xref: /rk3399_ARM-atf/plat/imx/imx8m/ddr/dram.c (revision 0e39488ff3f2edac04d7f5acb58d9a22baa3a69e)
1 /*
2  * Copyright 2019-2023 NXP
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <bl31/interrupt_mgmt.h>
8 #include <common/runtime_svc.h>
9 #include <lib/mmio.h>
10 #include <lib/spinlock.h>
11 #include <plat/common/platform.h>
12 
13 #include <dram.h>
14 
15 #define IMX_SIP_DDR_DVFS_GET_FREQ_COUNT		0x10
16 #define IMX_SIP_DDR_DVFS_GET_FREQ_INFO		0x11
17 
18 struct dram_info dram_info;
19 
20 /* lock used for DDR DVFS */
21 spinlock_t dfs_lock;
22 
23 static volatile uint32_t wfe_done;
24 static volatile bool wait_ddrc_hwffc_done = true;
25 static unsigned int dev_fsp = 0x1;
26 
27 static uint32_t fsp_init_reg[3][4] = {
28 	{ DDRC_INIT3(0), DDRC_INIT4(0), DDRC_INIT6(0), DDRC_INIT7(0) },
29 	{ DDRC_FREQ1_INIT3(0), DDRC_FREQ1_INIT4(0), DDRC_FREQ1_INIT6(0), DDRC_FREQ1_INIT7(0) },
30 	{ DDRC_FREQ2_INIT3(0), DDRC_FREQ2_INIT4(0), DDRC_FREQ2_INIT6(0), DDRC_FREQ2_INIT7(0) },
31 };
32 
33 static void get_mr_values(uint32_t (*mr_value)[8])
34 {
35 	uint32_t init_val;
36 	unsigned int i, fsp_index;
37 
38 	for (fsp_index = 0U; fsp_index < 3U; fsp_index++) {
39 		for (i = 0U; i < 4U; i++) {
40 			init_val = mmio_read_32(fsp_init_reg[fsp_index][i]);
41 			mr_value[fsp_index][2*i] = init_val >> 16;
42 			mr_value[fsp_index][2*i + 1] = init_val & 0xFFFF;
43 		}
44 	}
45 }
46 
47 /* Restore the ddrc configs */
48 void dram_umctl2_init(struct dram_timing_info *timing)
49 {
50 	struct dram_cfg_param *ddrc_cfg = timing->ddrc_cfg;
51 	unsigned int i;
52 
53 	for (i = 0U; i < timing->ddrc_cfg_num; i++) {
54 		mmio_write_32(ddrc_cfg->reg, ddrc_cfg->val);
55 		ddrc_cfg++;
56 	}
57 
58 	/* set the default fsp to P0 */
59 	mmio_write_32(DDRC_MSTR2(0), 0x0);
60 }
61 
62 /* Restore the dram PHY config */
63 void dram_phy_init(struct dram_timing_info *timing)
64 {
65 	struct dram_cfg_param *cfg = timing->ddrphy_cfg;
66 	unsigned int i;
67 
68 	/* Restore the PHY init config */
69 	cfg = timing->ddrphy_cfg;
70 	for (i = 0U; i < timing->ddrphy_cfg_num; i++) {
71 		dwc_ddrphy_apb_wr(cfg->reg, cfg->val);
72 		cfg++;
73 	}
74 
75 	/* Restore the DDR PHY CSRs */
76 	cfg = timing->ddrphy_trained_csr;
77 	for (i = 0U; i < timing->ddrphy_trained_csr_num; i++) {
78 		dwc_ddrphy_apb_wr(cfg->reg, cfg->val);
79 		cfg++;
80 	}
81 
82 	/* Load the PIE image */
83 	cfg = timing->ddrphy_pie;
84 	for (i = 0U; i < timing->ddrphy_pie_num; i++) {
85 		dwc_ddrphy_apb_wr(cfg->reg, cfg->val);
86 		cfg++;
87 	}
88 }
89 
90 /* EL3 SGI-8 IPI handler for DDR Dynamic frequency scaling */
91 static uint64_t waiting_dvfs(uint32_t id, uint32_t flags,
92 				void *handle, void *cookie)
93 {
94 	uint64_t mpidr = read_mpidr_el1();
95 	unsigned int cpu_id = MPIDR_AFFLVL0_VAL(mpidr);
96 	uint32_t irq;
97 
98 	irq = plat_ic_acknowledge_interrupt();
99 	if (irq < 1022U) {
100 		plat_ic_end_of_interrupt(irq);
101 	}
102 
103 	/* set the WFE done status */
104 	spin_lock(&dfs_lock);
105 	wfe_done |= (1 << cpu_id * 8);
106 	dsb();
107 	spin_unlock(&dfs_lock);
108 
109 	while (1) {
110 		/* ddr frequency change done */
111 		if (!wait_ddrc_hwffc_done)
112 			break;
113 
114 		wfe();
115 	}
116 
117 	return 0;
118 }
119 
120 void dram_info_init(unsigned long dram_timing_base)
121 {
122 	uint32_t ddrc_mstr, current_fsp;
123 	unsigned int idx = 0;
124 	uint32_t flags = 0;
125 	uint32_t rc;
126 	unsigned int i;
127 
128 	/* Get the dram type & rank */
129 	ddrc_mstr = mmio_read_32(DDRC_MSTR(0));
130 
131 	dram_info.dram_type = ddrc_mstr & DDR_TYPE_MASK;
132 	dram_info.num_rank = ((ddrc_mstr >> 24) & ACTIVE_RANK_MASK) == 0x3 ?
133 		DDRC_ACTIVE_TWO_RANK : DDRC_ACTIVE_ONE_RANK;
134 
135 	/* Get current fsp info */
136 	current_fsp = mmio_read_32(DDRC_DFIMISC(0)) & 0xf;
137 	dram_info.boot_fsp = current_fsp;
138 	dram_info.current_fsp = current_fsp;
139 
140 	get_mr_values(dram_info.mr_table);
141 
142 	dram_info.timing_info = (struct dram_timing_info *)dram_timing_base;
143 
144 	/* get the num of supported fsp */
145 	for (i = 0U; i < 4U; ++i) {
146 		if (!dram_info.timing_info->fsp_table[i]) {
147 			break;
148 		}
149 		idx = i;
150 	}
151 	dram_info.num_fsp = i;
152 
153 	/* check if has bypass mode support */
154 	if (dram_info.timing_info->fsp_table[idx] < 666) {
155 		dram_info.bypass_mode = true;
156 	} else {
157 		dram_info.bypass_mode = false;
158 	}
159 
160 	/* Register the EL3 handler for DDR DVFS */
161 	set_interrupt_rm_flag(flags, NON_SECURE);
162 	rc = register_interrupt_type_handler(INTR_TYPE_EL3, waiting_dvfs, flags);
163 	if (rc != 0) {
164 		panic();
165 	}
166 
167 	if (dram_info.dram_type == DDRC_LPDDR4 && current_fsp != 0x0) {
168 		/* flush the L1/L2 cache */
169 		dcsw_op_all(DCCSW);
170 		lpddr4_swffc(&dram_info, dev_fsp, 0x0);
171 		dev_fsp = (~dev_fsp) & 0x1;
172 	} else if (current_fsp != 0x0) {
173 		/* flush the L1/L2 cache */
174 		dcsw_op_all(DCCSW);
175 		ddr4_swffc(&dram_info, 0x0);
176 	}
177 }
178 
179 /*
180  * For each freq return the following info:
181  *
182  * r1: data rate
183  * r2: 1 + dram_core parent
184  * r3: 1 + dram_alt parent index
185  * r4: 1 + dram_apb parent index
186  *
187  * The parent indices can be used by an OS who manages source clocks to enabled
188  * them ahead of the switch.
189  *
190  * A parent value of "0" means "don't care".
191  *
192  * Current implementation of freq switch is hardcoded in
193  * plat/imx/common/imx8m/clock.c but in theory this can be enhanced to support
194  * a wide variety of rates.
195  */
196 int dram_dvfs_get_freq_info(void *handle, u_register_t index)
197 {
198 	switch (index) {
199 	case 0:
200 		 SMC_RET4(handle, dram_info.timing_info->fsp_table[0],
201 			1, 0, 5);
202 	case 1:
203 		if (!dram_info.bypass_mode) {
204 			SMC_RET4(handle, dram_info.timing_info->fsp_table[1],
205 				1, 0, 0);
206 		}
207 		SMC_RET4(handle, dram_info.timing_info->fsp_table[1],
208 			2, 2, 4);
209 	case 2:
210 		if (!dram_info.bypass_mode) {
211 			SMC_RET4(handle, dram_info.timing_info->fsp_table[2],
212 				1, 0, 0);
213 		}
214 		SMC_RET4(handle, dram_info.timing_info->fsp_table[2],
215 			2, 3, 3);
216 	case 3:
217 		 SMC_RET4(handle, dram_info.timing_info->fsp_table[3],
218 			1, 0, 0);
219 	default:
220 		SMC_RET1(handle, -3);
221 	}
222 }
223 
224 int dram_dvfs_handler(uint32_t smc_fid, void *handle,
225 	u_register_t x1, u_register_t x2, u_register_t x3)
226 {
227 	uint64_t mpidr = read_mpidr_el1();
228 	unsigned int cpu_id = MPIDR_AFFLVL0_VAL(mpidr);
229 	unsigned int fsp_index = x1;
230 	uint32_t online_cores = x2;
231 
232 	if (x1 == IMX_SIP_DDR_DVFS_GET_FREQ_COUNT) {
233 		SMC_RET1(handle, dram_info.num_fsp);
234 	} else if (x1 == IMX_SIP_DDR_DVFS_GET_FREQ_INFO) {
235 		return dram_dvfs_get_freq_info(handle, x2);
236 	} else if (x1 < 4) {
237 		wait_ddrc_hwffc_done = true;
238 		dsb();
239 
240 		/* trigger the SGI IPI to info other cores */
241 		for (int i = 0; i < PLATFORM_CORE_COUNT; i++) {
242 			if (cpu_id != i && (online_cores & (0x1 << (i * 8)))) {
243 				plat_ic_raise_el3_sgi(0x8, i);
244 			}
245 		}
246 
247 		/* make sure all the core in WFE */
248 		online_cores &= ~(0x1 << (cpu_id * 8));
249 		while (1) {
250 			if (online_cores == wfe_done) {
251 				break;
252 			}
253 		}
254 
255 		/* flush the L1/L2 cache */
256 		dcsw_op_all(DCCSW);
257 
258 		if (dram_info.dram_type == DDRC_LPDDR4) {
259 			lpddr4_swffc(&dram_info, dev_fsp, fsp_index);
260 			dev_fsp = (~dev_fsp) & 0x1;
261 		} else {
262 			ddr4_swffc(&dram_info, fsp_index);
263 		}
264 
265 		dram_info.current_fsp = fsp_index;
266 		wait_ddrc_hwffc_done = false;
267 		wfe_done = 0;
268 		dsb();
269 		sev();
270 		isb();
271 	}
272 
273 	SMC_RET1(handle, 0);
274 }
275