xref: /rk3399_ARM-atf/plat/common/plat_psci_common.c (revision c948f77136c42a92d0bb660543a3600c36dcf7f1)
1 /*
2  * Copyright (c) 2016-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 
9 #include <arch.h>
10 #include <lib/pmf/pmf.h>
11 #include <lib/psci/psci.h>
12 #include <plat/common/platform.h>
13 
14 #if ENABLE_PSCI_STAT && ENABLE_PMF
15 #pragma weak plat_psci_stat_accounting_start
16 #pragma weak plat_psci_stat_accounting_stop
17 #pragma weak plat_psci_stat_get_residency
18 
19 /* Ticks elapsed in one second by a signal of 1 MHz */
20 #define MHZ_TICKS_PER_SEC 1000000U
21 
22 /* Maximum time-stamp value read from architectural counters */
23 #ifdef AARCH32
24 #define MAX_TS	UINT32_MAX
25 #else
26 #define MAX_TS	UINT64_MAX
27 #endif
28 
29 /* Following are used as ID's to capture time-stamp */
30 #define PSCI_STAT_ID_ENTER_LOW_PWR		0
31 #define PSCI_STAT_ID_EXIT_LOW_PWR		1
32 #define PSCI_STAT_TOTAL_IDS			2
33 
34 PMF_REGISTER_SERVICE(psci_svc, PMF_PSCI_STAT_SVC_ID, PSCI_STAT_TOTAL_IDS,
35 	PMF_STORE_ENABLE)
36 
37 /*
38  * This function calculates the stats residency in microseconds,
39  * taking in account the wrap around condition.
40  */
41 static u_register_t calc_stat_residency(unsigned long long pwrupts,
42 	unsigned long long pwrdnts)
43 {
44 	/* The divisor to use to convert raw timestamp into microseconds. */
45 	u_register_t residency_div;
46 	u_register_t res;
47 
48 	/*
49 	 * Calculate divisor so that it can be directly used to
50 	 * convert time-stamp into microseconds.
51 	 */
52 	residency_div = read_cntfrq_el0() / MHZ_TICKS_PER_SEC;
53 	assert(residency_div > 0U);
54 
55 	if (pwrupts < pwrdnts)
56 		res = MAX_TS - pwrdnts + pwrupts;
57 	else
58 		res = pwrupts - pwrdnts;
59 
60 	return res / residency_div;
61 }
62 
63 /*
64  * Capture timestamp before entering a low power state.
65  * No cache maintenance is required when capturing the timestamp.
66  * Cache maintenance may be needed when reading these timestamps.
67  */
68 void plat_psci_stat_accounting_start(
69 	__unused const psci_power_state_t *state_info)
70 {
71 	assert(state_info != NULL);
72 	PMF_CAPTURE_TIMESTAMP(psci_svc, PSCI_STAT_ID_ENTER_LOW_PWR,
73 		PMF_NO_CACHE_MAINT);
74 }
75 
76 /*
77  * Capture timestamp after exiting a low power state.
78  * No cache maintenance is required when capturing the timestamp.
79  * Cache maintenance may be needed when reading these timestamps.
80  */
81 void plat_psci_stat_accounting_stop(
82 	__unused const psci_power_state_t *state_info)
83 {
84 	assert(state_info != NULL);
85 	PMF_CAPTURE_TIMESTAMP(psci_svc, PSCI_STAT_ID_EXIT_LOW_PWR,
86 		PMF_NO_CACHE_MAINT);
87 }
88 
89 /*
90  * Calculate the residency for the given level and power state
91  * information.
92  */
93 u_register_t plat_psci_stat_get_residency(unsigned int lvl,
94 	const psci_power_state_t *state_info,
95 	int last_cpu_idx)
96 {
97 	plat_local_state_t state;
98 	unsigned long long pwrup_ts = 0, pwrdn_ts = 0;
99 	unsigned int pmf_flags;
100 
101 	assert((lvl >= PSCI_CPU_PWR_LVL) && (lvl <= PLAT_MAX_PWR_LVL));
102 	assert(state_info != NULL);
103 	assert(last_cpu_idx <= PLATFORM_CORE_COUNT);
104 
105 	if (lvl == PSCI_CPU_PWR_LVL)
106 		assert((unsigned int)last_cpu_idx == plat_my_core_pos());
107 
108 	/*
109 	 * If power down is requested, then timestamp capture will
110 	 * be with caches OFF.  Hence we have to do cache maintenance
111 	 * when reading the timestamp.
112 	 */
113 	state = state_info->pwr_domain_state[PSCI_CPU_PWR_LVL];
114 	if (is_local_state_off(state) != 0) {
115 		pmf_flags = PMF_CACHE_MAINT;
116 	} else {
117 		assert(is_local_state_retn(state) == 1);
118 		pmf_flags = PMF_NO_CACHE_MAINT;
119 	}
120 
121 	PMF_GET_TIMESTAMP_BY_INDEX(psci_svc,
122 		PSCI_STAT_ID_ENTER_LOW_PWR,
123 		last_cpu_idx,
124 		pmf_flags,
125 		pwrdn_ts);
126 
127 	PMF_GET_TIMESTAMP_BY_INDEX(psci_svc,
128 		PSCI_STAT_ID_EXIT_LOW_PWR,
129 		plat_my_core_pos(),
130 		pmf_flags,
131 		pwrup_ts);
132 
133 	return calc_stat_residency(pwrup_ts, pwrdn_ts);
134 }
135 #endif /* ENABLE_PSCI_STAT && ENABLE_PMF */
136 
137 /*
138  * The PSCI generic code uses this API to let the platform participate in state
139  * coordination during a power management operation. It compares the platform
140  * specific local power states requested by each cpu for a given power domain
141  * and returns the coordinated target power state that the domain should
142  * enter. A platform assigns a number to a local power state. This default
143  * implementation assumes that the platform assigns these numbers in order of
144  * increasing depth of the power state i.e. for two power states X & Y, if X < Y
145  * then X represents a shallower power state than Y. As a result, the
146  * coordinated target local power state for a power domain will be the minimum
147  * of the requested local power states.
148  */
149 plat_local_state_t plat_get_target_pwr_state(unsigned int lvl,
150 					     const plat_local_state_t *states,
151 					     unsigned int ncpu)
152 {
153 	plat_local_state_t target = PLAT_MAX_OFF_STATE, temp;
154 	const plat_local_state_t *st = states;
155 	unsigned int n = ncpu;
156 
157 	assert(ncpu > 0U);
158 
159 	do {
160 		temp = *st;
161 		st++;
162 		if (temp < target)
163 			target = temp;
164 		n--;
165 	} while (n > 0U);
166 
167 	return target;
168 }
169