xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision ff2743e544f0f82381ebb9dff8f14eacb837d2e0)
1 /*
2  * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <amu.h>
8 #include <arch.h>
9 #include <arch_helpers.h>
10 #include <assert.h>
11 #include <bl_common.h>
12 #include <context.h>
13 #include <context_mgmt.h>
14 #include <interrupt_mgmt.h>
15 #include <platform.h>
16 #include <platform_def.h>
17 #include <pubsub_events.h>
18 #include <smccc_helpers.h>
19 #include <spe.h>
20 #include <string.h>
21 #include <sve.h>
22 #include <utils.h>
23 
24 
25 /*******************************************************************************
26  * Context management library initialisation routine. This library is used by
27  * runtime services to share pointers to 'cpu_context' structures for the secure
28  * and non-secure states. Management of the structures and their associated
29  * memory is not done by the context management library e.g. the PSCI service
30  * manages the cpu context used for entry from and exit to the non-secure state.
31  * The Secure payload dispatcher service manages the context(s) corresponding to
32  * the secure state. It also uses this library to get access to the non-secure
33  * state cpu context pointers.
34  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
35  * which will used for programming an entry into a lower EL. The same context
36  * will used to save state upon exception entry from that EL.
37  ******************************************************************************/
38 void cm_init(void)
39 {
40 	/*
41 	 * The context management library has only global data to intialize, but
42 	 * that will be done when the BSS is zeroed out
43 	 */
44 }
45 
46 /*******************************************************************************
47  * The following function initializes the cpu_context 'ctx' for
48  * first use, and sets the initial entrypoint state as specified by the
49  * entry_point_info structure.
50  *
51  * The security state to initialize is determined by the SECURE attribute
52  * of the entry_point_info.
53  *
54  * The EE and ST attributes are used to configure the endianess and secure
55  * timer availability for the new execution context.
56  *
57  * To prepare the register state for entry call cm_prepare_el3_exit() and
58  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
59  * cm_e1_sysreg_context_restore().
60  ******************************************************************************/
61 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
62 {
63 	unsigned int security_state;
64 	uint32_t scr_el3, pmcr_el0;
65 	el3_state_t *state;
66 	gp_regs_t *gp_regs;
67 	unsigned long sctlr_elx, actlr_elx;
68 
69 	assert(ctx);
70 
71 	security_state = GET_SECURITY_STATE(ep->h.attr);
72 
73 	/* Clear any residual register values from the context */
74 	zeromem(ctx, sizeof(*ctx));
75 
76 	/*
77 	 * SCR_EL3 was initialised during reset sequence in macro
78 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
79 	 * affect the next EL.
80 	 *
81 	 * The following fields are initially set to zero and then updated to
82 	 * the required value depending on the state of the SPSR_EL3 and the
83 	 * Security state and entrypoint attributes of the next EL.
84 	 */
85 	scr_el3 = read_scr();
86 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
87 			SCR_ST_BIT | SCR_HCE_BIT);
88 	/*
89 	 * SCR_NS: Set the security state of the next EL.
90 	 */
91 	if (security_state != SECURE)
92 		scr_el3 |= SCR_NS_BIT;
93 	/*
94 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
95 	 *  Exception level as specified by SPSR.
96 	 */
97 	if (GET_RW(ep->spsr) == MODE_RW_64)
98 		scr_el3 |= SCR_RW_BIT;
99 	/*
100 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
101 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
102 	 *  by the entrypoint attributes.
103 	 */
104 	if (EP_GET_ST(ep->h.attr))
105 		scr_el3 |= SCR_ST_BIT;
106 
107 #ifndef HANDLE_EA_EL3_FIRST
108 	/*
109 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
110 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
111 	 *  Aborts are taken to EL3.
112 	 */
113 	scr_el3 &= ~SCR_EA_BIT;
114 #endif
115 
116 #if FAULT_INJECTION_SUPPORT
117 	/* Enable fault injection from lower ELs */
118 	scr_el3 |= SCR_FIEN_BIT;
119 #endif
120 
121 #ifdef IMAGE_BL31
122 	/*
123 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
124 	 *  indicated by the interrupt routing model for BL31.
125 	 */
126 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
127 #endif
128 
129 	/*
130 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
131 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
132 	 * next mode is Hyp.
133 	 */
134 	if ((GET_RW(ep->spsr) == MODE_RW_64
135 	     && GET_EL(ep->spsr) == MODE_EL2)
136 	    || (GET_RW(ep->spsr) != MODE_RW_64
137 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
138 		scr_el3 |= SCR_HCE_BIT;
139 	}
140 
141 	/*
142 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
143 	 * execution state setting all fields rather than relying of the hw.
144 	 * Some fields have architecturally UNKNOWN reset values and these are
145 	 * set to zero.
146 	 *
147 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
148 	 *
149 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
150 	 *  required by PSCI specification)
151 	 */
152 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
153 	if (GET_RW(ep->spsr) == MODE_RW_64)
154 		sctlr_elx |= SCTLR_EL1_RES1;
155 	else {
156 		/*
157 		 * If the target execution state is AArch32 then the following
158 		 * fields need to be set.
159 		 *
160 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
161 		 *  instructions are not trapped to EL1.
162 		 *
163 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
164 		 *  instructions are not trapped to EL1.
165 		 *
166 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
167 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
168 		 */
169 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
170 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
171 	}
172 
173 	/*
174 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
175 	 * and other EL2 registers are set up by cm_preapre_ns_entry() as they
176 	 * are not part of the stored cpu_context.
177 	 */
178 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
179 
180 	/*
181 	 * Base the context ACTLR_EL1 on the current value, as it is
182 	 * implementation defined. The context restore process will write
183 	 * the value from the context to the actual register and can cause
184 	 * problems for processor cores that don't expect certain bits to
185 	 * be zero.
186 	 */
187 	actlr_elx = read_actlr_el1();
188 	write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
189 
190 	if (security_state == SECURE) {
191 		/*
192 		 * Initialise PMCR_EL0 for secure context only, setting all
193 		 * fields rather than relying on hw. Some fields are
194 		 * architecturally UNKNOWN on reset.
195 		 *
196 		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
197 		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
198 		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
199 		 *
200 		 * PMCR_EL0.DP: Set to one so that the cycle counter,
201 		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
202 		 *
203 		 * PMCR_EL0.X: Set to zero to disable export of events.
204 		 *
205 		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
206 		 *  counts on every clock cycle.
207 		 */
208 		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
209 				| PMCR_EL0_DP_BIT)
210 				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
211 		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
212 	}
213 
214 	/* Populate EL3 state so that we've the right context before doing ERET */
215 	state = get_el3state_ctx(ctx);
216 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
217 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
218 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
219 
220 	/*
221 	 * Store the X0-X7 value from the entrypoint into the context
222 	 * Use memcpy as we are in control of the layout of the structures
223 	 */
224 	gp_regs = get_gpregs_ctx(ctx);
225 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
226 }
227 
228 /*******************************************************************************
229  * Enable architecture extensions on first entry to Non-secure world.
230  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
231  * it is zero.
232  ******************************************************************************/
233 static void enable_extensions_nonsecure(int el2_unused)
234 {
235 #if IMAGE_BL31
236 #if ENABLE_SPE_FOR_LOWER_ELS
237 	spe_enable(el2_unused);
238 #endif
239 
240 #if ENABLE_AMU
241 	amu_enable(el2_unused);
242 #endif
243 
244 #if ENABLE_SVE_FOR_NS
245 	sve_enable(el2_unused);
246 #endif
247 #endif
248 }
249 
250 /*******************************************************************************
251  * The following function initializes the cpu_context for a CPU specified by
252  * its `cpu_idx` for first use, and sets the initial entrypoint state as
253  * specified by the entry_point_info structure.
254  ******************************************************************************/
255 void cm_init_context_by_index(unsigned int cpu_idx,
256 			      const entry_point_info_t *ep)
257 {
258 	cpu_context_t *ctx;
259 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
260 	cm_setup_context(ctx, ep);
261 }
262 
263 /*******************************************************************************
264  * The following function initializes the cpu_context for the current CPU
265  * for first use, and sets the initial entrypoint state as specified by the
266  * entry_point_info structure.
267  ******************************************************************************/
268 void cm_init_my_context(const entry_point_info_t *ep)
269 {
270 	cpu_context_t *ctx;
271 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
272 	cm_setup_context(ctx, ep);
273 }
274 
275 /*******************************************************************************
276  * Prepare the CPU system registers for first entry into secure or normal world
277  *
278  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
279  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
280  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
281  * For all entries, the EL1 registers are initialized from the cpu_context
282  ******************************************************************************/
283 void cm_prepare_el3_exit(uint32_t security_state)
284 {
285 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
286 	cpu_context_t *ctx = cm_get_context(security_state);
287 	int el2_unused = 0;
288 
289 	assert(ctx);
290 
291 	if (security_state == NON_SECURE) {
292 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
293 		if (scr_el3 & SCR_HCE_BIT) {
294 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
295 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
296 						 CTX_SCTLR_EL1);
297 			sctlr_elx &= SCTLR_EE_BIT;
298 			sctlr_elx |= SCTLR_EL2_RES1;
299 			write_sctlr_el2(sctlr_elx);
300 		} else if (EL_IMPLEMENTED(2)) {
301 			el2_unused = 1;
302 
303 			/*
304 			 * EL2 present but unused, need to disable safely.
305 			 * SCTLR_EL2 can be ignored in this case.
306 			 *
307 			 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
308 			 * to zero so that Non-secure operations do not trap to
309 			 * EL2.
310 			 *
311 			 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
312 			 */
313 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
314 
315 			/*
316 			 * Initialise CPTR_EL2 setting all fields rather than
317 			 * relying on the hw. All fields have architecturally
318 			 * UNKNOWN reset values.
319 			 *
320 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
321 			 *  accesses to the CPACR_EL1 or CPACR from both
322 			 *  Execution states do not trap to EL2.
323 			 *
324 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
325 			 *  register accesses to the trace registers from both
326 			 *  Execution states do not trap to EL2.
327 			 *
328 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
329 			 *  to SIMD and floating-point functionality from both
330 			 *  Execution states do not trap to EL2.
331 			 */
332 			write_cptr_el2(CPTR_EL2_RESET_VAL &
333 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
334 					| CPTR_EL2_TFP_BIT));
335 
336 			/*
337 			 * Initiliase CNTHCTL_EL2. All fields are
338 			 * architecturally UNKNOWN on reset and are set to zero
339 			 * except for field(s) listed below.
340 			 *
341 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
342 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
343 			 *  physical timer registers.
344 			 *
345 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
346 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
347 			 *  physical counter registers.
348 			 */
349 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
350 						EL1PCEN_BIT | EL1PCTEN_BIT);
351 
352 			/*
353 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
354 			 * architecturally UNKNOWN value.
355 			 */
356 			write_cntvoff_el2(0);
357 
358 			/*
359 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
360 			 * MPIDR_EL1 respectively.
361 			 */
362 			write_vpidr_el2(read_midr_el1());
363 			write_vmpidr_el2(read_mpidr_el1());
364 
365 			/*
366 			 * Initialise VTTBR_EL2. All fields are architecturally
367 			 * UNKNOWN on reset.
368 			 *
369 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
370 			 *  2 address translation is disabled, cache maintenance
371 			 *  operations depend on the VMID.
372 			 *
373 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
374 			 *  translation is disabled.
375 			 */
376 			write_vttbr_el2(VTTBR_RESET_VAL &
377 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
378 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
379 
380 			/*
381 			 * Initialise MDCR_EL2, setting all fields rather than
382 			 * relying on hw. Some fields are architecturally
383 			 * UNKNOWN on reset.
384 			 *
385 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
386 			 *  EL1 System register accesses to the Debug ROM
387 			 *  registers are not trapped to EL2.
388 			 *
389 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
390 			 *  System register accesses to the powerdown debug
391 			 *  registers are not trapped to EL2.
392 			 *
393 			 * MDCR_EL2.TDA: Set to zero so that System register
394 			 *  accesses to the debug registers do not trap to EL2.
395 			 *
396 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
397 			 *  are not routed to EL2.
398 			 *
399 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
400 			 *  Monitors.
401 			 *
402 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
403 			 *  EL1 accesses to all Performance Monitors registers
404 			 *  are not trapped to EL2.
405 			 *
406 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
407 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
408 			 *  trapped to EL2.
409 			 *
410 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
411 			 *  architecturally-defined reset value.
412 			 */
413 			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
414 					((read_pmcr_el0() & PMCR_EL0_N_BITS)
415 					>> PMCR_EL0_N_SHIFT)) &
416 					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
417 					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
418 					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
419 					| MDCR_EL2_TPMCR_BIT));
420 
421 			write_mdcr_el2(mdcr_el2);
422 
423 			/*
424 			 * Initialise HSTR_EL2. All fields are architecturally
425 			 * UNKNOWN on reset.
426 			 *
427 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
428 			 *  Non-secure EL0 or EL1 accesses to System registers
429 			 *  do not trap to EL2.
430 			 */
431 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
432 			/*
433 			 * Initialise CNTHP_CTL_EL2. All fields are
434 			 * architecturally UNKNOWN on reset.
435 			 *
436 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
437 			 *  physical timer and prevent timer interrupts.
438 			 */
439 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
440 						~(CNTHP_CTL_ENABLE_BIT));
441 		}
442 		enable_extensions_nonsecure(el2_unused);
443 	}
444 
445 	cm_el1_sysregs_context_restore(security_state);
446 	cm_set_next_eret_context(security_state);
447 }
448 
449 /*******************************************************************************
450  * The next four functions are used by runtime services to save and restore
451  * EL1 context on the 'cpu_context' structure for the specified security
452  * state.
453  ******************************************************************************/
454 void cm_el1_sysregs_context_save(uint32_t security_state)
455 {
456 	cpu_context_t *ctx;
457 
458 	ctx = cm_get_context(security_state);
459 	assert(ctx);
460 
461 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
462 
463 #if IMAGE_BL31
464 	if (security_state == SECURE)
465 		PUBLISH_EVENT(cm_exited_secure_world);
466 	else
467 		PUBLISH_EVENT(cm_exited_normal_world);
468 #endif
469 }
470 
471 void cm_el1_sysregs_context_restore(uint32_t security_state)
472 {
473 	cpu_context_t *ctx;
474 
475 	ctx = cm_get_context(security_state);
476 	assert(ctx);
477 
478 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
479 
480 #if IMAGE_BL31
481 	if (security_state == SECURE)
482 		PUBLISH_EVENT(cm_entering_secure_world);
483 	else
484 		PUBLISH_EVENT(cm_entering_normal_world);
485 #endif
486 }
487 
488 /*******************************************************************************
489  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
490  * given security state with the given entrypoint
491  ******************************************************************************/
492 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
493 {
494 	cpu_context_t *ctx;
495 	el3_state_t *state;
496 
497 	ctx = cm_get_context(security_state);
498 	assert(ctx);
499 
500 	/* Populate EL3 state so that ERET jumps to the correct entry */
501 	state = get_el3state_ctx(ctx);
502 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
503 }
504 
505 /*******************************************************************************
506  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
507  * pertaining to the given security state
508  ******************************************************************************/
509 void cm_set_elr_spsr_el3(uint32_t security_state,
510 			uintptr_t entrypoint, uint32_t spsr)
511 {
512 	cpu_context_t *ctx;
513 	el3_state_t *state;
514 
515 	ctx = cm_get_context(security_state);
516 	assert(ctx);
517 
518 	/* Populate EL3 state so that ERET jumps to the correct entry */
519 	state = get_el3state_ctx(ctx);
520 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
521 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
522 }
523 
524 /*******************************************************************************
525  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
526  * pertaining to the given security state using the value and bit position
527  * specified in the parameters. It preserves all other bits.
528  ******************************************************************************/
529 void cm_write_scr_el3_bit(uint32_t security_state,
530 			  uint32_t bit_pos,
531 			  uint32_t value)
532 {
533 	cpu_context_t *ctx;
534 	el3_state_t *state;
535 	uint32_t scr_el3;
536 
537 	ctx = cm_get_context(security_state);
538 	assert(ctx);
539 
540 	/* Ensure that the bit position is a valid one */
541 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
542 
543 	/* Ensure that the 'value' is only a bit wide */
544 	assert(value <= 1);
545 
546 	/*
547 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
548 	 * and set it to its new value.
549 	 */
550 	state = get_el3state_ctx(ctx);
551 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
552 	scr_el3 &= ~(1 << bit_pos);
553 	scr_el3 |= value << bit_pos;
554 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
555 }
556 
557 /*******************************************************************************
558  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
559  * given security state.
560  ******************************************************************************/
561 uint32_t cm_get_scr_el3(uint32_t security_state)
562 {
563 	cpu_context_t *ctx;
564 	el3_state_t *state;
565 
566 	ctx = cm_get_context(security_state);
567 	assert(ctx);
568 
569 	/* Populate EL3 state so that ERET jumps to the correct entry */
570 	state = get_el3state_ctx(ctx);
571 	return read_ctx_reg(state, CTX_SCR_EL3);
572 }
573 
574 /*******************************************************************************
575  * This function is used to program the context that's used for exception
576  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
577  * the required security state
578  ******************************************************************************/
579 void cm_set_next_eret_context(uint32_t security_state)
580 {
581 	cpu_context_t *ctx;
582 
583 	ctx = cm_get_context(security_state);
584 	assert(ctx);
585 
586 	cm_set_next_context(ctx);
587 }
588