xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision e4513b4f4b0e1ee0f1e6892a0f0bf01877ca8e56)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/cpa2.h>
30 #include <lib/extensions/debug_v8p9.h>
31 #include <lib/extensions/fgt2.h>
32 #include <lib/extensions/idte3.h>
33 #include <lib/extensions/mpam.h>
34 #include <lib/extensions/pauth.h>
35 #include <lib/extensions/pmuv3.h>
36 #include <lib/extensions/sme.h>
37 #include <lib/extensions/spe.h>
38 #include <lib/extensions/sve.h>
39 #include <lib/extensions/sysreg128.h>
40 #include <lib/extensions/sys_reg_trace.h>
41 #include <lib/extensions/tcr2.h>
42 #include <lib/extensions/trbe.h>
43 #include <lib/extensions/trf.h>
44 #include <lib/utils.h>
45 
46 #if ENABLE_FEAT_TWED
47 /* Make sure delay value fits within the range(0-15) */
48 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
49 #endif /* ENABLE_FEAT_TWED */
50 
51 per_world_context_t per_world_context[CPU_CONTEXT_NUM];
52 
53 static void manage_extensions_nonsecure(cpu_context_t *ctx);
54 static void manage_extensions_secure(cpu_context_t *ctx);
55 
56 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
setup_el1_context(cpu_context_t * ctx,const struct entry_point_info * ep)57 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
58 {
59 	u_register_t sctlr_elx, actlr_elx;
60 
61 	/*
62 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
63 	 * execution state setting all fields rather than relying on the hw.
64 	 * Some fields have architecturally UNKNOWN reset values and these are
65 	 * set to zero.
66 	 *
67 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
68 	 *
69 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
70 	 * required by PSCI specification)
71 	 */
72 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
73 	if (GET_RW(ep->spsr) == MODE_RW_64) {
74 		sctlr_elx |= SCTLR_EL1_RES1;
75 	} else {
76 		/*
77 		 * If the target execution state is AArch32 then the following
78 		 * fields need to be set.
79 		 *
80 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
81 		 *  instructions are not trapped to EL1.
82 		 *
83 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
84 		 *  instructions are not trapped to EL1.
85 		 *
86 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
87 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
88 		 */
89 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
90 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
91 	}
92 
93 	/*
94 	 * If workaround of errata 764081 for Cortex-A75 is used then set
95 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
96 	 */
97 	if (errata_a75_764081_applies()) {
98 		sctlr_elx |= SCTLR_IESB_BIT;
99 	}
100 
101 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
102 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
103 
104 	/*
105 	 * Base the context ACTLR_EL1 on the current value, as it is
106 	 * implementation defined. The context restore process will write
107 	 * the value from the context to the actual register and can cause
108 	 * problems for processor cores that don't expect certain bits to
109 	 * be zero.
110 	 */
111 	actlr_elx = read_actlr_el1();
112 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
113 }
114 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
115 
116 /******************************************************************************
117  * This function performs initializations that are specific to SECURE state
118  * and updates the cpu context specified by 'ctx'.
119  *****************************************************************************/
setup_secure_context(cpu_context_t * ctx,const struct entry_point_info * ep)120 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
121 {
122 	u_register_t scr_el3;
123 	el3_state_t *state;
124 
125 	state = get_el3state_ctx(ctx);
126 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
127 
128 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
129 	/*
130 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
131 	 * indicated by the interrupt routing model for BL31.
132 	 */
133 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
134 #endif
135 
136 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
137 	if (is_feat_mte2_supported()) {
138 		scr_el3 |= SCR_ATA_BIT;
139 	}
140 
141 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
142 
143 	/*
144 	 * Initialize EL1 context registers unless SPMC is running
145 	 * at S-EL2.
146 	 */
147 #if !CTX_INCLUDE_EL2_REGS || IMAGE_BL1
148 	setup_el1_context(ctx, ep);
149 #endif
150 
151 	manage_extensions_secure(ctx);
152 }
153 
154 #if ENABLE_RME && IMAGE_BL31
155 /******************************************************************************
156  * This function performs initializations that are specific to REALM state
157  * and updates the cpu context specified by 'ctx'.
158  *
159  * NOTE: any changes to this function must be verified by an RMMD maintainer.
160  *****************************************************************************/
setup_realm_context(cpu_context_t * ctx,const struct entry_point_info * ep)161 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
162 {
163 	u_register_t scr_el3;
164 	el3_state_t *state;
165 	el2_sysregs_t *el2_ctx;
166 
167 	state = get_el3state_ctx(ctx);
168 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
169 	el2_ctx = get_el2_sysregs_ctx(ctx);
170 
171 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
172 
173 	write_el2_ctx_common(el2_ctx, spsr_el2, SPSR_EL2_REALM);
174 
175 	/* CSV2 version 2 and above */
176 	if (is_feat_csv2_2_supported()) {
177 		/* Enable access to the SCXTNUM_ELx registers. */
178 		scr_el3 |= SCR_EnSCXT_BIT;
179 	}
180 
181 	if (is_feat_sctlr2_supported()) {
182 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
183 		 * SCTLR2_ELx registers.
184 		 */
185 		scr_el3 |= SCR_SCTLR2En_BIT;
186 	}
187 
188 	if (is_feat_d128_supported()) {
189 		/*
190 		 * Set the D128En bit in SCR_EL3 to enable access to 128-bit
191 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
192 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
193 		 */
194 		scr_el3 |= SCR_D128En_BIT;
195 	}
196 
197 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
198 
199 	if (is_feat_fgt2_supported()) {
200 		fgt2_enable(ctx);
201 	}
202 
203 	if (is_feat_debugv8p9_supported()) {
204 		debugv8p9_extended_bp_wp_enable(ctx);
205 	}
206 
207 	if (is_feat_brbe_supported()) {
208 		brbe_enable(ctx);
209 	}
210 
211 	/*
212 	 * Enable access to TPIDR2_EL0 if SME/SME2 is enabled for Non Secure world.
213 	 */
214 	if (is_feat_sme_supported()) {
215 		sme_enable(ctx);
216 	}
217 
218 	if (is_feat_spe_supported()) {
219 		spe_disable_realm(ctx);
220 	}
221 
222 	if (is_feat_trbe_supported()) {
223 		trbe_disable_realm(ctx);
224 	}
225 }
226 #endif /* ENABLE_RME && IMAGE_BL31 */
227 
228 /******************************************************************************
229  * This function performs initializations that are specific to NON-SECURE state
230  * and updates the cpu context specified by 'ctx'.
231  *****************************************************************************/
setup_ns_context(cpu_context_t * ctx,const struct entry_point_info * ep)232 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
233 {
234 	u_register_t scr_el3;
235 	el3_state_t *state;
236 
237 	state = get_el3state_ctx(ctx);
238 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
239 
240 	/* SCR_NS: Set the NS bit */
241 	scr_el3 |= SCR_NS_BIT;
242 
243 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
244 	if (is_feat_mte2_supported()) {
245 		scr_el3 |= SCR_ATA_BIT;
246 	}
247 
248 	/*
249 	 * Pointer Authentication feature, if present, is always enabled by
250 	 * default for Non secure lower exception levels. We do not have an
251 	 * explicit flag to set it. To prevent the leakage between the worlds
252 	 * during world switch, we enable it only for the non-secure world.
253 	 *
254 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
255 	 * exception levels of secure and realm worlds.
256 	 *
257 	 * If the Secure/realm world wants to use pointer authentication,
258 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
259 	 * it will be enabled globally for all the contexts.
260 	 *
261 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
262 	 *  other than EL3
263 	 *
264 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
265 	 *  than EL3
266 	 */
267 	if (!is_ctx_pauth_supported()) {
268 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
269 	}
270 
271 #if HANDLE_EA_EL3_FIRST_NS
272 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
273 	scr_el3 |= SCR_EA_BIT;
274 #endif
275 
276 #if RAS_TRAP_NS_ERR_REC_ACCESS
277 	/*
278 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
279 	 * and RAS ERX registers from EL1 and EL2(from any security state)
280 	 * are trapped to EL3.
281 	 * Set here to trap only for NS EL1/EL2
282 	 */
283 	scr_el3 |= SCR_TERR_BIT;
284 #endif
285 
286 	/* CSV2 version 2 and above */
287 	if (is_feat_csv2_2_supported()) {
288 		/* Enable access to the SCXTNUM_ELx registers. */
289 		scr_el3 |= SCR_EnSCXT_BIT;
290 	}
291 
292 #ifdef IMAGE_BL31
293 	/*
294 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
295 	 *  indicated by the interrupt routing model for BL31.
296 	 */
297 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
298 #endif
299 
300 	if (is_feat_the_supported()) {
301 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
302 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
303 		 */
304 		scr_el3 |= SCR_RCWMASKEn_BIT;
305 	}
306 
307 	if (is_feat_sctlr2_supported()) {
308 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
309 		 * SCTLR2_ELx registers.
310 		 */
311 		scr_el3 |= SCR_SCTLR2En_BIT;
312 	}
313 
314 	if (is_feat_d128_supported()) {
315 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
316 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
317 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
318 		 */
319 		scr_el3 |= SCR_D128En_BIT;
320 	}
321 
322 	if (is_feat_fpmr_supported()) {
323 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
324 		 * register.
325 		 */
326 		scr_el3 |= SCR_EnFPM_BIT;
327 	}
328 
329 	if (is_feat_aie_supported()) {
330 		/* Set the AIEn bit in SCR_EL3 to enable access to (A)MAIR2
331 		 * system registers from NS world.
332 		 */
333 		scr_el3 |= SCR_AIEn_BIT;
334 	}
335 
336 	if (is_feat_pfar_supported()) {
337 		/* Set the PFAREn bit in SCR_EL3 to enable access to the PFAR
338 		 * system registers from NS world.
339 		 */
340 		scr_el3 |= SCR_PFAREn_BIT;
341 	}
342 
343 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
344 
345 	/* Initialize EL2 context registers */
346 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
347 	if (is_feat_hcx_supported()) {
348 		/*
349 		 * Initialize register HCRX_EL2 with its init value.
350 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
351 		 * chance that this can lead to unexpected behavior in lower
352 		 * ELs that have not been updated since the introduction of
353 		 * this feature if not properly initialized, especially when
354 		 * it comes to those bits that enable/disable traps.
355 		 */
356 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
357 			HCRX_EL2_INIT_VAL);
358 	}
359 
360 	if (is_feat_fgt_supported()) {
361 		/*
362 		 * Initialize HFG*_EL2 registers with a default value so legacy
363 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
364 		 * of initialization for this feature.
365 		 */
366 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
367 			HFGITR_EL2_INIT_VAL);
368 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
369 			HFGRTR_EL2_INIT_VAL);
370 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
371 			HFGWTR_EL2_INIT_VAL);
372 	}
373 #else
374 	/* Initialize EL1 context registers */
375 	setup_el1_context(ctx, ep);
376 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
377 
378 	manage_extensions_nonsecure(ctx);
379 }
380 
381 /*******************************************************************************
382  * The following function performs initialization of the cpu_context 'ctx'
383  * for first use that is common to all security states, and sets the
384  * initial entrypoint state as specified by the entry_point_info structure.
385  *
386  * The EE and ST attributes are used to configure the endianness and secure
387  * timer availability for the new execution context.
388  ******************************************************************************/
setup_context_common(cpu_context_t * ctx,const entry_point_info_t * ep)389 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
390 {
391 	u_register_t scr_el3;
392 	u_register_t mdcr_el3;
393 	el3_state_t *state;
394 	gp_regs_t *gp_regs;
395 
396 	state = get_el3state_ctx(ctx);
397 
398 	/* Clear any residual register values from the context */
399 	zeromem(ctx, sizeof(*ctx));
400 
401 	/*
402 	 * The lower-EL context is zeroed so that no stale values leak to a world.
403 	 * It is assumed that an all-zero lower-EL context is good enough for it
404 	 * to boot correctly. However, there are very few registers where this
405 	 * is not true and some values need to be recreated.
406 	 */
407 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
408 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
409 
410 	/*
411 	 * These bits are set in the gicv3 driver. Losing them (especially the
412 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
413 	 */
414 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
415 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
416 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
417 
418 	/*
419 	 * The actlr_el2 register can be initialized in platform's reset handler
420 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
421 	 */
422 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
423 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
424 
425 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
426 	scr_el3 = SCR_RESET_VAL;
427 
428 	/*
429 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
430 	 *  EL2, EL1 and EL0 are not trapped to EL3.
431 	 *
432 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
433 	 *  EL2, EL1 and EL0 are not trapped to EL3.
434 	 *
435 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
436 	 *  both Security states and both Execution states.
437 	 *
438 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
439 	 *  Non-secure memory.
440 	 */
441 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
442 
443 	scr_el3 |= SCR_SIF_BIT;
444 
445 	/*
446 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
447 	 *  Exception level as specified by SPSR.
448 	 */
449 	if (GET_RW(ep->spsr) == MODE_RW_64) {
450 		scr_el3 |= SCR_RW_BIT;
451 	}
452 
453 	/*
454 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
455 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
456 	 * next mode is Hyp.
457 	 */
458 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
459 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
460 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
461 		scr_el3 |= SCR_HCE_BIT;
462 	}
463 
464 	/*
465 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
466 	 * Secure timer registers to EL3, from AArch64 state only, if specified
467 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
468 	 * bit always behaves as 1 (i.e. secure physical timer register access
469 	 * is not trapped)
470 	 */
471 	if (EP_GET_ST(ep->h.attr) != 0U) {
472 		scr_el3 |= SCR_ST_BIT;
473 	}
474 
475 	/*
476 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
477 	 * SCR_EL3.HXEn.
478 	 */
479 	if (is_feat_hcx_supported()) {
480 		scr_el3 |= SCR_HXEn_BIT;
481 	}
482 
483 	/*
484 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
485 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
486 	 * SCR_EL3.EnAS0.
487 	 */
488 	if (is_feat_ls64_accdata_supported()) {
489 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
490 	}
491 
492 	/*
493 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
494 	 * registers are trapped to EL3.
495 	 */
496 	if (is_feat_rng_trap_supported()) {
497 		scr_el3 |= SCR_TRNDR_BIT;
498 	}
499 
500 #if FAULT_INJECTION_SUPPORT
501 	/* Enable fault injection from lower ELs */
502 	scr_el3 |= SCR_FIEN_BIT;
503 #endif
504 
505 	/*
506 	 * Enable Pointer Authentication globally for all the worlds.
507 	 *
508 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
509 	 *  other than EL3
510 	 *
511 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
512 	 *  than EL3
513 	 */
514 	if (is_ctx_pauth_supported()) {
515 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
516 	}
517 
518 	/*
519 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
520 	 * registers for AArch64 if present.
521 	 */
522 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
523 		scr_el3 |= SCR_PIEN_BIT;
524 	}
525 
526 	/* SCR_EL3.GCSEn: Enable GCS registers. */
527 	if (is_feat_gcs_supported()) {
528 		scr_el3 |= SCR_GCSEn_BIT;
529 	}
530 
531 	/* SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps */
532 	if (is_feat_fgt_supported()) {
533 		scr_el3 |= SCR_FGTEN_BIT;
534 	}
535 
536 	/* SCR_EL3.ECVEn: Do not trap the CNTPOFF_EL2 register */
537 	if (is_feat_ecv_supported()) {
538 		scr_el3 |= SCR_ECVEN_BIT;
539 	}
540 
541 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
542 	if (is_feat_twed_supported()) {
543 		/* Set delay in SCR_EL3 */
544 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
545 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
546 				<< SCR_TWEDEL_SHIFT);
547 
548 		/* Enable WFE delay */
549 		scr_el3 |= SCR_TWEDEn_BIT;
550 	}
551 
552 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
553 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
554 	if (is_feat_sel2_supported()) {
555 		scr_el3 |= SCR_EEL2_BIT;
556 	}
557 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
558 
559 	if (is_feat_mec_supported()) {
560 		scr_el3 |= SCR_MECEn_BIT;
561 	}
562 
563 	/*
564 	 * Populate EL3 state so that we've the right context
565 	 * before doing ERET
566 	 */
567 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
568 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
569 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
570 
571 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
572 	mdcr_el3 = MDCR_EL3_RESET_VAL;
573 
574 	/* ---------------------------------------------------------------------
575 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
576 	 * Some fields are architecturally UNKNOWN on reset.
577 	 *
578 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
579 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
580 	 *  disabled from all ELs in Secure state.
581 	 *
582 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
583 	 *  privileged debug from S-EL1.
584 	 *
585 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
586 	 *  access to the powerdown debug registers do not trap to EL3.
587 	 *
588 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
589 	 *  debug registers, other than those registers that are controlled by
590 	 *  MDCR_EL3.TDOSA.
591 	 */
592 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
593 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
594 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
595 
596 #if IMAGE_BL31
597 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
598 	if (is_feat_trf_supported()) {
599 		trf_enable(ctx);
600 	}
601 
602 	if (is_feat_tcr2_supported()) {
603 		tcr2_enable(ctx);
604 	}
605 
606 	pmuv3_enable(ctx);
607 
608 	if (is_feat_idte3_supported()) {
609 		idte3_enable(ctx);
610 	}
611 
612 #if CTX_INCLUDE_EL2_REGS && IMAGE_BL31
613 	/*
614 	 * Initialize SCTLR_EL2 context register with reset value.
615 	 */
616 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
617 #endif /* CTX_INCLUDE_EL2_REGS */
618 #endif /* IMAGE_BL31 */
619 
620 	/*
621 	 * Store the X0-X7 value from the entrypoint into the context
622 	 * Use memcpy as we are in control of the layout of the structures
623 	 */
624 	gp_regs = get_gpregs_ctx(ctx);
625 	memcpy((void *)gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
626 }
627 
628 /*******************************************************************************
629  * Context management library initialization routine. This library is used by
630  * runtime services to share pointers to 'cpu_context' structures for secure
631  * non-secure and realm states. Management of the structures and their associated
632  * memory is not done by the context management library e.g. the PSCI service
633  * manages the cpu context used for entry from and exit to the non-secure state.
634  * The Secure payload dispatcher service manages the context(s) corresponding to
635  * the secure state. It also uses this library to get access to the non-secure
636  * state cpu context pointers.
637  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
638  * which will be used for programming an entry into a lower EL. The same context
639  * will be used to save state upon exception entry from that EL.
640  ******************************************************************************/
cm_init(void)641 void __init cm_init(void)
642 {
643 	/*
644 	 * The context management library has only global data to initialize, but
645 	 * that will be done when the BSS is zeroed out.
646 	 */
647 }
648 
649 /*******************************************************************************
650  * This is the high-level function used to initialize the cpu_context 'ctx' for
651  * first use. It performs initializations that are common to all security states
652  * and initializations specific to the security state specified in 'ep'
653  ******************************************************************************/
cm_setup_context(cpu_context_t * ctx,const entry_point_info_t * ep)654 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
655 {
656 	size_t security_state;
657 
658 	assert(ctx != NULL);
659 
660 	/*
661 	 * Perform initializations that are common
662 	 * to all security states
663 	 */
664 	setup_context_common(ctx, ep);
665 
666 	security_state = GET_SECURITY_STATE(ep->h.attr);
667 
668 	/* Perform security state specific initializations */
669 	switch (security_state) {
670 	case SECURE:
671 		setup_secure_context(ctx, ep);
672 		break;
673 #if ENABLE_RME && IMAGE_BL31
674 	case REALM:
675 		setup_realm_context(ctx, ep);
676 		break;
677 #endif
678 	case NON_SECURE:
679 		setup_ns_context(ctx, ep);
680 		break;
681 	default:
682 		ERROR("Invalid security state\n");
683 		panic();
684 		break;
685 	}
686 }
687 
688 /*******************************************************************************
689  * Enable architecture extensions for EL3 execution. This function only updates
690  * registers in-place which are expected to either never change or be
691  * overwritten by el3_exit. Expects the core_pos of the current core as argument.
692  ******************************************************************************/
cm_manage_extensions_el3(unsigned int my_idx)693 void __no_pauth cm_manage_extensions_el3(unsigned int my_idx)
694 {
695 	if (is_feat_pauth_supported()) {
696 		pauth_init_enable_el3();
697 	}
698 
699 #if IMAGE_BL31
700 	if (is_feat_sve_supported()) {
701 		sve_init_el3();
702 	}
703 
704 	if (is_feat_amu_supported()) {
705 		amu_init_el3(my_idx);
706 	}
707 
708 	if (is_feat_sme_supported()) {
709 		sme_init_el3();
710 	}
711 
712 	if (is_feat_fgwte3_supported()) {
713 		write_fgwte3_el3(FGWTE3_EL3_EARLY_INIT_VAL);
714 	}
715 
716 	if (is_feat_mpam_supported()) {
717 		mpam_init_el3();
718 	}
719 
720 	if (is_feat_cpa2_supported()) {
721 		cpa2_enable_el3();
722 	}
723 
724 	pmuv3_init_el3();
725 #endif /* IMAGE_BL31 */
726 }
727 
728 /******************************************************************************
729  * Function to initialise the registers with the RESET values in the context
730  * memory, which are maintained per world.
731  ******************************************************************************/
cm_el3_arch_init_per_world(per_world_context_t * per_world_ctx)732 static void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
733 {
734 	per_world_ctx->ctx_cptr_el3 = CPTR_EL3_RESET_VAL;
735 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
736 }
737 
738 /*******************************************************************************
739  * Initialise per_world_context for Non-Secure world.
740  * This function enables the architecture extensions, which have same value
741  * across the cores for the non-secure world.
742  ******************************************************************************/
manage_extensions_nonsecure_per_world(void)743 static void manage_extensions_nonsecure_per_world(void)
744 {
745 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
746 
747 #if IMAGE_BL31
748 	if (is_feat_sme_supported()) {
749 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
750 	}
751 
752 	if (is_feat_sve_supported()) {
753 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
754 	}
755 
756 	if (is_feat_amu_supported()) {
757 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
758 	}
759 
760 	if (is_feat_sys_reg_trace_supported()) {
761 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
762 	}
763 
764 	if (is_feat_mpam_supported()) {
765 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
766 	}
767 
768 	if (is_feat_idte3_supported()) {
769 		idte3_init_cached_idregs_per_world(CPU_CONTEXT_NS);
770 	}
771 #endif /* IMAGE_BL31 */
772 }
773 
774 /*******************************************************************************
775  * Initialise per_world_context for Secure world.
776  * This function enables the architecture extensions, which have same value
777  * across the cores for the secure world.
778  ******************************************************************************/
manage_extensions_secure_per_world(void)779 static void manage_extensions_secure_per_world(void)
780 {
781 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
782 
783 #if IMAGE_BL31
784 	if (is_feat_sme_supported()) {
785 
786 		if (ENABLE_SME_FOR_SWD) {
787 		/*
788 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
789 		 * SME, SVE, and FPU/SIMD context properly managed.
790 		 */
791 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
792 		} else {
793 		/*
794 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
795 		 * world can safely use the associated registers.
796 		 */
797 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
798 		}
799 	}
800 	if (is_feat_sve_supported()) {
801 		if (ENABLE_SVE_FOR_SWD) {
802 		/*
803 		 * Enable SVE and FPU in secure context, SPM must ensure
804 		 * that the SVE and FPU register contexts are properly managed.
805 		 */
806 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
807 		} else {
808 		/*
809 		 * Disable SVE and FPU in secure context so non-secure world
810 		 * can safely use them.
811 		 */
812 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
813 		}
814 	}
815 
816 	/* NS can access this but Secure shouldn't */
817 	if (is_feat_sys_reg_trace_supported()) {
818 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
819 	}
820 
821 	if (is_feat_idte3_supported()) {
822 		idte3_init_cached_idregs_per_world(CPU_CONTEXT_SECURE);
823 	}
824 #endif /* IMAGE_BL31 */
825 }
826 
manage_extensions_realm_per_world(void)827 static void manage_extensions_realm_per_world(void)
828 {
829 #if ENABLE_RME && IMAGE_BL31
830 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_REALM]);
831 
832 	if (is_feat_sve_supported()) {
833 	/*
834 	 * Enable SVE and FPU in realm context when it is enabled for NS.
835 	 * Realm manager must ensure that the SVE and FPU register
836 	 * contexts are properly managed.
837 	 */
838 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
839 	}
840 
841 	/* NS can access this but Realm shouldn't */
842 	if (is_feat_sys_reg_trace_supported()) {
843 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
844 	}
845 
846 	/*
847 	 * If SME/SME2 is supported and enabled for NS world, then disable trapping
848 	 * of SME instructions for Realm world. RMM will save/restore required
849 	 * registers that are shared with SVE/FPU so that Realm can use FPU or SVE.
850 	 */
851 	if (is_feat_sme_supported()) {
852 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
853 	}
854 
855 	/*
856 	 * If FEAT_MPAM is supported and enabled, then disable trapping access
857 	 * to the MPAM registers for Realm world. Instead, RMM will configure
858 	 * the access to be trapped by itself so it can inject undefined aborts
859 	 * back to the Realm.
860 	 */
861 	if (is_feat_mpam_supported()) {
862 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
863 	}
864 
865 	if (is_feat_idte3_supported()) {
866 		idte3_init_cached_idregs_per_world(CPU_CONTEXT_REALM);
867 	}
868 #endif /* ENABLE_RME && IMAGE_BL31 */
869 }
870 
cm_manage_extensions_per_world(void)871 void cm_manage_extensions_per_world(void)
872 {
873 	manage_extensions_nonsecure_per_world();
874 	manage_extensions_secure_per_world();
875 	manage_extensions_realm_per_world();
876 }
877 
cm_init_percpu_once_regs(void)878 void cm_init_percpu_once_regs(void)
879 {
880 #if IMAGE_BL31
881 	if (is_feat_idte3_supported()) {
882 		idte3_init_percpu_once_regs(CPU_CONTEXT_NS);
883 		idte3_init_percpu_once_regs(CPU_CONTEXT_SECURE);
884 #if ENABLE_RME
885 		idte3_init_percpu_once_regs(CPU_CONTEXT_REALM);
886 #endif /* ENABLE_RME */
887 	}
888 #endif /* IMAGE_BL31 */
889 }
890 
891 /*******************************************************************************
892  * Enable architecture extensions on first entry to Non-secure world.
893  ******************************************************************************/
manage_extensions_nonsecure(cpu_context_t * ctx)894 static void manage_extensions_nonsecure(cpu_context_t *ctx)
895 {
896 #if IMAGE_BL31
897 	/* NOTE: registers are not context switched */
898 	if (is_feat_amu_supported()) {
899 		amu_enable(ctx);
900 	}
901 
902 	if (is_feat_sme_supported()) {
903 		sme_enable(ctx);
904 	}
905 
906 	if (is_feat_fgt2_supported()) {
907 		fgt2_enable(ctx);
908 	}
909 
910 	if (is_feat_debugv8p9_supported()) {
911 		debugv8p9_extended_bp_wp_enable(ctx);
912 	}
913 
914 	if (is_feat_spe_supported()) {
915 		spe_enable_ns(ctx);
916 	}
917 
918 	if (is_feat_trbe_supported()) {
919 		if (check_if_trbe_disable_affected_core()) {
920 			trbe_disable_ns(ctx);
921 		} else {
922 			trbe_enable_ns(ctx);
923 		}
924 	}
925 
926 	if (is_feat_brbe_supported()) {
927 		brbe_enable(ctx);
928 	}
929 #endif /* IMAGE_BL31 */
930 }
931 
932 #if INIT_UNUSED_NS_EL2
933 /*******************************************************************************
934  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
935  * world when EL2 is empty and unused.
936  ******************************************************************************/
manage_extensions_nonsecure_el2_unused(void)937 static void manage_extensions_nonsecure_el2_unused(void)
938 {
939 #if IMAGE_BL31
940 	if (is_feat_spe_supported()) {
941 		spe_init_el2_unused();
942 	}
943 
944 	if (is_feat_amu_supported()) {
945 		amu_init_el2_unused();
946 	}
947 
948 	if (is_feat_mpam_supported()) {
949 		mpam_init_el2_unused();
950 	}
951 
952 	if (is_feat_trbe_supported()) {
953 		trbe_init_el2_unused();
954 	}
955 
956 	if (is_feat_sys_reg_trace_supported()) {
957 		sys_reg_trace_init_el2_unused();
958 	}
959 
960 	if (is_feat_trf_supported()) {
961 		trf_init_el2_unused();
962 	}
963 
964 	pmuv3_init_el2_unused();
965 
966 	if (is_feat_sve_supported()) {
967 		sve_init_el2_unused();
968 	}
969 
970 	if (is_feat_sme_supported()) {
971 		sme_init_el2_unused();
972 	}
973 
974 	if (is_feat_mops_supported() && is_feat_hcx_supported()) {
975 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
976 	}
977 
978 	if (is_feat_pauth_supported()) {
979 		pauth_enable_el2();
980 	}
981 #endif /* IMAGE_BL31 */
982 }
983 #endif /* INIT_UNUSED_NS_EL2 */
984 
985 /*******************************************************************************
986  * Enable architecture extensions on first entry to Secure world.
987  ******************************************************************************/
manage_extensions_secure(cpu_context_t * ctx)988 static void manage_extensions_secure(cpu_context_t *ctx)
989 {
990 #if IMAGE_BL31
991 	if (is_feat_sme_supported()) {
992 		if (ENABLE_SME_FOR_SWD) {
993 		/*
994 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
995 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
996 		 */
997 			sme_init_el3();
998 			sme_enable(ctx);
999 		} else {
1000 		/*
1001 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
1002 		 * world can safely use the associated registers.
1003 		 */
1004 			sme_disable(ctx);
1005 		}
1006 	}
1007 
1008 	if (is_feat_spe_supported()) {
1009 		spe_disable_secure(ctx);
1010 	}
1011 
1012 	if (is_feat_trbe_supported()) {
1013 		trbe_disable_secure(ctx);
1014 	}
1015 #endif /* IMAGE_BL31 */
1016 }
1017 
1018 /*******************************************************************************
1019  * The following function initializes the cpu_context for the current CPU
1020  * for first use, and sets the initial entrypoint state as specified by the
1021  * entry_point_info structure.
1022  ******************************************************************************/
cm_init_my_context(const entry_point_info_t * ep)1023 void cm_init_my_context(const entry_point_info_t *ep)
1024 {
1025 	cpu_context_t *ctx;
1026 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
1027 	cm_setup_context(ctx, ep);
1028 }
1029 
1030 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
init_nonsecure_el2_unused(cpu_context_t * ctx)1031 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
1032 {
1033 #if INIT_UNUSED_NS_EL2
1034 	u_register_t hcr_el2 = HCR_RESET_VAL;
1035 	u_register_t mdcr_el2;
1036 	u_register_t scr_el3;
1037 
1038 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1039 
1040 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
1041 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
1042 		hcr_el2 |= HCR_RW_BIT;
1043 	}
1044 
1045 	write_hcr_el2(hcr_el2);
1046 
1047 	/*
1048 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
1049 	 * All fields have architecturally UNKNOWN reset values.
1050 	 */
1051 	write_cptr_el2(CPTR_EL2_RESET_VAL);
1052 
1053 	/*
1054 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
1055 	 * reset and are set to zero except for field(s) listed below.
1056 	 *
1057 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
1058 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
1059 	 *
1060 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
1061 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
1062 	 */
1063 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
1064 
1065 	/*
1066 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
1067 	 * UNKNOWN value.
1068 	 */
1069 	write_cntvoff_el2(0);
1070 
1071 	/*
1072 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1073 	 * respectively.
1074 	 */
1075 	write_vpidr_el2(read_midr_el1());
1076 	write_vmpidr_el2(read_mpidr_el1());
1077 
1078 	/*
1079 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1080 	 *
1081 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1082 	 * translation is disabled, cache maintenance operations depend on the
1083 	 * VMID.
1084 	 *
1085 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1086 	 * disabled.
1087 	 */
1088 	write_vttbr_el2(VTTBR_RESET_VAL &
1089 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1090 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1091 
1092 	/*
1093 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1094 	 * Some fields are architecturally UNKNOWN on reset.
1095 	 *
1096 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1097 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1098 	 *
1099 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1100 	 * accesses to the powerdown debug registers are not trapped to EL2.
1101 	 *
1102 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1103 	 * debug registers do not trap to EL2.
1104 	 *
1105 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1106 	 * EL2.
1107 	 */
1108 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1109 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1110 		   MDCR_EL2_TDE_BIT);
1111 
1112 	write_mdcr_el2(mdcr_el2);
1113 
1114 	/*
1115 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1116 	 *
1117 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1118 	 * EL1 accesses to System registers do not trap to EL2.
1119 	 */
1120 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1121 
1122 	/*
1123 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1124 	 * reset.
1125 	 *
1126 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1127 	 * and prevent timer interrupts.
1128 	 */
1129 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1130 
1131 	manage_extensions_nonsecure_el2_unused();
1132 #endif /* INIT_UNUSED_NS_EL2 */
1133 }
1134 
1135 /*******************************************************************************
1136  * Prepare the CPU system registers for first entry into realm, secure, or
1137  * normal world.
1138  *
1139  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1140  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1141  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1142  * For all entries, the EL1 registers are initialized from the cpu_context
1143  ******************************************************************************/
cm_prepare_el3_exit(size_t security_state)1144 void cm_prepare_el3_exit(size_t security_state)
1145 {
1146 	u_register_t sctlr_el2, scr_el3;
1147 	cpu_context_t *ctx = cm_get_context(security_state);
1148 
1149 	assert(ctx != NULL);
1150 
1151 	if (security_state == NON_SECURE) {
1152 		uint64_t el2_implemented = el_implemented(2);
1153 
1154 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1155 						 CTX_SCR_EL3);
1156 
1157 		if (el2_implemented != EL_IMPL_NONE) {
1158 
1159 			/*
1160 			 * If context is not being used for EL2, initialize
1161 			 * HCRX_EL2 with its init value here.
1162 			 */
1163 			if (is_feat_hcx_supported()) {
1164 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1165 			}
1166 
1167 			/*
1168 			 * Initialize Fine-grained trap registers introduced
1169 			 * by FEAT_FGT so all traps are initially disabled when
1170 			 * switching to EL2 or a lower EL, preventing undesired
1171 			 * behavior.
1172 			 */
1173 			if (is_feat_fgt_supported()) {
1174 				/*
1175 				 * Initialize HFG*_EL2 registers with a default
1176 				 * value so legacy systems unaware of FEAT_FGT
1177 				 * do not get trapped due to their lack of
1178 				 * initialization for this feature.
1179 				 */
1180 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1181 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1182 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1183 			}
1184 
1185 			/* Condition to ensure EL2 is being used. */
1186 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1187 				/* Initialize SCTLR_EL2 register with reset value. */
1188 				sctlr_el2 = SCTLR_EL2_RES1;
1189 
1190 				/*
1191 				 * If workaround of errata 764081 for Cortex-A75
1192 				 * is used then set SCTLR_EL2.IESB to enable
1193 				 * Implicit Error Synchronization Barrier.
1194 				 */
1195 				if (errata_a75_764081_applies()) {
1196 					sctlr_el2 |= SCTLR_IESB_BIT;
1197 				}
1198 
1199 				write_sctlr_el2(sctlr_el2);
1200 			} else {
1201 				/*
1202 				 * (scr_el3 & SCR_HCE_BIT==0)
1203 				 * EL2 implemented but unused.
1204 				 */
1205 				init_nonsecure_el2_unused(ctx);
1206 			}
1207 		}
1208 
1209 		if (is_feat_fgwte3_supported()) {
1210 			/*
1211 			 * TCR_EL3 and ACTLR_EL3 could be overwritten
1212 			 * by platforms and hence is locked a bit late.
1213 			 */
1214 			write_fgwte3_el3(FGWTE3_EL3_LATE_INIT_VAL);
1215 		}
1216 	}
1217 #if !CTX_INCLUDE_EL2_REGS || IMAGE_BL1
1218 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1219 	cm_el1_sysregs_context_restore(security_state);
1220 #endif
1221 	cm_set_next_eret_context(security_state);
1222 }
1223 
1224 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1225 
el2_sysregs_context_save_fgt(el2_sysregs_t * ctx)1226 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1227 {
1228 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1229 	if (is_feat_amu_supported()) {
1230 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1231 	}
1232 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1233 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1234 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1235 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1236 }
1237 
el2_sysregs_context_restore_fgt(el2_sysregs_t * ctx)1238 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1239 {
1240 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1241 	if (is_feat_amu_supported()) {
1242 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1243 	}
1244 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1245 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1246 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1247 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1248 }
1249 
el2_sysregs_context_save_fgt2(el2_sysregs_t * ctx)1250 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1251 {
1252 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1253 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1254 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1255 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1256 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1257 }
1258 
el2_sysregs_context_restore_fgt2(el2_sysregs_t * ctx)1259 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1260 {
1261 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1262 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1263 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1264 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1265 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1266 }
1267 
el2_sysregs_context_save_mpam(el2_sysregs_t * ctx)1268 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1269 {
1270 	u_register_t mpam_idr = read_mpamidr_el1();
1271 
1272 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1273 
1274 	/*
1275 	 * The context registers that we intend to save would be part of the
1276 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1277 	 */
1278 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1279 		return;
1280 	}
1281 
1282 	/*
1283 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1284 	 * MPAMIDR_HAS_HCR_BIT == 1.
1285 	 */
1286 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1287 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1288 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1289 
1290 	/*
1291 	 * The number of MPAMVPM registers is implementation defined, their
1292 	 * number is stored in the MPAMIDR_EL1 register.
1293 	 */
1294 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1295 	case 7:
1296 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1297 		__fallthrough;
1298 	case 6:
1299 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1300 		__fallthrough;
1301 	case 5:
1302 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1303 		__fallthrough;
1304 	case 4:
1305 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1306 		__fallthrough;
1307 	case 3:
1308 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1309 		__fallthrough;
1310 	case 2:
1311 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1312 		__fallthrough;
1313 	case 1:
1314 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1315 		break;
1316 	}
1317 }
1318 
el2_sysregs_context_restore_mpam(el2_sysregs_t * ctx)1319 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1320 {
1321 	u_register_t mpam_idr = read_mpamidr_el1();
1322 
1323 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1324 
1325 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1326 		return;
1327 	}
1328 
1329 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1330 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1331 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1332 
1333 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1334 	case 7:
1335 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1336 		__fallthrough;
1337 	case 6:
1338 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1339 		__fallthrough;
1340 	case 5:
1341 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1342 		__fallthrough;
1343 	case 4:
1344 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1345 		__fallthrough;
1346 	case 3:
1347 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1348 		__fallthrough;
1349 	case 2:
1350 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1351 		__fallthrough;
1352 	case 1:
1353 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1354 		break;
1355 	}
1356 }
1357 
1358 /* ---------------------------------------------------------------------------
1359  * The following registers are not added:
1360  * ICH_AP0R<n>_EL2
1361  * ICH_AP1R<n>_EL2
1362  * ICH_LR<n>_EL2
1363  *
1364  * NOTE: For a system with S-EL2 present but not enabled, accessing
1365  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1366  * SCR_EL3.NS = 1 before accessing this register.
1367  * ---------------------------------------------------------------------------
1368  */
el2_sysregs_context_save_gic(el2_sysregs_t * ctx,uint32_t security_state)1369 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1370 {
1371 	u_register_t scr_el3 = read_scr_el3();
1372 
1373 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1374 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1375 #else
1376 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1377 	isb();
1378 
1379 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1380 
1381 	write_scr_el3(scr_el3);
1382 	isb();
1383 #endif
1384 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1385 
1386 	if (errata_ich_vmcr_el2_applies()) {
1387 		if (security_state == SECURE) {
1388 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1389 		} else {
1390 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1391 		}
1392 		isb();
1393 	}
1394 
1395 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1396 
1397 	if (errata_ich_vmcr_el2_applies()) {
1398 		write_scr_el3(scr_el3);
1399 		isb();
1400 	}
1401 }
1402 
el2_sysregs_context_restore_gic(el2_sysregs_t * ctx,uint32_t security_state)1403 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1404 {
1405 	u_register_t scr_el3 = read_scr_el3();
1406 
1407 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1408 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1409 #else
1410 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1411 	isb();
1412 
1413 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1414 
1415 	write_scr_el3(scr_el3);
1416 	isb();
1417 #endif
1418 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1419 
1420 	if (errata_ich_vmcr_el2_applies()) {
1421 		if (security_state == SECURE) {
1422 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1423 		} else {
1424 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1425 		}
1426 		isb();
1427 	}
1428 
1429 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1430 
1431 	if (errata_ich_vmcr_el2_applies()) {
1432 		write_scr_el3(scr_el3);
1433 		isb();
1434 	}
1435 }
1436 
1437 /* -----------------------------------------------------
1438  * The following registers are not added:
1439  * AMEVCNTVOFF0<n>_EL2
1440  * AMEVCNTVOFF1<n>_EL2
1441  * -----------------------------------------------------
1442  */
el2_sysregs_context_save_common(el2_sysregs_t * ctx)1443 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1444 {
1445 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1446 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1447 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1448 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1449 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1450 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1451 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1452 	if (CTX_INCLUDE_AARCH32_REGS) {
1453 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1454 	}
1455 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1456 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1457 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1458 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1459 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1460 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1461 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1462 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1463 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1464 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1465 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1466 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1467 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1468 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1469 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1470 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1471 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1472 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1473 
1474 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1475 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1476 }
1477 
el2_sysregs_context_restore_common(el2_sysregs_t * ctx)1478 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1479 {
1480 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1481 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1482 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1483 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1484 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1485 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1486 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1487 	if (CTX_INCLUDE_AARCH32_REGS) {
1488 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1489 	}
1490 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1491 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1492 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1493 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1494 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1495 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1496 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1497 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1498 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1499 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1500 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1501 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1502 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1503 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1504 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1505 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1506 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1507 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1508 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1509 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1510 }
1511 
1512 /*******************************************************************************
1513  * Save EL2 sysreg context
1514  ******************************************************************************/
cm_el2_sysregs_context_save(uint32_t security_state)1515 void cm_el2_sysregs_context_save(uint32_t security_state)
1516 {
1517 	cpu_context_t *ctx;
1518 	el2_sysregs_t *el2_sysregs_ctx;
1519 
1520 	ctx = cm_get_context(security_state);
1521 	assert(ctx != NULL);
1522 
1523 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1524 
1525 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1526 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1527 
1528 	if (is_feat_mte2_supported()) {
1529 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1530 	}
1531 
1532 	if (is_feat_mpam_supported()) {
1533 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1534 	}
1535 
1536 	if (is_feat_fgt_supported()) {
1537 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1538 	}
1539 
1540 	if (is_feat_fgt2_supported()) {
1541 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1542 	}
1543 
1544 	if (is_feat_ecv_v2_supported()) {
1545 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1546 	}
1547 
1548 	if (is_feat_vhe_supported()) {
1549 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1550 					read_contextidr_el2());
1551 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1552 	}
1553 
1554 	if (is_feat_ras_supported()) {
1555 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1556 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1557 	}
1558 
1559 	if (is_feat_nv2_supported()) {
1560 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1561 	}
1562 
1563 	if (is_feat_trf_supported()) {
1564 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1565 	}
1566 
1567 	if (is_feat_csv2_2_supported()) {
1568 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1569 					read_scxtnum_el2());
1570 	}
1571 
1572 	if (is_feat_hcx_supported()) {
1573 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1574 	}
1575 
1576 	if (is_feat_tcr2_supported()) {
1577 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1578 	}
1579 
1580 	if (is_feat_s1pie_supported()) {
1581 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1582 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1583 	}
1584 
1585 	if (is_feat_s1poe_supported()) {
1586 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1587 	}
1588 
1589 	if (is_feat_brbe_supported()) {
1590 		write_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2, read_brbcr_el2());
1591 	}
1592 
1593 	if (is_feat_s2pie_supported()) {
1594 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1595 	}
1596 
1597 	if (is_feat_gcs_supported()) {
1598 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1599 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1600 	}
1601 
1602 	if (is_feat_sctlr2_supported()) {
1603 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1604 	}
1605 }
1606 
1607 /*******************************************************************************
1608  * Restore EL2 sysreg context
1609  ******************************************************************************/
cm_el2_sysregs_context_restore(uint32_t security_state)1610 void cm_el2_sysregs_context_restore(uint32_t security_state)
1611 {
1612 	cpu_context_t *ctx;
1613 	el2_sysregs_t *el2_sysregs_ctx;
1614 
1615 	ctx = cm_get_context(security_state);
1616 	assert(ctx != NULL);
1617 
1618 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1619 
1620 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1621 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1622 
1623 	if (is_feat_mte2_supported()) {
1624 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1625 	}
1626 
1627 	if (is_feat_mpam_supported()) {
1628 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1629 	}
1630 
1631 	if (is_feat_fgt_supported()) {
1632 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1633 	}
1634 
1635 	if (is_feat_fgt2_supported()) {
1636 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1637 	}
1638 
1639 	if (is_feat_ecv_v2_supported()) {
1640 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1641 	}
1642 
1643 	if (is_feat_vhe_supported()) {
1644 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1645 					contextidr_el2));
1646 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1647 	}
1648 
1649 	if (is_feat_ras_supported()) {
1650 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1651 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1652 	}
1653 
1654 	if (is_feat_nv2_supported()) {
1655 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1656 	}
1657 
1658 	if (is_feat_trf_supported()) {
1659 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1660 	}
1661 
1662 	if (is_feat_csv2_2_supported()) {
1663 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1664 					scxtnum_el2));
1665 	}
1666 
1667 	if (is_feat_hcx_supported()) {
1668 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1669 	}
1670 
1671 	if (is_feat_tcr2_supported()) {
1672 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1673 	}
1674 
1675 	if (is_feat_s1pie_supported()) {
1676 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1677 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1678 	}
1679 
1680 	if (is_feat_s1poe_supported()) {
1681 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1682 	}
1683 
1684 	if (is_feat_s2pie_supported()) {
1685 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1686 	}
1687 
1688 	if (is_feat_gcs_supported()) {
1689 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1690 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1691 	}
1692 
1693 	if (is_feat_sctlr2_supported()) {
1694 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1695 	}
1696 
1697 	if (is_feat_brbe_supported()) {
1698 		write_brbcr_el2(read_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2));
1699 	}
1700 }
1701 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1702 
1703 /*******************************************************************************
1704  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1705  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1706  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1707  * cm_prepare_el3_exit function.
1708  ******************************************************************************/
cm_prepare_el3_exit_ns(void)1709 void cm_prepare_el3_exit_ns(void)
1710 {
1711 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1712 #if ENABLE_ASSERTIONS
1713 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1714 	assert(ctx != NULL);
1715 
1716 	/* Assert that EL2 is used. */
1717 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1718 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1719 			(el_implemented(2U) != EL_IMPL_NONE));
1720 #endif /* ENABLE_ASSERTIONS */
1721 
1722 	/* Restore EL2 sysreg contexts */
1723 	cm_el2_sysregs_context_restore(NON_SECURE);
1724 	cm_set_next_eret_context(NON_SECURE);
1725 #else
1726 	cm_prepare_el3_exit(NON_SECURE);
1727 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1728 }
1729 
1730 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1731 /*******************************************************************************
1732  * The next set of six functions are used by runtime services to save and restore
1733  * EL1 context on the 'cpu_context' structure for the specified security state.
1734  ******************************************************************************/
el1_sysregs_context_save(el1_sysregs_t * ctx)1735 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1736 {
1737 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1738 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1739 
1740 #if (!ERRATA_SPECULATIVE_AT)
1741 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1742 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1743 #endif /* (!ERRATA_SPECULATIVE_AT) */
1744 
1745 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1746 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1747 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1748 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1749 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1750 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1751 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1752 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1753 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1754 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1755 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1756 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1757 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1758 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1759 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1760 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1761 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1762 
1763 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1764 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1765 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1766 
1767 	if (CTX_INCLUDE_AARCH32_REGS) {
1768 		/* Save Aarch32 registers */
1769 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1770 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1771 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1772 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1773 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1774 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1775 	}
1776 
1777 	/* Save counter-timer kernel control register */
1778 	write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1779 #if NS_TIMER_SWITCH
1780 	/* Save NS Timer registers */
1781 	write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1782 	write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1783 	write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1784 	write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1785 #endif
1786 
1787 	if (is_feat_mte2_supported()) {
1788 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1789 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1790 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1791 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1792 	}
1793 
1794 	if (is_feat_ras_supported()) {
1795 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1796 	}
1797 
1798 	if (is_feat_s1pie_supported()) {
1799 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1800 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1801 	}
1802 
1803 	if (is_feat_s1poe_supported()) {
1804 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1805 	}
1806 
1807 	if (is_feat_s2poe_supported()) {
1808 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1809 	}
1810 
1811 	if (is_feat_tcr2_supported()) {
1812 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1813 	}
1814 
1815 	if (is_feat_trf_supported()) {
1816 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1817 	}
1818 
1819 	if (is_feat_csv2_2_supported()) {
1820 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1821 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1822 	}
1823 
1824 	if (is_feat_gcs_supported()) {
1825 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1826 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1827 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1828 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1829 	}
1830 
1831 	if (is_feat_the_supported()) {
1832 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1833 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1834 	}
1835 
1836 	if (is_feat_sctlr2_supported()) {
1837 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1838 	}
1839 
1840 	if (is_feat_ls64_accdata_supported()) {
1841 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1842 	}
1843 }
1844 
el1_sysregs_context_restore(el1_sysregs_t * ctx)1845 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1846 {
1847 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1848 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1849 
1850 #if (!ERRATA_SPECULATIVE_AT)
1851 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1852 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1853 #endif /* (!ERRATA_SPECULATIVE_AT) */
1854 
1855 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1856 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1857 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1858 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1859 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1860 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1861 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1862 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1863 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1864 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1865 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1866 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1867 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1868 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1869 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1870 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1871 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1872 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1873 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1874 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1875 
1876 	if (CTX_INCLUDE_AARCH32_REGS) {
1877 		/* Restore Aarch32 registers */
1878 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1879 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1880 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1881 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1882 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1883 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1884 	}
1885 
1886 	/* Restore counter-timer kernel control register */
1887 	write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1888 #if NS_TIMER_SWITCH
1889 	/* Restore NS Timer registers */
1890 	write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1891 	write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1892 	write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1893 	write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1894 #endif
1895 
1896 	if (is_feat_mte2_supported()) {
1897 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1898 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1899 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1900 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1901 	}
1902 
1903 	if (is_feat_ras_supported()) {
1904 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1905 	}
1906 
1907 	if (is_feat_s1pie_supported()) {
1908 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1909 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1910 	}
1911 
1912 	if (is_feat_s1poe_supported()) {
1913 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1914 	}
1915 
1916 	if (is_feat_s2poe_supported()) {
1917 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1918 	}
1919 
1920 	if (is_feat_tcr2_supported()) {
1921 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1922 	}
1923 
1924 	if (is_feat_trf_supported()) {
1925 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1926 	}
1927 
1928 	if (is_feat_csv2_2_supported()) {
1929 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1930 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1931 	}
1932 
1933 	if (is_feat_gcs_supported()) {
1934 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1935 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1936 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1937 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1938 	}
1939 
1940 	if (is_feat_the_supported()) {
1941 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1942 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1943 	}
1944 
1945 	if (is_feat_sctlr2_supported()) {
1946 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1947 	}
1948 
1949 	if (is_feat_ls64_accdata_supported()) {
1950 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1951 	}
1952 }
1953 
1954 /*******************************************************************************
1955  * The next couple of functions are used by runtime services to save and restore
1956  * EL1 context on the 'cpu_context' structure for the specified security state.
1957  ******************************************************************************/
cm_el1_sysregs_context_save(uint32_t security_state)1958 void cm_el1_sysregs_context_save(uint32_t security_state)
1959 {
1960 	cpu_context_t *ctx;
1961 
1962 	ctx = cm_get_context(security_state);
1963 	assert(ctx != NULL);
1964 
1965 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1966 
1967 #if IMAGE_BL31
1968 	if (security_state == SECURE) {
1969 		PUBLISH_EVENT(cm_exited_secure_world);
1970 	} else {
1971 		PUBLISH_EVENT(cm_exited_normal_world);
1972 	}
1973 #endif
1974 }
1975 
cm_el1_sysregs_context_restore(uint32_t security_state)1976 void cm_el1_sysregs_context_restore(uint32_t security_state)
1977 {
1978 	cpu_context_t *ctx;
1979 
1980 	ctx = cm_get_context(security_state);
1981 	assert(ctx != NULL);
1982 
1983 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1984 
1985 #if IMAGE_BL31
1986 	if (security_state == SECURE) {
1987 		PUBLISH_EVENT(cm_entering_secure_world);
1988 	} else {
1989 		PUBLISH_EVENT(cm_entering_normal_world);
1990 	}
1991 #endif
1992 }
1993 
1994 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1995 
1996 /*******************************************************************************
1997  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1998  * given security state with the given entrypoint
1999  ******************************************************************************/
cm_set_elr_el3(uint32_t security_state,uintptr_t entrypoint)2000 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
2001 {
2002 	cpu_context_t *ctx;
2003 	el3_state_t *state;
2004 
2005 	ctx = cm_get_context(security_state);
2006 	assert(ctx != NULL);
2007 
2008 	/* Populate EL3 state so that ERET jumps to the correct entry */
2009 	state = get_el3state_ctx(ctx);
2010 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2011 }
2012 
2013 /*******************************************************************************
2014  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
2015  * pertaining to the given security state
2016  ******************************************************************************/
cm_set_elr_spsr_el3(uint32_t security_state,uintptr_t entrypoint,uint32_t spsr)2017 void cm_set_elr_spsr_el3(uint32_t security_state,
2018 			uintptr_t entrypoint, uint32_t spsr)
2019 {
2020 	cpu_context_t *ctx;
2021 	el3_state_t *state;
2022 
2023 	ctx = cm_get_context(security_state);
2024 	assert(ctx != NULL);
2025 
2026 	/* Populate EL3 state so that ERET jumps to the correct entry */
2027 	state = get_el3state_ctx(ctx);
2028 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2029 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
2030 }
2031 
2032 /*******************************************************************************
2033  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
2034  * pertaining to the given security state using the value and bit position
2035  * specified in the parameters. It preserves all other bits.
2036  ******************************************************************************/
cm_write_scr_el3_bit(uint32_t security_state,uint32_t bit_pos,uint32_t value)2037 void cm_write_scr_el3_bit(uint32_t security_state,
2038 			  uint32_t bit_pos,
2039 			  uint32_t value)
2040 {
2041 	cpu_context_t *ctx;
2042 	el3_state_t *state;
2043 	u_register_t scr_el3;
2044 
2045 	ctx = cm_get_context(security_state);
2046 	assert(ctx != NULL);
2047 
2048 	/* Ensure that the bit position is a valid one */
2049 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
2050 
2051 	/* Ensure that the 'value' is only a bit wide */
2052 	assert(value <= 1U);
2053 
2054 	/*
2055 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
2056 	 * and set it to its new value.
2057 	 */
2058 	state = get_el3state_ctx(ctx);
2059 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
2060 	scr_el3 &= ~(1UL << bit_pos);
2061 	scr_el3 |= (u_register_t)value << bit_pos;
2062 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
2063 }
2064 
2065 /*******************************************************************************
2066  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
2067  * given security state.
2068  ******************************************************************************/
cm_get_scr_el3(uint32_t security_state)2069 u_register_t cm_get_scr_el3(uint32_t security_state)
2070 {
2071 	const cpu_context_t *ctx;
2072 	const el3_state_t *state;
2073 
2074 	ctx = cm_get_context(security_state);
2075 	assert(ctx != NULL);
2076 
2077 	/* Populate EL3 state so that ERET jumps to the correct entry */
2078 	state = get_el3state_ctx(ctx);
2079 	return read_ctx_reg(state, CTX_SCR_EL3);
2080 }
2081 
2082 /*******************************************************************************
2083  * This function is used to program the context that's used for exception
2084  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2085  * the required security state
2086  ******************************************************************************/
cm_set_next_eret_context(uint32_t security_state)2087 void cm_set_next_eret_context(uint32_t security_state)
2088 {
2089 	cpu_context_t *ctx;
2090 
2091 	ctx = cm_get_context(security_state);
2092 	assert(ctx != NULL);
2093 
2094 	cm_set_next_context(ctx);
2095 }
2096