xref: /rk3399_ARM-atf/plat/arm/board/juno/aarch64/juno_helpers.S (revision abd2aba99ef108e0d0bb5d71c0b6e9c47ca26377)
1/*
2 * Copyright (c) 2013-2016, ARM Limited and Contributors. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *
7 * Redistributions of source code must retain the above copyright notice, this
8 * list of conditions and the following disclaimer.
9 *
10 * Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 *
14 * Neither the name of ARM nor the names of its contributors may be used
15 * to endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <arch.h>
32#include <asm_macros.S>
33#include <bl_common.h>
34#include <cortex_a53.h>
35#include <cortex_a57.h>
36#include <cortex_a72.h>
37#include <cpu_macros.S>
38#include <css_def.h>
39#include <v2m_def.h>
40#include "../juno_def.h"
41
42
43	.globl	plat_reset_handler
44	.globl	plat_arm_calc_core_pos
45#if JUNO_AARCH32_EL3_RUNTIME
46	.globl	plat_get_my_entrypoint
47	.globl	juno_reset_to_aarch32_state
48#endif
49
50#define JUNO_REVISION(rev)	REV_JUNO_R##rev
51#define JUNO_HANDLER(rev)	plat_reset_handler_juno_r##rev
52#define JUMP_TO_HANDLER_IF_JUNO_R(revision)	\
53	jump_to_handler JUNO_REVISION(revision), JUNO_HANDLER(revision)
54
55	/* --------------------------------------------------------------------
56	 * Helper macro to jump to the given handler if the board revision
57	 * matches.
58	 * Expects the Juno board revision in x0.
59	 * --------------------------------------------------------------------
60	 */
61	.macro jump_to_handler _revision, _handler
62	cmp	x0, #\_revision
63	b.eq	\_handler
64	.endm
65
66	/* --------------------------------------------------------------------
67	 * Helper macro that reads the part number of the current CPU and jumps
68	 * to the given label if it matches the CPU MIDR provided.
69	 *
70	 * Clobbers x0.
71	 * --------------------------------------------------------------------
72	 */
73	.macro  jump_if_cpu_midr _cpu_midr, _label
74	mrs	x0, midr_el1
75	ubfx	x0, x0, MIDR_PN_SHIFT, #12
76	cmp     w0, #((\_cpu_midr >> MIDR_PN_SHIFT) & MIDR_PN_MASK)
77	b.eq	\_label
78	.endm
79
80	/* --------------------------------------------------------------------
81	 * Platform reset handler for Juno R0.
82	 *
83	 * Juno R0 has the following topology:
84	 * - Quad core Cortex-A53 processor cluster;
85	 * - Dual core Cortex-A57 processor cluster.
86	 *
87	 * This handler does the following:
88	 * - Implement workaround for defect id 831273 by enabling an event
89	 *   stream every 65536 cycles.
90	 * - Set the L2 Data RAM latency to 2 (i.e. 3 cycles) for Cortex-A57
91	 * - Set the L2 Tag RAM latency to 2 (i.e. 3 cycles) for Cortex-A57
92	 * --------------------------------------------------------------------
93	 */
94func JUNO_HANDLER(0)
95	/* --------------------------------------------------------------------
96	 * Enable the event stream every 65536 cycles
97	 * --------------------------------------------------------------------
98	 */
99	mov     x0, #(0xf << EVNTI_SHIFT)
100	orr     x0, x0, #EVNTEN_BIT
101	msr     CNTKCTL_EL1, x0
102
103	/* --------------------------------------------------------------------
104	 * Nothing else to do on Cortex-A53.
105	 * --------------------------------------------------------------------
106	 */
107	jump_if_cpu_midr CORTEX_A53_MIDR, 1f
108
109	/* --------------------------------------------------------------------
110	 * Cortex-A57 specific settings
111	 * --------------------------------------------------------------------
112	 */
113	mov	x0, #((L2_DATA_RAM_LATENCY_3_CYCLES << L2CTLR_DATA_RAM_LATENCY_SHIFT) |	\
114		      (L2_TAG_RAM_LATENCY_3_CYCLES << L2CTLR_TAG_RAM_LATENCY_SHIFT))
115	msr     L2CTLR_EL1, x0
1161:
117	isb
118	ret
119endfunc JUNO_HANDLER(0)
120
121	/* --------------------------------------------------------------------
122	 * Platform reset handler for Juno R1.
123	 *
124	 * Juno R1 has the following topology:
125	 * - Quad core Cortex-A53 processor cluster;
126	 * - Dual core Cortex-A57 processor cluster.
127	 *
128	 * This handler does the following:
129	 * - Set the L2 Data RAM latency to 2 (i.e. 3 cycles) for Cortex-A57
130	 *
131	 * Note that:
132	 * - The default value for the L2 Tag RAM latency for Cortex-A57 is
133	 *   suitable.
134	 * - Defect #831273 doesn't affect Juno R1.
135	 * --------------------------------------------------------------------
136	 */
137func JUNO_HANDLER(1)
138	/* --------------------------------------------------------------------
139	 * Nothing to do on Cortex-A53.
140	 * --------------------------------------------------------------------
141	 */
142	jump_if_cpu_midr CORTEX_A57_MIDR, A57
143	ret
144
145A57:
146	/* --------------------------------------------------------------------
147	 * Cortex-A57 specific settings
148	 * --------------------------------------------------------------------
149	 */
150	mov	x0, #(L2_DATA_RAM_LATENCY_3_CYCLES << L2CTLR_DATA_RAM_LATENCY_SHIFT)
151	msr     L2CTLR_EL1, x0
152	isb
153	ret
154endfunc JUNO_HANDLER(1)
155
156	/* --------------------------------------------------------------------
157	 * Platform reset handler for Juno R2.
158	 *
159	 * Juno R2 has the following topology:
160	 * - Quad core Cortex-A53 processor cluster;
161	 * - Dual core Cortex-A72 processor cluster.
162	 *
163	 * This handler does the following:
164	 * - Set the L2 Data RAM latency to 2 (i.e. 3 cycles) for Cortex-A72
165	 * - Set the L2 Tag RAM latency to 1 (i.e. 2 cycles) for Cortex-A72
166	 *
167	 * Note that:
168	 * - Defect #831273 doesn't affect Juno R2.
169	 * --------------------------------------------------------------------
170	 */
171func JUNO_HANDLER(2)
172	/* --------------------------------------------------------------------
173	 * Nothing to do on Cortex-A53.
174	 * --------------------------------------------------------------------
175	 */
176	jump_if_cpu_midr CORTEX_A72_MIDR, A72
177	ret
178
179A72:
180	/* --------------------------------------------------------------------
181	 * Cortex-A72 specific settings
182	 * --------------------------------------------------------------------
183	 */
184	mov	x0, #((L2_DATA_RAM_LATENCY_3_CYCLES << L2CTLR_DATA_RAM_LATENCY_SHIFT) |	\
185		      (L2_TAG_RAM_LATENCY_2_CYCLES << L2CTLR_TAG_RAM_LATENCY_SHIFT))
186	msr     L2CTLR_EL1, x0
187	isb
188	ret
189endfunc JUNO_HANDLER(2)
190
191	/* --------------------------------------------------------------------
192	 * void plat_reset_handler(void);
193	 *
194	 * Determine the Juno board revision and call the appropriate reset
195	 * handler.
196	 * --------------------------------------------------------------------
197	 */
198func plat_reset_handler
199	/* Read the V2M SYS_ID register */
200	mov_imm	x0, (V2M_SYSREGS_BASE + V2M_SYS_ID)
201	ldr	w1, [x0]
202	/* Extract board revision from the SYS_ID */
203	ubfx	x0, x1, #V2M_SYS_ID_REV_SHIFT, #4
204
205	JUMP_TO_HANDLER_IF_JUNO_R(0)
206	JUMP_TO_HANDLER_IF_JUNO_R(1)
207	JUMP_TO_HANDLER_IF_JUNO_R(2)
208
209	/* Board revision is not supported */
210	no_ret	plat_panic_handler
211
212endfunc plat_reset_handler
213
214	/* -----------------------------------------------------
215	 *  void juno_do_reset_to_aarch32_state(void);
216	 *
217	 *  Request warm reset to AArch32 mode.
218	 * -----------------------------------------------------
219	 */
220func juno_do_reset_to_aarch32_state
221	mov	x0, #RMR_EL3_RR_BIT
222	dsb	sy
223	msr	rmr_el3, x0
224	isb
225	wfi
226endfunc juno_do_reset_to_aarch32_state
227
228	/* -----------------------------------------------------
229	 *  unsigned int plat_arm_calc_core_pos(u_register_t mpidr)
230	 *  Helper function to calculate the core position.
231	 * -----------------------------------------------------
232	 */
233func plat_arm_calc_core_pos
234	b	css_calc_core_pos_swap_cluster
235endfunc plat_arm_calc_core_pos
236
237#if JUNO_AARCH32_EL3_RUNTIME
238	/* ---------------------------------------------------------------------
239	 * uintptr_t plat_get_my_entrypoint (void);
240	 *
241	 * Main job of this routine is to distinguish between a cold and a warm
242	 * boot. On JUNO platform, this distinction is based on the contents of
243	 * the Trusted Mailbox. It is initialised to zero by the SCP before the
244	 * AP cores are released from reset. Therefore, a zero mailbox means
245	 * it's a cold reset. If it is a warm boot then a request to reset to
246	 * AArch32 state is issued. This is the only way to reset to AArch32
247	 * in EL3 on Juno. A trampoline located at the high vector address
248	 * has already been prepared by BL1.
249	 *
250	 * This functions returns the contents of the mailbox, i.e.:
251	 *  - 0 for a cold boot;
252	 *  - request warm reset in AArch32 state for warm boot case;
253	 * ---------------------------------------------------------------------
254	 */
255func plat_get_my_entrypoint
256	mov_imm	x0, PLAT_ARM_TRUSTED_MAILBOX_BASE
257	ldr	x0, [x0]
258	cbz	x0, return
259	b	juno_do_reset_to_aarch32_state
2601:
261	b	1b
262return:
263	ret
264endfunc plat_get_my_entrypoint
265
266/*
267 * Emit a "movw r0, #imm16" which moves the lower
268 * 16 bits of `_val` into r0.
269 */
270.macro emit_movw _reg_d, _val
271	mov_imm	\_reg_d, (0xe3000000 | \
272			((\_val & 0xfff) | \
273			((\_val & 0xf000) << 4)))
274.endm
275
276/*
277 * Emit a "movt r0, #imm16" which moves the upper
278 * 16 bits of `_val` into r0.
279 */
280.macro emit_movt _reg_d, _val
281	mov_imm	\_reg_d, (0xe3400000 | \
282			(((\_val & 0x0fff0000) >> 16) | \
283			((\_val & 0xf0000000) >> 12)))
284.endm
285
286/*
287 * This function writes the trampoline code at HI-VEC (0xFFFF0000)
288 * address which loads r0 with the entrypoint address for
289 * BL32 (a.k.a SP_MIN) when EL3 is in AArch32 mode. A warm reset
290 * to AArch32 mode is then requested by writing into RMR_EL3.
291 */
292func juno_reset_to_aarch32_state
293	emit_movw	w0, BL32_BASE
294	emit_movt	w1, BL32_BASE
295	/* opcode "bx r0" to branch using r0 in AArch32 mode */
296	mov_imm	w2, 0xe12fff10
297
298	/* Write the above opcodes at HI-VECTOR location */
299	mov_imm	x3, HI_VECTOR_BASE
300	str	w0, [x3], #4
301	str	w1, [x3], #4
302	str	w2, [x3]
303
304	bl	juno_do_reset_to_aarch32_state
3051:
306	b	1b
307endfunc juno_reset_to_aarch32_state
308
309#endif /* JUNO_AARCH32_EL3_RUNTIME */
310