1 /* 2 * Copyright 2019-2023 NXP 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <bl31/interrupt_mgmt.h> 8 #include <common/runtime_svc.h> 9 #include <lib/mmio.h> 10 #include <lib/spinlock.h> 11 #include <plat/common/platform.h> 12 13 #include <dram.h> 14 15 #define IMX_SIP_DDR_DVFS_GET_FREQ_COUNT 0x10 16 #define IMX_SIP_DDR_DVFS_GET_FREQ_INFO 0x11 17 18 struct dram_info dram_info; 19 20 /* lock used for DDR DVFS */ 21 spinlock_t dfs_lock; 22 23 static volatile uint32_t wfe_done; 24 static volatile bool wait_ddrc_hwffc_done = true; 25 static unsigned int dev_fsp = 0x1; 26 27 static uint32_t fsp_init_reg[3][4] = { 28 { DDRC_INIT3(0), DDRC_INIT4(0), DDRC_INIT6(0), DDRC_INIT7(0) }, 29 { DDRC_FREQ1_INIT3(0), DDRC_FREQ1_INIT4(0), DDRC_FREQ1_INIT6(0), DDRC_FREQ1_INIT7(0) }, 30 { DDRC_FREQ2_INIT3(0), DDRC_FREQ2_INIT4(0), DDRC_FREQ2_INIT6(0), DDRC_FREQ2_INIT7(0) }, 31 }; 32 33 static void get_mr_values(uint32_t (*mr_value)[8]) 34 { 35 uint32_t init_val; 36 unsigned int i, fsp_index; 37 38 for (fsp_index = 0U; fsp_index < 3U; fsp_index++) { 39 for (i = 0U; i < 4U; i++) { 40 init_val = mmio_read_32(fsp_init_reg[fsp_index][i]); 41 mr_value[fsp_index][2*i] = init_val >> 16; 42 mr_value[fsp_index][2*i + 1] = init_val & 0xFFFF; 43 } 44 } 45 } 46 47 /* Restore the ddrc configs */ 48 void dram_umctl2_init(struct dram_timing_info *timing) 49 { 50 struct dram_cfg_param *ddrc_cfg = timing->ddrc_cfg; 51 unsigned int i; 52 53 for (i = 0U; i < timing->ddrc_cfg_num; i++) { 54 mmio_write_32(ddrc_cfg->reg, ddrc_cfg->val); 55 ddrc_cfg++; 56 } 57 58 /* set the default fsp to P0 */ 59 mmio_write_32(DDRC_MSTR2(0), 0x0); 60 } 61 62 /* Restore the dram PHY config */ 63 void dram_phy_init(struct dram_timing_info *timing) 64 { 65 struct dram_cfg_param *cfg = timing->ddrphy_cfg; 66 unsigned int i; 67 68 /* Restore the PHY init config */ 69 cfg = timing->ddrphy_cfg; 70 for (i = 0U; i < timing->ddrphy_cfg_num; i++) { 71 dwc_ddrphy_apb_wr(cfg->reg, cfg->val); 72 cfg++; 73 } 74 75 /* Restore the DDR PHY CSRs */ 76 cfg = timing->ddrphy_trained_csr; 77 for (i = 0U; i < timing->ddrphy_trained_csr_num; i++) { 78 dwc_ddrphy_apb_wr(cfg->reg, cfg->val); 79 cfg++; 80 } 81 82 /* Load the PIE image */ 83 cfg = timing->ddrphy_pie; 84 for (i = 0U; i < timing->ddrphy_pie_num; i++) { 85 dwc_ddrphy_apb_wr(cfg->reg, cfg->val); 86 cfg++; 87 } 88 } 89 90 /* EL3 SGI-8 IPI handler for DDR Dynamic frequency scaling */ 91 static uint64_t waiting_dvfs(uint32_t id, uint32_t flags, 92 void *handle, void *cookie) 93 { 94 uint64_t mpidr = read_mpidr_el1(); 95 unsigned int cpu_id = MPIDR_AFFLVL0_VAL(mpidr); 96 uint32_t irq; 97 98 irq = plat_ic_acknowledge_interrupt(); 99 if (irq < 1022U) { 100 plat_ic_end_of_interrupt(irq); 101 } 102 103 /* set the WFE done status */ 104 spin_lock(&dfs_lock); 105 wfe_done |= (1 << cpu_id * 8); 106 dsb(); 107 spin_unlock(&dfs_lock); 108 109 while (1) { 110 /* ddr frequency change done */ 111 if (!wait_ddrc_hwffc_done) 112 break; 113 114 wfe(); 115 } 116 117 return 0; 118 } 119 120 void dram_info_init(unsigned long dram_timing_base) 121 { 122 uint32_t ddrc_mstr, current_fsp; 123 unsigned int idx = 0; 124 uint32_t flags = 0; 125 uint32_t rc; 126 unsigned int i; 127 128 /* Get the dram type & rank */ 129 ddrc_mstr = mmio_read_32(DDRC_MSTR(0)); 130 131 dram_info.dram_type = ddrc_mstr & DDR_TYPE_MASK; 132 dram_info.num_rank = ((ddrc_mstr >> 24) & ACTIVE_RANK_MASK) == 0x3 ? 133 DDRC_ACTIVE_TWO_RANK : DDRC_ACTIVE_ONE_RANK; 134 135 /* Get current fsp info */ 136 current_fsp = mmio_read_32(DDRC_DFIMISC(0)) & 0xf; 137 dram_info.boot_fsp = current_fsp; 138 dram_info.current_fsp = current_fsp; 139 140 get_mr_values(dram_info.mr_table); 141 142 dram_info.timing_info = (struct dram_timing_info *)dram_timing_base; 143 144 /* get the num of supported fsp */ 145 for (i = 0U; i < 4U; ++i) { 146 if (!dram_info.timing_info->fsp_table[i]) { 147 break; 148 } 149 idx = i; 150 } 151 dram_info.num_fsp = i; 152 153 /* check if has bypass mode support */ 154 if (dram_info.timing_info->fsp_table[idx] < 666) { 155 dram_info.bypass_mode = true; 156 } else { 157 dram_info.bypass_mode = false; 158 } 159 160 /* Register the EL3 handler for DDR DVFS */ 161 set_interrupt_rm_flag(flags, NON_SECURE); 162 rc = register_interrupt_type_handler(INTR_TYPE_EL3, waiting_dvfs, flags); 163 if (rc != 0) { 164 panic(); 165 } 166 167 if (dram_info.dram_type == DDRC_LPDDR4 && current_fsp != 0x0) { 168 /* flush the L1/L2 cache */ 169 dcsw_op_all(DCCSW); 170 lpddr4_swffc(&dram_info, dev_fsp, 0x0); 171 dev_fsp = (~dev_fsp) & 0x1; 172 } else if (current_fsp != 0x0) { 173 /* flush the L1/L2 cache */ 174 dcsw_op_all(DCCSW); 175 ddr4_swffc(&dram_info, 0x0); 176 } 177 } 178 179 /* 180 * For each freq return the following info: 181 * 182 * r1: data rate 183 * r2: 1 + dram_core parent 184 * r3: 1 + dram_alt parent index 185 * r4: 1 + dram_apb parent index 186 * 187 * The parent indices can be used by an OS who manages source clocks to enabled 188 * them ahead of the switch. 189 * 190 * A parent value of "0" means "don't care". 191 * 192 * Current implementation of freq switch is hardcoded in 193 * plat/imx/common/imx8m/clock.c but in theory this can be enhanced to support 194 * a wide variety of rates. 195 */ 196 int dram_dvfs_get_freq_info(void *handle, u_register_t index) 197 { 198 switch (index) { 199 case 0: 200 SMC_RET4(handle, dram_info.timing_info->fsp_table[0], 201 1, 0, 5); 202 case 1: 203 if (!dram_info.bypass_mode) { 204 SMC_RET4(handle, dram_info.timing_info->fsp_table[1], 205 1, 0, 0); 206 } 207 SMC_RET4(handle, dram_info.timing_info->fsp_table[1], 208 2, 2, 4); 209 case 2: 210 if (!dram_info.bypass_mode) { 211 SMC_RET4(handle, dram_info.timing_info->fsp_table[2], 212 1, 0, 0); 213 } 214 SMC_RET4(handle, dram_info.timing_info->fsp_table[2], 215 2, 3, 3); 216 case 3: 217 SMC_RET4(handle, dram_info.timing_info->fsp_table[3], 218 1, 0, 0); 219 default: 220 SMC_RET1(handle, -3); 221 } 222 } 223 224 int dram_dvfs_handler(uint32_t smc_fid, void *handle, 225 u_register_t x1, u_register_t x2, u_register_t x3) 226 { 227 uint64_t mpidr = read_mpidr_el1(); 228 unsigned int cpu_id = MPIDR_AFFLVL0_VAL(mpidr); 229 unsigned int fsp_index = x1; 230 uint32_t online_cores = x2; 231 232 if (x1 == IMX_SIP_DDR_DVFS_GET_FREQ_COUNT) { 233 SMC_RET1(handle, dram_info.num_fsp); 234 } else if (x1 == IMX_SIP_DDR_DVFS_GET_FREQ_INFO) { 235 return dram_dvfs_get_freq_info(handle, x2); 236 } else if (x1 < 4) { 237 wait_ddrc_hwffc_done = true; 238 dsb(); 239 240 /* trigger the SGI IPI to info other cores */ 241 for (int i = 0; i < PLATFORM_CORE_COUNT; i++) { 242 if (cpu_id != i && (online_cores & (0x1 << (i * 8)))) { 243 plat_ic_raise_el3_sgi(0x8, i); 244 } 245 } 246 247 /* make sure all the core in WFE */ 248 online_cores &= ~(0x1 << (cpu_id * 8)); 249 while (1) { 250 if (online_cores == wfe_done) { 251 break; 252 } 253 } 254 255 /* flush the L1/L2 cache */ 256 dcsw_op_all(DCCSW); 257 258 if (dram_info.dram_type == DDRC_LPDDR4) { 259 lpddr4_swffc(&dram_info, dev_fsp, fsp_index); 260 dev_fsp = (~dev_fsp) & 0x1; 261 } else { 262 ddr4_swffc(&dram_info, fsp_index); 263 } 264 265 dram_info.current_fsp = fsp_index; 266 wait_ddrc_hwffc_done = false; 267 wfe_done = 0; 268 dsb(); 269 sev(); 270 isb(); 271 } 272 273 SMC_RET1(handle, 0); 274 } 275