg_data >> 32U));
443 	if (ret == 0) {
444 		resp_lo = ari_get_response_low(ari_base);
445 		resp_hi = ari_get_response_high(ari_base);
446 
447 		mca_arg_err = resp_lo & MCA_ARG_ERROR_MASK;
448 		mca_arg_finish = (resp_hi >> MCA_ARG_FINISH_SHIFT) &
449 				 MCA_ARG_FINISH_MASK;
450 
451 		if (mca_arg_finish == 0U) {
452 			result = (uint64_t)mca_arg_err;
453 		} else {
454 			if (data != NULL) {
455 				resp_lo = ari_get_request_low(ari_base);
456 				resp_hi = ari_get_request_high(ari_base);
457 				*data = ((uint64_t)resp_hi << 32U) |
458 					 (uint64_t)resp_lo;
459 			}
460 		}
461 	}
462 
463 	return result;
464 }
465 
466 int32_t ari_update_ccplex_gsc(uint32_t ari_base, uint32_t gsc_idx)
467 {
468 	int32_t ret = 0;
469 	/* sanity check GSC ID */
470 	if (gsc_idx > (uint32_t)TEGRA_ARI_GSC_VPR_IDX) {
471 		ret = EINVAL;
472 	} else {
473 		/* clean the previous response state */
474 		ari_clobber_response(ari_base);
475 
476 		/*
477 		 * The MCE code will read the GSC carveout value, corrseponding to
478 		 * the ID, from the MC registers and update the internal GSC registers
479 		 * of the CCPLEX.
480 		 */
481 		(void)ari_request_wait(ari_base, 0U, TEGRA_ARI_UPDATE_CCPLEX_GSC, gsc_idx, 0U);
482 	}
483 
484 	return ret;
485 }
486 
487 void ari_enter_ccplex_state(uint32_t ari_base, uint32_t state_idx)
488 {
489 	/* clean the previous response state */
490 	ari_clobber_response(ari_base);
491 
492 	/*
493 	 * The MCE will shutdown or restart the entire system
494 	 */
495 	(void)ari_request_wait(ari_base, 0U, TEGRA_ARI_MISC_CCPLEX, state_idx, 0U);
496 }
497 
498 int32_t ari_read_write_uncore_perfmon(uint32_t ari_base, uint64_t req,
499 		uint64_t *data)
500 {
501 	int32_t ret, result;
502 	uint32_t val, req_status;
503 	uint8_t req_cmd;
504 
505 	req_cmd = (uint8_t)(req >> UNCORE_PERFMON_CMD_SHIFT);
506 
507 	/* clean the previous response state */
508 	ari_clobber_response(ari_base);
509 
510 	/* sanity check input parameters */
511 	if ((req_cmd == UNCORE_PERFMON_CMD_READ) && (data == NULL)) {
512 		ERROR("invalid parameters\n");
513 		result = EINVAL;
514 	} else {
515 		/*
516 		 * For "write" commands get the value that has to be written
517 		 * to the uncore perfmon registers
518 		 */
519 		val = (req_cmd == UNCORE_PERFMON_CMD_WRITE) ?
520 			(uint32_t)*data : 0U;
521 
522 		ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_PERFMON, val,
523 				       (uint32_t)req);
524 		if (ret != 0) {
525 			result = ret;
526 		} else {
527 			/* read the command status value */
528 			req_status = ari_get_response_high(ari_base) &
529 					 UNCORE_PERFMON_RESP_STATUS_MASK;
530 
531 			/*
532 			 * For "read" commands get the data from the uncore
533 			 * perfmon registers
534 			 */
535 			req_status >>= UNCORE_PERFMON_RESP_STATUS_SHIFT;
536 			if ((req_status == 0U) && (req_cmd == UNCORE_PERFMON_CMD_READ)) {
537 				*data = ari_get_response_low(ari_base);
538 			}
539 			result = (int32_t)req_status;
540 		}
541 	}
542 
543 	return result;
544 }
545 
546 void ari_misc_ccplex(uint32_t ari_base, uint32_t index, uint32_t value)
547 {
548 	/*
549 	 * This invokes the ARI_MISC_CCPLEX commands. This can be
550 	 * used to enable/disable coresight clock gating.
551 	 */
552 
553 	if ((index > TEGRA_ARI_MISC_CCPLEX_EDBGREQ) ||
554 		((index == TEGRA_ARI_MISC_CCPLEX_CORESIGHT_CG_CTRL) &&
555 		(value > 1U))) {
556 		ERROR("%s: invalid parameters \n", __func__);
557 	} else {
558 		/* clean the previous response state */
559 		ari_clobber_response(ari_base);
560 		(void)ari_request_wait(ari_base, 0U, TEGRA_ARI_MISC_CCPLEX, index, value);
561 	}
562 }
563