xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision ffb7742125def3e0acca4c7e4d3215af5ce25a31)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/cpu_data.h>
24 #include <lib/el3_runtime/pubsub_events.h>
25 #include <lib/extensions/amu.h>
26 #include <lib/extensions/brbe.h>
27 #include <lib/extensions/mpam.h>
28 #include <lib/extensions/pmuv3.h>
29 #include <lib/extensions/sme.h>
30 #include <lib/extensions/spe.h>
31 #include <lib/extensions/sve.h>
32 #include <lib/extensions/sys_reg_trace.h>
33 #include <lib/extensions/trbe.h>
34 #include <lib/extensions/trf.h>
35 #include <lib/utils.h>
36 
37 #if ENABLE_FEAT_TWED
38 /* Make sure delay value fits within the range(0-15) */
39 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
40 #endif /* ENABLE_FEAT_TWED */
41 
42 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
43 static bool has_secure_perworld_init;
44 
45 static void manage_extensions_nonsecure(cpu_context_t *ctx);
46 static void manage_extensions_secure(cpu_context_t *ctx);
47 static void manage_extensions_secure_per_world(void);
48 
49 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
50 {
51 	u_register_t sctlr_elx, actlr_elx;
52 
53 	/*
54 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
55 	 * execution state setting all fields rather than relying on the hw.
56 	 * Some fields have architecturally UNKNOWN reset values and these are
57 	 * set to zero.
58 	 *
59 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
60 	 *
61 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
62 	 * required by PSCI specification)
63 	 */
64 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
65 	if (GET_RW(ep->spsr) == MODE_RW_64) {
66 		sctlr_elx |= SCTLR_EL1_RES1;
67 	} else {
68 		/*
69 		 * If the target execution state is AArch32 then the following
70 		 * fields need to be set.
71 		 *
72 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
73 		 *  instructions are not trapped to EL1.
74 		 *
75 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
76 		 *  instructions are not trapped to EL1.
77 		 *
78 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
79 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
80 		 */
81 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
82 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
83 	}
84 
85 #if ERRATA_A75_764081
86 	/*
87 	 * If workaround of errata 764081 for Cortex-A75 is used then set
88 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
89 	 */
90 	sctlr_elx |= SCTLR_IESB_BIT;
91 #endif
92 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
93 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
94 
95 	/*
96 	 * Base the context ACTLR_EL1 on the current value, as it is
97 	 * implementation defined. The context restore process will write
98 	 * the value from the context to the actual register and can cause
99 	 * problems for processor cores that don't expect certain bits to
100 	 * be zero.
101 	 */
102 	actlr_elx = read_actlr_el1();
103 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
104 }
105 
106 /******************************************************************************
107  * This function performs initializations that are specific to SECURE state
108  * and updates the cpu context specified by 'ctx'.
109  *****************************************************************************/
110 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
111 {
112 	u_register_t scr_el3;
113 	el3_state_t *state;
114 
115 	state = get_el3state_ctx(ctx);
116 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
117 
118 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
119 	/*
120 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
121 	 * indicated by the interrupt routing model for BL31.
122 	 */
123 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
124 #endif
125 
126 	/* Allow access to Allocation Tags when mte is set*/
127 	if (is_feat_mte_supported()) {
128 		scr_el3 |= SCR_ATA_BIT;
129 	}
130 
131 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
132 
133 	/*
134 	 * Initialize EL1 context registers unless SPMC is running
135 	 * at S-EL2.
136 	 */
137 #if !SPMD_SPM_AT_SEL2
138 	setup_el1_context(ctx, ep);
139 #endif
140 
141 	manage_extensions_secure(ctx);
142 
143 	/**
144 	 * manage_extensions_secure_per_world api has to be executed once,
145 	 * as the registers getting initialised, maintain constant value across
146 	 * all the cpus for the secure world.
147 	 * Henceforth, this check ensures that the registers are initialised once
148 	 * and avoids re-initialization from multiple cores.
149 	 */
150 	if (!has_secure_perworld_init) {
151 		manage_extensions_secure_per_world();
152 	}
153 
154 }
155 
156 #if ENABLE_RME
157 /******************************************************************************
158  * This function performs initializations that are specific to REALM state
159  * and updates the cpu context specified by 'ctx'.
160  *****************************************************************************/
161 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
162 {
163 	u_register_t scr_el3;
164 	el3_state_t *state;
165 
166 	state = get_el3state_ctx(ctx);
167 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
168 
169 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
170 
171 	/* CSV2 version 2 and above */
172 	if (is_feat_csv2_2_supported()) {
173 		/* Enable access to the SCXTNUM_ELx registers. */
174 		scr_el3 |= SCR_EnSCXT_BIT;
175 	}
176 
177 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
178 }
179 #endif /* ENABLE_RME */
180 
181 /******************************************************************************
182  * This function performs initializations that are specific to NON-SECURE state
183  * and updates the cpu context specified by 'ctx'.
184  *****************************************************************************/
185 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
186 {
187 	u_register_t scr_el3;
188 	el3_state_t *state;
189 
190 	state = get_el3state_ctx(ctx);
191 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
192 
193 	/* SCR_NS: Set the NS bit */
194 	scr_el3 |= SCR_NS_BIT;
195 
196 	/* Allow access to Allocation Tags when MTE is implemented. */
197 	scr_el3 |= SCR_ATA_BIT;
198 
199 #if !CTX_INCLUDE_PAUTH_REGS
200 	/*
201 	 * Pointer Authentication feature, if present, is always enabled by default
202 	 * for Non secure lower exception levels. We do not have an explicit
203 	 * flag to set it.
204 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
205 	 * exception levels of secure and realm worlds.
206 	 *
207 	 * To prevent the leakage between the worlds during world switch,
208 	 * we enable it only for the non-secure world.
209 	 *
210 	 * If the Secure/realm world wants to use pointer authentication,
211 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
212 	 * it will be enabled globally for all the contexts.
213 	 *
214 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
215 	 *  other than EL3
216 	 *
217 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
218 	 *  than EL3
219 	 */
220 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
221 
222 #endif /* CTX_INCLUDE_PAUTH_REGS */
223 
224 #if HANDLE_EA_EL3_FIRST_NS
225 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
226 	scr_el3 |= SCR_EA_BIT;
227 #endif
228 
229 #if RAS_TRAP_NS_ERR_REC_ACCESS
230 	/*
231 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
232 	 * and RAS ERX registers from EL1 and EL2(from any security state)
233 	 * are trapped to EL3.
234 	 * Set here to trap only for NS EL1/EL2
235 	 *
236 	 */
237 	scr_el3 |= SCR_TERR_BIT;
238 #endif
239 
240 	/* CSV2 version 2 and above */
241 	if (is_feat_csv2_2_supported()) {
242 		/* Enable access to the SCXTNUM_ELx registers. */
243 		scr_el3 |= SCR_EnSCXT_BIT;
244 	}
245 
246 #ifdef IMAGE_BL31
247 	/*
248 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
249 	 *  indicated by the interrupt routing model for BL31.
250 	 */
251 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
252 #endif
253 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
254 
255 	/* Initialize EL1 context registers */
256 	setup_el1_context(ctx, ep);
257 
258 	/* Initialize EL2 context registers */
259 #if CTX_INCLUDE_EL2_REGS
260 
261 	/*
262 	 * Initialize SCTLR_EL2 context register using Endianness value
263 	 * taken from the entrypoint attribute.
264 	 */
265 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
266 	sctlr_el2 |= SCTLR_EL2_RES1;
267 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
268 			sctlr_el2);
269 
270 	if (is_feat_hcx_supported()) {
271 		/*
272 		 * Initialize register HCRX_EL2 with its init value.
273 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
274 		 * chance that this can lead to unexpected behavior in lower
275 		 * ELs that have not been updated since the introduction of
276 		 * this feature if not properly initialized, especially when
277 		 * it comes to those bits that enable/disable traps.
278 		 */
279 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HCRX_EL2,
280 			HCRX_EL2_INIT_VAL);
281 	}
282 
283 	if (is_feat_fgt_supported()) {
284 		/*
285 		 * Initialize HFG*_EL2 registers with a default value so legacy
286 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
287 		 * of initialization for this feature.
288 		 */
289 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGITR_EL2,
290 			HFGITR_EL2_INIT_VAL);
291 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGRTR_EL2,
292 			HFGRTR_EL2_INIT_VAL);
293 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGWTR_EL2,
294 			HFGWTR_EL2_INIT_VAL);
295 	}
296 #endif /* CTX_INCLUDE_EL2_REGS */
297 
298 	manage_extensions_nonsecure(ctx);
299 }
300 
301 /*******************************************************************************
302  * The following function performs initialization of the cpu_context 'ctx'
303  * for first use that is common to all security states, and sets the
304  * initial entrypoint state as specified by the entry_point_info structure.
305  *
306  * The EE and ST attributes are used to configure the endianness and secure
307  * timer availability for the new execution context.
308  ******************************************************************************/
309 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
310 {
311 	u_register_t scr_el3;
312 	el3_state_t *state;
313 	gp_regs_t *gp_regs;
314 
315 	state = get_el3state_ctx(ctx);
316 
317 	/* Clear any residual register values from the context */
318 	zeromem(ctx, sizeof(*ctx));
319 
320 	/*
321 	 * The lower-EL context is zeroed so that no stale values leak to a world.
322 	 * It is assumed that an all-zero lower-EL context is good enough for it
323 	 * to boot correctly. However, there are very few registers where this
324 	 * is not true and some values need to be recreated.
325 	 */
326 #if CTX_INCLUDE_EL2_REGS
327 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
328 
329 	/*
330 	 * These bits are set in the gicv3 driver. Losing them (especially the
331 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
332 	 */
333 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
334 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
335 	write_ctx_reg(el2_ctx, CTX_ICC_SRE_EL2, icc_sre_el2);
336 #endif /* CTX_INCLUDE_EL2_REGS */
337 
338 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
339 	scr_el3 = SCR_RESET_VAL;
340 
341 	/*
342 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
343 	 *  EL2, EL1 and EL0 are not trapped to EL3.
344 	 *
345 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
346 	 *  EL2, EL1 and EL0 are not trapped to EL3.
347 	 *
348 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
349 	 *  both Security states and both Execution states.
350 	 *
351 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
352 	 *  Non-secure memory.
353 	 */
354 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
355 
356 	scr_el3 |= SCR_SIF_BIT;
357 
358 	/*
359 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
360 	 *  Exception level as specified by SPSR.
361 	 */
362 	if (GET_RW(ep->spsr) == MODE_RW_64) {
363 		scr_el3 |= SCR_RW_BIT;
364 	}
365 
366 	/*
367 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
368 	 * Secure timer registers to EL3, from AArch64 state only, if specified
369 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
370 	 * bit always behaves as 1 (i.e. secure physical timer register access
371 	 * is not trapped)
372 	 */
373 	if (EP_GET_ST(ep->h.attr) != 0U) {
374 		scr_el3 |= SCR_ST_BIT;
375 	}
376 
377 	/*
378 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
379 	 * SCR_EL3.HXEn.
380 	 */
381 	if (is_feat_hcx_supported()) {
382 		scr_el3 |= SCR_HXEn_BIT;
383 	}
384 
385 	/*
386 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
387 	 * registers are trapped to EL3.
388 	 */
389 #if ENABLE_FEAT_RNG_TRAP
390 	scr_el3 |= SCR_TRNDR_BIT;
391 #endif
392 
393 #if FAULT_INJECTION_SUPPORT
394 	/* Enable fault injection from lower ELs */
395 	scr_el3 |= SCR_FIEN_BIT;
396 #endif
397 
398 #if CTX_INCLUDE_PAUTH_REGS
399 	/*
400 	 * Enable Pointer Authentication globally for all the worlds.
401 	 *
402 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
403 	 *  other than EL3
404 	 *
405 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
406 	 *  than EL3
407 	 */
408 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
409 #endif /* CTX_INCLUDE_PAUTH_REGS */
410 
411 	/*
412 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
413 	 */
414 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
415 		scr_el3 |= SCR_TCR2EN_BIT;
416 	}
417 
418 	/*
419 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
420 	 * registers for AArch64 if present.
421 	 */
422 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
423 		scr_el3 |= SCR_PIEN_BIT;
424 	}
425 
426 	/*
427 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
428 	 */
429 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
430 		scr_el3 |= SCR_GCSEn_BIT;
431 	}
432 
433 	/*
434 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
435 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
436 	 * next mode is Hyp.
437 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
438 	 * same conditions as HVC instructions and when the processor supports
439 	 * ARMv8.6-FGT.
440 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
441 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
442 	 * and when the processor supports ECV.
443 	 */
444 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
445 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
446 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
447 		scr_el3 |= SCR_HCE_BIT;
448 
449 		if (is_feat_fgt_supported()) {
450 			scr_el3 |= SCR_FGTEN_BIT;
451 		}
452 
453 		if (is_feat_ecv_supported()) {
454 			scr_el3 |= SCR_ECVEN_BIT;
455 		}
456 	}
457 
458 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
459 	if (is_feat_twed_supported()) {
460 		/* Set delay in SCR_EL3 */
461 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
462 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
463 				<< SCR_TWEDEL_SHIFT);
464 
465 		/* Enable WFE delay */
466 		scr_el3 |= SCR_TWEDEn_BIT;
467 	}
468 
469 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
470 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
471 	if (is_feat_sel2_supported()) {
472 		scr_el3 |= SCR_EEL2_BIT;
473 	}
474 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
475 
476 	/*
477 	 * Populate EL3 state so that we've the right context
478 	 * before doing ERET
479 	 */
480 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
481 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
482 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
483 
484 	/*
485 	 * Store the X0-X7 value from the entrypoint into the context
486 	 * Use memcpy as we are in control of the layout of the structures
487 	 */
488 	gp_regs = get_gpregs_ctx(ctx);
489 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
490 }
491 
492 /*******************************************************************************
493  * Context management library initialization routine. This library is used by
494  * runtime services to share pointers to 'cpu_context' structures for secure
495  * non-secure and realm states. Management of the structures and their associated
496  * memory is not done by the context management library e.g. the PSCI service
497  * manages the cpu context used for entry from and exit to the non-secure state.
498  * The Secure payload dispatcher service manages the context(s) corresponding to
499  * the secure state. It also uses this library to get access to the non-secure
500  * state cpu context pointers.
501  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
502  * which will be used for programming an entry into a lower EL. The same context
503  * will be used to save state upon exception entry from that EL.
504  ******************************************************************************/
505 void __init cm_init(void)
506 {
507 	/*
508 	 * The context management library has only global data to initialize, but
509 	 * that will be done when the BSS is zeroed out.
510 	 */
511 }
512 
513 /*******************************************************************************
514  * This is the high-level function used to initialize the cpu_context 'ctx' for
515  * first use. It performs initializations that are common to all security states
516  * and initializations specific to the security state specified in 'ep'
517  ******************************************************************************/
518 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
519 {
520 	unsigned int security_state;
521 
522 	assert(ctx != NULL);
523 
524 	/*
525 	 * Perform initializations that are common
526 	 * to all security states
527 	 */
528 	setup_context_common(ctx, ep);
529 
530 	security_state = GET_SECURITY_STATE(ep->h.attr);
531 
532 	/* Perform security state specific initializations */
533 	switch (security_state) {
534 	case SECURE:
535 		setup_secure_context(ctx, ep);
536 		break;
537 #if ENABLE_RME
538 	case REALM:
539 		setup_realm_context(ctx, ep);
540 		break;
541 #endif
542 	case NON_SECURE:
543 		setup_ns_context(ctx, ep);
544 		break;
545 	default:
546 		ERROR("Invalid security state\n");
547 		panic();
548 		break;
549 	}
550 }
551 
552 /*******************************************************************************
553  * Enable architecture extensions for EL3 execution. This function only updates
554  * registers in-place which are expected to either never change or be
555  * overwritten by el3_exit.
556  ******************************************************************************/
557 #if IMAGE_BL31
558 void cm_manage_extensions_el3(void)
559 {
560 	if (is_feat_spe_supported()) {
561 		spe_init_el3();
562 	}
563 
564 	if (is_feat_amu_supported()) {
565 		amu_init_el3();
566 	}
567 
568 	if (is_feat_sme_supported()) {
569 		sme_init_el3();
570 	}
571 
572 	if (is_feat_trbe_supported()) {
573 		trbe_init_el3();
574 	}
575 
576 	if (is_feat_brbe_supported()) {
577 		brbe_init_el3();
578 	}
579 
580 	if (is_feat_trf_supported()) {
581 		trf_init_el3();
582 	}
583 
584 	pmuv3_init_el3();
585 }
586 #endif /* IMAGE_BL31 */
587 
588 /******************************************************************************
589  * Function to initialise the registers with the RESET values in the context
590  * memory, which are maintained per world.
591  ******************************************************************************/
592 #if IMAGE_BL31
593 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
594 {
595 	/*
596 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
597 	 *
598 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
599 	 *  by Advanced SIMD, floating-point or SVE instructions (if
600 	 *  implemented) do not trap to EL3.
601 	 *
602 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
603 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
604 	 */
605 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
606 
607 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
608 
609 	/*
610 	 * Initialize MPAM3_EL3 to its default reset value
611 	 *
612 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
613 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
614 	 */
615 
616 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
617 }
618 #endif /* IMAGE_BL31 */
619 
620 /*******************************************************************************
621  * Initialise per_world_context for Non-Secure world.
622  * This function enables the architecture extensions, which have same value
623  * across the cores for the non-secure world.
624  ******************************************************************************/
625 #if IMAGE_BL31
626 void manage_extensions_nonsecure_per_world(void)
627 {
628 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
629 
630 	if (is_feat_sme_supported()) {
631 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
632 	}
633 
634 	if (is_feat_sve_supported()) {
635 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
636 	}
637 
638 	if (is_feat_amu_supported()) {
639 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
640 	}
641 
642 	if (is_feat_sys_reg_trace_supported()) {
643 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
644 	}
645 
646 	if (is_feat_mpam_supported()) {
647 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
648 	}
649 }
650 #endif /* IMAGE_BL31 */
651 
652 /*******************************************************************************
653  * Initialise per_world_context for Secure world.
654  * This function enables the architecture extensions, which have same value
655  * across the cores for the secure world.
656  ******************************************************************************/
657 static void manage_extensions_secure_per_world(void)
658 {
659 #if IMAGE_BL31
660 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
661 
662 	if (is_feat_sme_supported()) {
663 
664 		if (ENABLE_SME_FOR_SWD) {
665 		/*
666 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
667 		 * SME, SVE, and FPU/SIMD context properly managed.
668 		 */
669 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
670 		} else {
671 		/*
672 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
673 		 * world can safely use the associated registers.
674 		 */
675 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
676 		}
677 	}
678 	if (is_feat_sve_supported()) {
679 		if (ENABLE_SVE_FOR_SWD) {
680 		/*
681 		 * Enable SVE and FPU in secure context, SPM must ensure
682 		 * that the SVE and FPU register contexts are properly managed.
683 		 */
684 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
685 		} else {
686 		/*
687 		 * Disable SVE and FPU in secure context so non-secure world
688 		 * can safely use them.
689 		 */
690 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
691 		}
692 	}
693 
694 	/* NS can access this but Secure shouldn't */
695 	if (is_feat_sys_reg_trace_supported()) {
696 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
697 	}
698 
699 	has_secure_perworld_init = true;
700 #endif /* IMAGE_BL31 */
701 }
702 
703 /*******************************************************************************
704  * Enable architecture extensions on first entry to Non-secure world.
705  ******************************************************************************/
706 static void manage_extensions_nonsecure(cpu_context_t *ctx)
707 {
708 #if IMAGE_BL31
709 	if (is_feat_amu_supported()) {
710 		amu_enable(ctx);
711 	}
712 
713 	if (is_feat_sme_supported()) {
714 		sme_enable(ctx);
715 	}
716 
717 	pmuv3_enable(ctx);
718 #endif /* IMAGE_BL31 */
719 }
720 
721 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
722 static __unused void enable_pauth_el2(void)
723 {
724 	u_register_t hcr_el2 = read_hcr_el2();
725 	/*
726 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
727 	 *  accessing key registers or using pointer authentication instructions
728 	 *  from lower ELs.
729 	 */
730 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
731 
732 	write_hcr_el2(hcr_el2);
733 }
734 
735 #if INIT_UNUSED_NS_EL2
736 /*******************************************************************************
737  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
738  * world when EL2 is empty and unused.
739  ******************************************************************************/
740 static void manage_extensions_nonsecure_el2_unused(void)
741 {
742 #if IMAGE_BL31
743 	if (is_feat_spe_supported()) {
744 		spe_init_el2_unused();
745 	}
746 
747 	if (is_feat_amu_supported()) {
748 		amu_init_el2_unused();
749 	}
750 
751 	if (is_feat_mpam_supported()) {
752 		mpam_init_el2_unused();
753 	}
754 
755 	if (is_feat_trbe_supported()) {
756 		trbe_init_el2_unused();
757 	}
758 
759 	if (is_feat_sys_reg_trace_supported()) {
760 		sys_reg_trace_init_el2_unused();
761 	}
762 
763 	if (is_feat_trf_supported()) {
764 		trf_init_el2_unused();
765 	}
766 
767 	pmuv3_init_el2_unused();
768 
769 	if (is_feat_sve_supported()) {
770 		sve_init_el2_unused();
771 	}
772 
773 	if (is_feat_sme_supported()) {
774 		sme_init_el2_unused();
775 	}
776 
777 #if ENABLE_PAUTH
778 	enable_pauth_el2();
779 #endif /* ENABLE_PAUTH */
780 #endif /* IMAGE_BL31 */
781 }
782 #endif /* INIT_UNUSED_NS_EL2 */
783 
784 /*******************************************************************************
785  * Enable architecture extensions on first entry to Secure world.
786  ******************************************************************************/
787 static void manage_extensions_secure(cpu_context_t *ctx)
788 {
789 #if IMAGE_BL31
790 	if (is_feat_sme_supported()) {
791 		if (ENABLE_SME_FOR_SWD) {
792 		/*
793 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
794 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
795 		 */
796 			sme_init_el3();
797 			sme_enable(ctx);
798 		} else {
799 		/*
800 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
801 		 * world can safely use the associated registers.
802 		 */
803 			sme_disable(ctx);
804 		}
805 	}
806 #endif /* IMAGE_BL31 */
807 }
808 
809 /*******************************************************************************
810  * The following function initializes the cpu_context for a CPU specified by
811  * its `cpu_idx` for first use, and sets the initial entrypoint state as
812  * specified by the entry_point_info structure.
813  ******************************************************************************/
814 void cm_init_context_by_index(unsigned int cpu_idx,
815 			      const entry_point_info_t *ep)
816 {
817 	cpu_context_t *ctx;
818 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
819 	cm_setup_context(ctx, ep);
820 }
821 
822 /*******************************************************************************
823  * The following function initializes the cpu_context for the current CPU
824  * for first use, and sets the initial entrypoint state as specified by the
825  * entry_point_info structure.
826  ******************************************************************************/
827 void cm_init_my_context(const entry_point_info_t *ep)
828 {
829 	cpu_context_t *ctx;
830 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
831 	cm_setup_context(ctx, ep);
832 }
833 
834 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
835 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
836 {
837 #if INIT_UNUSED_NS_EL2
838 	u_register_t hcr_el2 = HCR_RESET_VAL;
839 	u_register_t mdcr_el2;
840 	u_register_t scr_el3;
841 
842 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
843 
844 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
845 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
846 		hcr_el2 |= HCR_RW_BIT;
847 	}
848 
849 	write_hcr_el2(hcr_el2);
850 
851 	/*
852 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
853 	 * All fields have architecturally UNKNOWN reset values.
854 	 */
855 	write_cptr_el2(CPTR_EL2_RESET_VAL);
856 
857 	/*
858 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
859 	 * reset and are set to zero except for field(s) listed below.
860 	 *
861 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
862 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
863 	 *
864 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
865 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
866 	 */
867 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
868 
869 	/*
870 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
871 	 * UNKNOWN value.
872 	 */
873 	write_cntvoff_el2(0);
874 
875 	/*
876 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
877 	 * respectively.
878 	 */
879 	write_vpidr_el2(read_midr_el1());
880 	write_vmpidr_el2(read_mpidr_el1());
881 
882 	/*
883 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
884 	 *
885 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
886 	 * translation is disabled, cache maintenance operations depend on the
887 	 * VMID.
888 	 *
889 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
890 	 * disabled.
891 	 */
892 	write_vttbr_el2(VTTBR_RESET_VAL &
893 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
894 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
895 
896 	/*
897 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
898 	 * Some fields are architecturally UNKNOWN on reset.
899 	 *
900 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
901 	 * register accesses to the Debug ROM registers are not trapped to EL2.
902 	 *
903 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
904 	 * accesses to the powerdown debug registers are not trapped to EL2.
905 	 *
906 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
907 	 * debug registers do not trap to EL2.
908 	 *
909 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
910 	 * EL2.
911 	 */
912 	mdcr_el2 = MDCR_EL2_RESET_VAL &
913 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
914 		   MDCR_EL2_TDE_BIT);
915 
916 	write_mdcr_el2(mdcr_el2);
917 
918 	/*
919 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
920 	 *
921 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
922 	 * EL1 accesses to System registers do not trap to EL2.
923 	 */
924 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
925 
926 	/*
927 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
928 	 * reset.
929 	 *
930 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
931 	 * and prevent timer interrupts.
932 	 */
933 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
934 
935 	manage_extensions_nonsecure_el2_unused();
936 #endif /* INIT_UNUSED_NS_EL2 */
937 }
938 
939 /*******************************************************************************
940  * Prepare the CPU system registers for first entry into realm, secure, or
941  * normal world.
942  *
943  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
944  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
945  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
946  * For all entries, the EL1 registers are initialized from the cpu_context
947  ******************************************************************************/
948 void cm_prepare_el3_exit(uint32_t security_state)
949 {
950 	u_register_t sctlr_elx, scr_el3;
951 	cpu_context_t *ctx = cm_get_context(security_state);
952 
953 	assert(ctx != NULL);
954 
955 	if (security_state == NON_SECURE) {
956 		uint64_t el2_implemented = el_implemented(2);
957 
958 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
959 						 CTX_SCR_EL3);
960 
961 		if (((scr_el3 & SCR_HCE_BIT) != 0U)
962 			|| (el2_implemented != EL_IMPL_NONE)) {
963 			/*
964 			 * If context is not being used for EL2, initialize
965 			 * HCRX_EL2 with its init value here.
966 			 */
967 			if (is_feat_hcx_supported()) {
968 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
969 			}
970 
971 			/*
972 			 * Initialize Fine-grained trap registers introduced
973 			 * by FEAT_FGT so all traps are initially disabled when
974 			 * switching to EL2 or a lower EL, preventing undesired
975 			 * behavior.
976 			 */
977 			if (is_feat_fgt_supported()) {
978 				/*
979 				 * Initialize HFG*_EL2 registers with a default
980 				 * value so legacy systems unaware of FEAT_FGT
981 				 * do not get trapped due to their lack of
982 				 * initialization for this feature.
983 				 */
984 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
985 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
986 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
987 			}
988 		}
989 
990 
991 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
992 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
993 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
994 							   CTX_SCTLR_EL1);
995 			sctlr_elx &= SCTLR_EE_BIT;
996 			sctlr_elx |= SCTLR_EL2_RES1;
997 #if ERRATA_A75_764081
998 			/*
999 			 * If workaround of errata 764081 for Cortex-A75 is used
1000 			 * then set SCTLR_EL2.IESB to enable Implicit Error
1001 			 * Synchronization Barrier.
1002 			 */
1003 			sctlr_elx |= SCTLR_IESB_BIT;
1004 #endif
1005 			write_sctlr_el2(sctlr_elx);
1006 		} else if (el2_implemented != EL_IMPL_NONE) {
1007 			init_nonsecure_el2_unused(ctx);
1008 		}
1009 	}
1010 
1011 	cm_el1_sysregs_context_restore(security_state);
1012 	cm_set_next_eret_context(security_state);
1013 }
1014 
1015 #if CTX_INCLUDE_EL2_REGS
1016 
1017 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1018 {
1019 	write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2());
1020 	if (is_feat_amu_supported()) {
1021 		write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2());
1022 	}
1023 	write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2());
1024 	write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2());
1025 	write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2());
1026 	write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2());
1027 }
1028 
1029 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1030 {
1031 	write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2));
1032 	if (is_feat_amu_supported()) {
1033 		write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2));
1034 	}
1035 	write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2));
1036 	write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2));
1037 	write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2));
1038 	write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2));
1039 }
1040 
1041 #if CTX_INCLUDE_MPAM_REGS
1042 
1043 static void el2_sysregs_context_save_mpam(mpam_t *ctx)
1044 {
1045 	u_register_t mpam_idr = read_mpamidr_el1();
1046 
1047 	write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
1048 
1049 	/*
1050 	 * The context registers that we intend to save would be part of the
1051 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1052 	 */
1053 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1054 		return;
1055 	}
1056 
1057 	/*
1058 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1059 	 * MPAMIDR_HAS_HCR_BIT == 1.
1060 	 */
1061 	write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
1062 	write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
1063 	write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
1064 
1065 	/*
1066 	 * The number of MPAMVPM registers is implementation defined, their
1067 	 * number is stored in the MPAMIDR_EL1 register.
1068 	 */
1069 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1070 	case 7:
1071 		write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
1072 		__fallthrough;
1073 	case 6:
1074 		write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
1075 		__fallthrough;
1076 	case 5:
1077 		write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
1078 		__fallthrough;
1079 	case 4:
1080 		write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
1081 		__fallthrough;
1082 	case 3:
1083 		write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
1084 		__fallthrough;
1085 	case 2:
1086 		write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
1087 		__fallthrough;
1088 	case 1:
1089 		write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
1090 		break;
1091 	}
1092 }
1093 
1094 #endif /* CTX_INCLUDE_MPAM_REGS */
1095 
1096 #if CTX_INCLUDE_MPAM_REGS
1097 static void el2_sysregs_context_restore_mpam(mpam_t *ctx)
1098 {
1099 	u_register_t mpam_idr = read_mpamidr_el1();
1100 
1101 	write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
1102 
1103 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1104 		return;
1105 	}
1106 
1107 	write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
1108 	write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
1109 	write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
1110 
1111 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1112 	case 7:
1113 		write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
1114 		__fallthrough;
1115 	case 6:
1116 		write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
1117 		__fallthrough;
1118 	case 5:
1119 		write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
1120 		__fallthrough;
1121 	case 4:
1122 		write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
1123 		__fallthrough;
1124 	case 3:
1125 		write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
1126 		__fallthrough;
1127 	case 2:
1128 		write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
1129 		__fallthrough;
1130 	case 1:
1131 		write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
1132 		break;
1133 	}
1134 }
1135 #endif /* CTX_INCLUDE_MPAM_REGS */
1136 
1137 /* -----------------------------------------------------
1138  * The following registers are not added:
1139  * AMEVCNTVOFF0<n>_EL2
1140  * AMEVCNTVOFF1<n>_EL2
1141  * ICH_AP0R<n>_EL2
1142  * ICH_AP1R<n>_EL2
1143  * ICH_LR<n>_EL2
1144  * -----------------------------------------------------
1145  */
1146 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1147 {
1148 	write_ctx_reg(ctx, CTX_ACTLR_EL2, read_actlr_el2());
1149 	write_ctx_reg(ctx, CTX_AFSR0_EL2, read_afsr0_el2());
1150 	write_ctx_reg(ctx, CTX_AFSR1_EL2, read_afsr1_el2());
1151 	write_ctx_reg(ctx, CTX_AMAIR_EL2, read_amair_el2());
1152 	write_ctx_reg(ctx, CTX_CNTHCTL_EL2, read_cnthctl_el2());
1153 	write_ctx_reg(ctx, CTX_CNTVOFF_EL2, read_cntvoff_el2());
1154 	write_ctx_reg(ctx, CTX_CPTR_EL2, read_cptr_el2());
1155 	if (CTX_INCLUDE_AARCH32_REGS) {
1156 		write_ctx_reg(ctx, CTX_DBGVCR32_EL2, read_dbgvcr32_el2());
1157 	}
1158 	write_ctx_reg(ctx, CTX_ELR_EL2, read_elr_el2());
1159 	write_ctx_reg(ctx, CTX_ESR_EL2, read_esr_el2());
1160 	write_ctx_reg(ctx, CTX_FAR_EL2, read_far_el2());
1161 	write_ctx_reg(ctx, CTX_HACR_EL2, read_hacr_el2());
1162 	write_ctx_reg(ctx, CTX_HCR_EL2, read_hcr_el2());
1163 	write_ctx_reg(ctx, CTX_HPFAR_EL2, read_hpfar_el2());
1164 	write_ctx_reg(ctx, CTX_HSTR_EL2, read_hstr_el2());
1165 
1166 	/*
1167 	 * Set the NS bit to be able to access the ICC_SRE_EL2 register
1168 	 * TODO: remove with root context
1169 	 */
1170 	u_register_t scr_el3 = read_scr_el3();
1171 
1172 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1173 	isb();
1174 	write_ctx_reg(ctx, CTX_ICC_SRE_EL2, read_icc_sre_el2());
1175 
1176 	write_scr_el3(scr_el3);
1177 	isb();
1178 
1179 	write_ctx_reg(ctx, CTX_ICH_HCR_EL2, read_ich_hcr_el2());
1180 	write_ctx_reg(ctx, CTX_ICH_VMCR_EL2, read_ich_vmcr_el2());
1181 	write_ctx_reg(ctx, CTX_MAIR_EL2, read_mair_el2());
1182 	write_ctx_reg(ctx, CTX_MDCR_EL2, read_mdcr_el2());
1183 	write_ctx_reg(ctx, CTX_SCTLR_EL2, read_sctlr_el2());
1184 	write_ctx_reg(ctx, CTX_SPSR_EL2, read_spsr_el2());
1185 	write_ctx_reg(ctx, CTX_SP_EL2, read_sp_el2());
1186 	write_ctx_reg(ctx, CTX_TCR_EL2, read_tcr_el2());
1187 	write_ctx_reg(ctx, CTX_TPIDR_EL2, read_tpidr_el2());
1188 	write_ctx_reg(ctx, CTX_TTBR0_EL2, read_ttbr0_el2());
1189 	write_ctx_reg(ctx, CTX_VBAR_EL2, read_vbar_el2());
1190 	write_ctx_reg(ctx, CTX_VMPIDR_EL2, read_vmpidr_el2());
1191 	write_ctx_reg(ctx, CTX_VPIDR_EL2, read_vpidr_el2());
1192 	write_ctx_reg(ctx, CTX_VTCR_EL2, read_vtcr_el2());
1193 	write_ctx_reg(ctx, CTX_VTTBR_EL2, read_vttbr_el2());
1194 }
1195 
1196 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1197 {
1198 	write_actlr_el2(read_ctx_reg(ctx, CTX_ACTLR_EL2));
1199 	write_afsr0_el2(read_ctx_reg(ctx, CTX_AFSR0_EL2));
1200 	write_afsr1_el2(read_ctx_reg(ctx, CTX_AFSR1_EL2));
1201 	write_amair_el2(read_ctx_reg(ctx, CTX_AMAIR_EL2));
1202 	write_cnthctl_el2(read_ctx_reg(ctx, CTX_CNTHCTL_EL2));
1203 	write_cntvoff_el2(read_ctx_reg(ctx, CTX_CNTVOFF_EL2));
1204 	write_cptr_el2(read_ctx_reg(ctx, CTX_CPTR_EL2));
1205 	if (CTX_INCLUDE_AARCH32_REGS) {
1206 		write_dbgvcr32_el2(read_ctx_reg(ctx, CTX_DBGVCR32_EL2));
1207 	}
1208 	write_elr_el2(read_ctx_reg(ctx, CTX_ELR_EL2));
1209 	write_esr_el2(read_ctx_reg(ctx, CTX_ESR_EL2));
1210 	write_far_el2(read_ctx_reg(ctx, CTX_FAR_EL2));
1211 	write_hacr_el2(read_ctx_reg(ctx, CTX_HACR_EL2));
1212 	write_hcr_el2(read_ctx_reg(ctx, CTX_HCR_EL2));
1213 	write_hpfar_el2(read_ctx_reg(ctx, CTX_HPFAR_EL2));
1214 	write_hstr_el2(read_ctx_reg(ctx, CTX_HSTR_EL2));
1215 
1216 	/*
1217 	 * Set the NS bit to be able to access the ICC_SRE_EL2 register
1218 	 * TODO: remove with root context
1219 	 */
1220 	u_register_t scr_el3 = read_scr_el3();
1221 
1222 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1223 	isb();
1224 	write_icc_sre_el2(read_ctx_reg(ctx, CTX_ICC_SRE_EL2));
1225 
1226 	write_scr_el3(scr_el3);
1227 	isb();
1228 
1229 	write_ich_hcr_el2(read_ctx_reg(ctx, CTX_ICH_HCR_EL2));
1230 	write_ich_vmcr_el2(read_ctx_reg(ctx, CTX_ICH_VMCR_EL2));
1231 	write_mair_el2(read_ctx_reg(ctx, CTX_MAIR_EL2));
1232 	write_mdcr_el2(read_ctx_reg(ctx, CTX_MDCR_EL2));
1233 	write_sctlr_el2(read_ctx_reg(ctx, CTX_SCTLR_EL2));
1234 	write_spsr_el2(read_ctx_reg(ctx, CTX_SPSR_EL2));
1235 	write_sp_el2(read_ctx_reg(ctx, CTX_SP_EL2));
1236 	write_tcr_el2(read_ctx_reg(ctx, CTX_TCR_EL2));
1237 	write_tpidr_el2(read_ctx_reg(ctx, CTX_TPIDR_EL2));
1238 	write_ttbr0_el2(read_ctx_reg(ctx, CTX_TTBR0_EL2));
1239 	write_vbar_el2(read_ctx_reg(ctx, CTX_VBAR_EL2));
1240 	write_vmpidr_el2(read_ctx_reg(ctx, CTX_VMPIDR_EL2));
1241 	write_vpidr_el2(read_ctx_reg(ctx, CTX_VPIDR_EL2));
1242 	write_vtcr_el2(read_ctx_reg(ctx, CTX_VTCR_EL2));
1243 	write_vttbr_el2(read_ctx_reg(ctx, CTX_VTTBR_EL2));
1244 }
1245 
1246 /*******************************************************************************
1247  * Save EL2 sysreg context
1248  ******************************************************************************/
1249 void cm_el2_sysregs_context_save(uint32_t security_state)
1250 {
1251 	cpu_context_t *ctx;
1252 	el2_sysregs_t *el2_sysregs_ctx;
1253 
1254 	ctx = cm_get_context(security_state);
1255 	assert(ctx != NULL);
1256 
1257 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1258 
1259 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1260 
1261 	if (is_feat_mte_supported()) {
1262 		write_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2, read_tfsr_el2());
1263 	}
1264 
1265 #if CTX_INCLUDE_MPAM_REGS
1266 	if (is_feat_mpam_supported()) {
1267 		mpam_t *mpam_ctx = get_mpam_ctx(ctx);
1268 		el2_sysregs_context_save_mpam(mpam_ctx);
1269 	}
1270 #endif
1271 
1272 	if (is_feat_fgt_supported()) {
1273 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1274 	}
1275 
1276 	if (is_feat_ecv_v2_supported()) {
1277 		write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2, read_cntpoff_el2());
1278 	}
1279 
1280 	if (is_feat_vhe_supported()) {
1281 		write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2, read_contextidr_el2());
1282 		write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2, read_ttbr1_el2());
1283 	}
1284 
1285 	if (is_feat_ras_supported()) {
1286 		write_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2, read_vdisr_el2());
1287 		write_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2, read_vsesr_el2());
1288 	}
1289 
1290 	if (is_feat_nv2_supported()) {
1291 		write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2, read_vncr_el2());
1292 	}
1293 
1294 	if (is_feat_trf_supported()) {
1295 		write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2());
1296 	}
1297 
1298 	/* CSV2 version 2 and above */
1299 	if (is_feat_csv2_2_supported()) {
1300 		write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2, read_scxtnum_el2());
1301 	}
1302 
1303 	if (is_feat_hcx_supported()) {
1304 		write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2());
1305 	}
1306 	if (is_feat_tcr2_supported()) {
1307 		write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2());
1308 	}
1309 	if (is_feat_sxpie_supported()) {
1310 		write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2());
1311 		write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2());
1312 	}
1313 	if (is_feat_s2pie_supported()) {
1314 		write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2());
1315 	}
1316 	if (is_feat_sxpoe_supported()) {
1317 		write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2());
1318 	}
1319 	if (is_feat_gcs_supported()) {
1320 		write_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2, read_gcspr_el2());
1321 		write_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2, read_gcscr_el2());
1322 	}
1323 }
1324 
1325 /*******************************************************************************
1326  * Restore EL2 sysreg context
1327  ******************************************************************************/
1328 void cm_el2_sysregs_context_restore(uint32_t security_state)
1329 {
1330 	cpu_context_t *ctx;
1331 	el2_sysregs_t *el2_sysregs_ctx;
1332 
1333 	ctx = cm_get_context(security_state);
1334 	assert(ctx != NULL);
1335 
1336 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1337 
1338 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1339 
1340 	if (is_feat_mte_supported()) {
1341 		write_tfsr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2));
1342 	}
1343 
1344 #if CTX_INCLUDE_MPAM_REGS
1345 	if (is_feat_mpam_supported()) {
1346 		mpam_t *mpam_ctx = get_mpam_ctx(ctx);
1347 		el2_sysregs_context_restore_mpam(mpam_ctx);
1348 	}
1349 #endif
1350 
1351 	if (is_feat_fgt_supported()) {
1352 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1353 	}
1354 
1355 	if (is_feat_ecv_v2_supported()) {
1356 		write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2));
1357 	}
1358 
1359 	if (is_feat_vhe_supported()) {
1360 		write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2));
1361 		write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2));
1362 	}
1363 
1364 	if (is_feat_ras_supported()) {
1365 		write_vdisr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2));
1366 		write_vsesr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2));
1367 	}
1368 
1369 	if (is_feat_nv2_supported()) {
1370 		write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2));
1371 	}
1372 	if (is_feat_trf_supported()) {
1373 		write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2));
1374 	}
1375 
1376 	/* CSV2 version 2 and above */
1377 	if (is_feat_csv2_2_supported()) {
1378 		write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2));
1379 	}
1380 
1381 	if (is_feat_hcx_supported()) {
1382 		write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2));
1383 	}
1384 	if (is_feat_tcr2_supported()) {
1385 		write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2));
1386 	}
1387 	if (is_feat_sxpie_supported()) {
1388 		write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2));
1389 		write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2));
1390 	}
1391 	if (is_feat_s2pie_supported()) {
1392 		write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2));
1393 	}
1394 	if (is_feat_sxpoe_supported()) {
1395 		write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2));
1396 	}
1397 	if (is_feat_gcs_supported()) {
1398 		write_gcscr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2));
1399 		write_gcspr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2));
1400 	}
1401 }
1402 #endif /* CTX_INCLUDE_EL2_REGS */
1403 
1404 /*******************************************************************************
1405  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1406  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1407  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1408  * cm_prepare_el3_exit function.
1409  ******************************************************************************/
1410 void cm_prepare_el3_exit_ns(void)
1411 {
1412 #if CTX_INCLUDE_EL2_REGS
1413 #if ENABLE_ASSERTIONS
1414 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1415 	assert(ctx != NULL);
1416 
1417 	/* Assert that EL2 is used. */
1418 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1419 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1420 			(el_implemented(2U) != EL_IMPL_NONE));
1421 #endif /* ENABLE_ASSERTIONS */
1422 
1423 	/* Restore EL2 and EL1 sysreg contexts */
1424 	cm_el2_sysregs_context_restore(NON_SECURE);
1425 	cm_el1_sysregs_context_restore(NON_SECURE);
1426 	cm_set_next_eret_context(NON_SECURE);
1427 #else
1428 	cm_prepare_el3_exit(NON_SECURE);
1429 #endif /* CTX_INCLUDE_EL2_REGS */
1430 }
1431 
1432 /*******************************************************************************
1433  * The next four functions are used by runtime services to save and restore
1434  * EL1 context on the 'cpu_context' structure for the specified security
1435  * state.
1436  ******************************************************************************/
1437 void cm_el1_sysregs_context_save(uint32_t security_state)
1438 {
1439 	cpu_context_t *ctx;
1440 
1441 	ctx = cm_get_context(security_state);
1442 	assert(ctx != NULL);
1443 
1444 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1445 
1446 #if IMAGE_BL31
1447 	if (security_state == SECURE)
1448 		PUBLISH_EVENT(cm_exited_secure_world);
1449 	else
1450 		PUBLISH_EVENT(cm_exited_normal_world);
1451 #endif
1452 }
1453 
1454 void cm_el1_sysregs_context_restore(uint32_t security_state)
1455 {
1456 	cpu_context_t *ctx;
1457 
1458 	ctx = cm_get_context(security_state);
1459 	assert(ctx != NULL);
1460 
1461 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1462 
1463 #if IMAGE_BL31
1464 	if (security_state == SECURE)
1465 		PUBLISH_EVENT(cm_entering_secure_world);
1466 	else
1467 		PUBLISH_EVENT(cm_entering_normal_world);
1468 #endif
1469 }
1470 
1471 /*******************************************************************************
1472  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1473  * given security state with the given entrypoint
1474  ******************************************************************************/
1475 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1476 {
1477 	cpu_context_t *ctx;
1478 	el3_state_t *state;
1479 
1480 	ctx = cm_get_context(security_state);
1481 	assert(ctx != NULL);
1482 
1483 	/* Populate EL3 state so that ERET jumps to the correct entry */
1484 	state = get_el3state_ctx(ctx);
1485 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1486 }
1487 
1488 /*******************************************************************************
1489  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1490  * pertaining to the given security state
1491  ******************************************************************************/
1492 void cm_set_elr_spsr_el3(uint32_t security_state,
1493 			uintptr_t entrypoint, uint32_t spsr)
1494 {
1495 	cpu_context_t *ctx;
1496 	el3_state_t *state;
1497 
1498 	ctx = cm_get_context(security_state);
1499 	assert(ctx != NULL);
1500 
1501 	/* Populate EL3 state so that ERET jumps to the correct entry */
1502 	state = get_el3state_ctx(ctx);
1503 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1504 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1505 }
1506 
1507 /*******************************************************************************
1508  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1509  * pertaining to the given security state using the value and bit position
1510  * specified in the parameters. It preserves all other bits.
1511  ******************************************************************************/
1512 void cm_write_scr_el3_bit(uint32_t security_state,
1513 			  uint32_t bit_pos,
1514 			  uint32_t value)
1515 {
1516 	cpu_context_t *ctx;
1517 	el3_state_t *state;
1518 	u_register_t scr_el3;
1519 
1520 	ctx = cm_get_context(security_state);
1521 	assert(ctx != NULL);
1522 
1523 	/* Ensure that the bit position is a valid one */
1524 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1525 
1526 	/* Ensure that the 'value' is only a bit wide */
1527 	assert(value <= 1U);
1528 
1529 	/*
1530 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1531 	 * and set it to its new value.
1532 	 */
1533 	state = get_el3state_ctx(ctx);
1534 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1535 	scr_el3 &= ~(1UL << bit_pos);
1536 	scr_el3 |= (u_register_t)value << bit_pos;
1537 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1538 }
1539 
1540 /*******************************************************************************
1541  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1542  * given security state.
1543  ******************************************************************************/
1544 u_register_t cm_get_scr_el3(uint32_t security_state)
1545 {
1546 	cpu_context_t *ctx;
1547 	el3_state_t *state;
1548 
1549 	ctx = cm_get_context(security_state);
1550 	assert(ctx != NULL);
1551 
1552 	/* Populate EL3 state so that ERET jumps to the correct entry */
1553 	state = get_el3state_ctx(ctx);
1554 	return read_ctx_reg(state, CTX_SCR_EL3);
1555 }
1556 
1557 /*******************************************************************************
1558  * This function is used to program the context that's used for exception
1559  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1560  * the required security state
1561  ******************************************************************************/
1562 void cm_set_next_eret_context(uint32_t security_state)
1563 {
1564 	cpu_context_t *ctx;
1565 
1566 	ctx = cm_get_context(security_state);
1567 	assert(ctx != NULL);
1568 
1569 	cm_set_next_context(ctx);
1570 }
1571