xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision fd7b287cbe9147ca9e07dd9f30c49c58bbdd92a8)
1 /*
2  * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <bl31/interrupt_mgmt.h>
16 #include <common/bl_common.h>
17 #include <context.h>
18 #include <lib/el3_runtime/context_mgmt.h>
19 #include <lib/el3_runtime/pubsub_events.h>
20 #include <lib/extensions/amu.h>
21 #include <lib/extensions/mpam.h>
22 #include <lib/extensions/spe.h>
23 #include <lib/extensions/sve.h>
24 #include <lib/utils.h>
25 #include <plat/common/platform.h>
26 #include <smccc_helpers.h>
27 
28 
29 /*******************************************************************************
30  * Context management library initialisation routine. This library is used by
31  * runtime services to share pointers to 'cpu_context' structures for the secure
32  * and non-secure states. Management of the structures and their associated
33  * memory is not done by the context management library e.g. the PSCI service
34  * manages the cpu context used for entry from and exit to the non-secure state.
35  * The Secure payload dispatcher service manages the context(s) corresponding to
36  * the secure state. It also uses this library to get access to the non-secure
37  * state cpu context pointers.
38  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
39  * which will used for programming an entry into a lower EL. The same context
40  * will used to save state upon exception entry from that EL.
41  ******************************************************************************/
42 void __init cm_init(void)
43 {
44 	/*
45 	 * The context management library has only global data to intialize, but
46 	 * that will be done when the BSS is zeroed out
47 	 */
48 }
49 
50 /*******************************************************************************
51  * The following function initializes the cpu_context 'ctx' for
52  * first use, and sets the initial entrypoint state as specified by the
53  * entry_point_info structure.
54  *
55  * The security state to initialize is determined by the SECURE attribute
56  * of the entry_point_info.
57  *
58  * The EE and ST attributes are used to configure the endianness and secure
59  * timer availability for the new execution context.
60  *
61  * To prepare the register state for entry call cm_prepare_el3_exit() and
62  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
63  * cm_e1_sysreg_context_restore().
64  ******************************************************************************/
65 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
66 {
67 	unsigned int security_state;
68 	uint32_t scr_el3, pmcr_el0;
69 	el3_state_t *state;
70 	gp_regs_t *gp_regs;
71 	unsigned long sctlr_elx, actlr_elx;
72 
73 	assert(ctx != NULL);
74 
75 	security_state = GET_SECURITY_STATE(ep->h.attr);
76 
77 	/* Clear any residual register values from the context */
78 	zeromem(ctx, sizeof(*ctx));
79 
80 	/*
81 	 * SCR_EL3 was initialised during reset sequence in macro
82 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
83 	 * affect the next EL.
84 	 *
85 	 * The following fields are initially set to zero and then updated to
86 	 * the required value depending on the state of the SPSR_EL3 and the
87 	 * Security state and entrypoint attributes of the next EL.
88 	 */
89 	scr_el3 = (uint32_t)read_scr();
90 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
91 			SCR_ST_BIT | SCR_HCE_BIT);
92 	/*
93 	 * SCR_NS: Set the security state of the next EL.
94 	 */
95 	if (security_state != SECURE)
96 		scr_el3 |= SCR_NS_BIT;
97 	/*
98 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
99 	 *  Exception level as specified by SPSR.
100 	 */
101 	if (GET_RW(ep->spsr) == MODE_RW_64)
102 		scr_el3 |= SCR_RW_BIT;
103 	/*
104 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
105 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
106 	 *  by the entrypoint attributes.
107 	 */
108 	if (EP_GET_ST(ep->h.attr) != 0U)
109 		scr_el3 |= SCR_ST_BIT;
110 
111 #if !HANDLE_EA_EL3_FIRST
112 	/*
113 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
114 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
115 	 *  Aborts are taken to EL3.
116 	 */
117 	scr_el3 &= ~SCR_EA_BIT;
118 #endif
119 
120 #if FAULT_INJECTION_SUPPORT
121 	/* Enable fault injection from lower ELs */
122 	scr_el3 |= SCR_FIEN_BIT;
123 #endif
124 
125 #if !CTX_INCLUDE_PAUTH_REGS
126 	/*
127 	 * If the pointer authentication registers aren't saved during world
128 	 * switches the value of the registers can be leaked from the Secure to
129 	 * the Non-secure world. To prevent this, rather than enabling pointer
130 	 * authentication everywhere, we only enable it in the Non-secure world.
131 	 *
132 	 * If the Secure world wants to use pointer authentication,
133 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
134 	 */
135 	if (security_state == NON_SECURE)
136 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
137 #endif /* !CTX_INCLUDE_PAUTH_REGS */
138 
139 #ifdef IMAGE_BL31
140 	/*
141 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
142 	 *  indicated by the interrupt routing model for BL31.
143 	 */
144 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
145 #endif
146 
147 	/*
148 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
149 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
150 	 * next mode is Hyp.
151 	 */
152 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
153 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
154 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
155 		scr_el3 |= SCR_HCE_BIT;
156 	}
157 
158 	/*
159 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
160 	 * execution state setting all fields rather than relying of the hw.
161 	 * Some fields have architecturally UNKNOWN reset values and these are
162 	 * set to zero.
163 	 *
164 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
165 	 *
166 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
167 	 *  required by PSCI specification)
168 	 */
169 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
170 	if (GET_RW(ep->spsr) == MODE_RW_64)
171 		sctlr_elx |= SCTLR_EL1_RES1;
172 	else {
173 		/*
174 		 * If the target execution state is AArch32 then the following
175 		 * fields need to be set.
176 		 *
177 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
178 		 *  instructions are not trapped to EL1.
179 		 *
180 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
181 		 *  instructions are not trapped to EL1.
182 		 *
183 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
184 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
185 		 */
186 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
187 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
188 	}
189 
190 #if ERRATA_A75_764081
191 	/*
192 	 * If workaround of errata 764081 for Cortex-A75 is used then set
193 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
194 	 */
195 	sctlr_elx |= SCTLR_IESB_BIT;
196 #endif
197 
198 	/*
199 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
200 	 * and other EL2 registers are set up by cm_prepare_ns_entry() as they
201 	 * are not part of the stored cpu_context.
202 	 */
203 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
204 
205 	/*
206 	 * Base the context ACTLR_EL1 on the current value, as it is
207 	 * implementation defined. The context restore process will write
208 	 * the value from the context to the actual register and can cause
209 	 * problems for processor cores that don't expect certain bits to
210 	 * be zero.
211 	 */
212 	actlr_elx = read_actlr_el1();
213 	write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
214 
215 	if (security_state == SECURE) {
216 		/*
217 		 * Initialise PMCR_EL0 for secure context only, setting all
218 		 * fields rather than relying on hw. Some fields are
219 		 * architecturally UNKNOWN on reset.
220 		 *
221 		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
222 		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
223 		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
224 		 *
225 		 * PMCR_EL0.DP: Set to one so that the cycle counter,
226 		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
227 		 *
228 		 * PMCR_EL0.X: Set to zero to disable export of events.
229 		 *
230 		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
231 		 *  counts on every clock cycle.
232 		 */
233 		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
234 				| PMCR_EL0_DP_BIT)
235 				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
236 		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
237 	}
238 
239 	/* Populate EL3 state so that we've the right context before doing ERET */
240 	state = get_el3state_ctx(ctx);
241 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
242 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
243 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
244 
245 	/*
246 	 * Store the X0-X7 value from the entrypoint into the context
247 	 * Use memcpy as we are in control of the layout of the structures
248 	 */
249 	gp_regs = get_gpregs_ctx(ctx);
250 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
251 }
252 
253 /*******************************************************************************
254  * Enable architecture extensions on first entry to Non-secure world.
255  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
256  * it is zero.
257  ******************************************************************************/
258 static void enable_extensions_nonsecure(bool el2_unused)
259 {
260 #if IMAGE_BL31
261 #if ENABLE_SPE_FOR_LOWER_ELS
262 	spe_enable(el2_unused);
263 #endif
264 
265 #if ENABLE_AMU
266 	amu_enable(el2_unused);
267 #endif
268 
269 #if ENABLE_SVE_FOR_NS
270 	sve_enable(el2_unused);
271 #endif
272 
273 #if ENABLE_MPAM_FOR_LOWER_ELS
274 	mpam_enable(el2_unused);
275 #endif
276 #endif
277 }
278 
279 /*******************************************************************************
280  * The following function initializes the cpu_context for a CPU specified by
281  * its `cpu_idx` for first use, and sets the initial entrypoint state as
282  * specified by the entry_point_info structure.
283  ******************************************************************************/
284 void cm_init_context_by_index(unsigned int cpu_idx,
285 			      const entry_point_info_t *ep)
286 {
287 	cpu_context_t *ctx;
288 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
289 	cm_setup_context(ctx, ep);
290 }
291 
292 /*******************************************************************************
293  * The following function initializes the cpu_context for the current CPU
294  * for first use, and sets the initial entrypoint state as specified by the
295  * entry_point_info structure.
296  ******************************************************************************/
297 void cm_init_my_context(const entry_point_info_t *ep)
298 {
299 	cpu_context_t *ctx;
300 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
301 	cm_setup_context(ctx, ep);
302 }
303 
304 /*******************************************************************************
305  * Prepare the CPU system registers for first entry into secure or normal world
306  *
307  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
308  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
309  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
310  * For all entries, the EL1 registers are initialized from the cpu_context
311  ******************************************************************************/
312 void cm_prepare_el3_exit(uint32_t security_state)
313 {
314 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
315 	cpu_context_t *ctx = cm_get_context(security_state);
316 	bool el2_unused = false;
317 	uint64_t hcr_el2 = 0U;
318 
319 	assert(ctx != NULL);
320 
321 	if (security_state == NON_SECURE) {
322 		scr_el3 = (uint32_t)read_ctx_reg(get_el3state_ctx(ctx),
323 						 CTX_SCR_EL3);
324 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
325 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
326 			sctlr_elx = (uint32_t)read_ctx_reg(get_sysregs_ctx(ctx),
327 							   CTX_SCTLR_EL1);
328 			sctlr_elx &= SCTLR_EE_BIT;
329 			sctlr_elx |= SCTLR_EL2_RES1;
330 #if ERRATA_A75_764081
331 			/*
332 			 * If workaround of errata 764081 for Cortex-A75 is used
333 			 * then set SCTLR_EL2.IESB to enable Implicit Error
334 			 * Synchronization Barrier.
335 			 */
336 			sctlr_elx |= SCTLR_IESB_BIT;
337 #endif
338 			write_sctlr_el2(sctlr_elx);
339 		} else if (el_implemented(2) != EL_IMPL_NONE) {
340 			el2_unused = true;
341 
342 			/*
343 			 * EL2 present but unused, need to disable safely.
344 			 * SCTLR_EL2 can be ignored in this case.
345 			 *
346 			 * Set EL2 register width appropriately: Set HCR_EL2
347 			 * field to match SCR_EL3.RW.
348 			 */
349 			if ((scr_el3 & SCR_RW_BIT) != 0U)
350 				hcr_el2 |= HCR_RW_BIT;
351 
352 			/*
353 			 * For Armv8.3 pointer authentication feature, disable
354 			 * traps to EL2 when accessing key registers or using
355 			 * pointer authentication instructions from lower ELs.
356 			 */
357 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
358 
359 			write_hcr_el2(hcr_el2);
360 
361 			/*
362 			 * Initialise CPTR_EL2 setting all fields rather than
363 			 * relying on the hw. All fields have architecturally
364 			 * UNKNOWN reset values.
365 			 *
366 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
367 			 *  accesses to the CPACR_EL1 or CPACR from both
368 			 *  Execution states do not trap to EL2.
369 			 *
370 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
371 			 *  register accesses to the trace registers from both
372 			 *  Execution states do not trap to EL2.
373 			 *
374 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
375 			 *  to SIMD and floating-point functionality from both
376 			 *  Execution states do not trap to EL2.
377 			 */
378 			write_cptr_el2(CPTR_EL2_RESET_VAL &
379 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
380 					| CPTR_EL2_TFP_BIT));
381 
382 			/*
383 			 * Initialise CNTHCTL_EL2. All fields are
384 			 * architecturally UNKNOWN on reset and are set to zero
385 			 * except for field(s) listed below.
386 			 *
387 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
388 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
389 			 *  physical timer registers.
390 			 *
391 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
392 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
393 			 *  physical counter registers.
394 			 */
395 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
396 						EL1PCEN_BIT | EL1PCTEN_BIT);
397 
398 			/*
399 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
400 			 * architecturally UNKNOWN value.
401 			 */
402 			write_cntvoff_el2(0);
403 
404 			/*
405 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
406 			 * MPIDR_EL1 respectively.
407 			 */
408 			write_vpidr_el2(read_midr_el1());
409 			write_vmpidr_el2(read_mpidr_el1());
410 
411 			/*
412 			 * Initialise VTTBR_EL2. All fields are architecturally
413 			 * UNKNOWN on reset.
414 			 *
415 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
416 			 *  2 address translation is disabled, cache maintenance
417 			 *  operations depend on the VMID.
418 			 *
419 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
420 			 *  translation is disabled.
421 			 */
422 			write_vttbr_el2(VTTBR_RESET_VAL &
423 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
424 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
425 
426 			/*
427 			 * Initialise MDCR_EL2, setting all fields rather than
428 			 * relying on hw. Some fields are architecturally
429 			 * UNKNOWN on reset.
430 			 *
431 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
432 			 *  EL1 System register accesses to the Debug ROM
433 			 *  registers are not trapped to EL2.
434 			 *
435 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
436 			 *  System register accesses to the powerdown debug
437 			 *  registers are not trapped to EL2.
438 			 *
439 			 * MDCR_EL2.TDA: Set to zero so that System register
440 			 *  accesses to the debug registers do not trap to EL2.
441 			 *
442 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
443 			 *  are not routed to EL2.
444 			 *
445 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
446 			 *  Monitors.
447 			 *
448 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
449 			 *  EL1 accesses to all Performance Monitors registers
450 			 *  are not trapped to EL2.
451 			 *
452 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
453 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
454 			 *  trapped to EL2.
455 			 *
456 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
457 			 *  architecturally-defined reset value.
458 			 */
459 			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
460 					((read_pmcr_el0() & PMCR_EL0_N_BITS)
461 					>> PMCR_EL0_N_SHIFT)) &
462 					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
463 					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
464 					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
465 					| MDCR_EL2_TPMCR_BIT));
466 
467 			write_mdcr_el2(mdcr_el2);
468 
469 			/*
470 			 * Initialise HSTR_EL2. All fields are architecturally
471 			 * UNKNOWN on reset.
472 			 *
473 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
474 			 *  Non-secure EL0 or EL1 accesses to System registers
475 			 *  do not trap to EL2.
476 			 */
477 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
478 			/*
479 			 * Initialise CNTHP_CTL_EL2. All fields are
480 			 * architecturally UNKNOWN on reset.
481 			 *
482 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
483 			 *  physical timer and prevent timer interrupts.
484 			 */
485 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
486 						~(CNTHP_CTL_ENABLE_BIT));
487 		}
488 		enable_extensions_nonsecure(el2_unused);
489 	}
490 
491 	cm_el1_sysregs_context_restore(security_state);
492 	cm_set_next_eret_context(security_state);
493 }
494 
495 /*******************************************************************************
496  * The next four functions are used by runtime services to save and restore
497  * EL1 context on the 'cpu_context' structure for the specified security
498  * state.
499  ******************************************************************************/
500 void cm_el1_sysregs_context_save(uint32_t security_state)
501 {
502 	cpu_context_t *ctx;
503 
504 	ctx = cm_get_context(security_state);
505 	assert(ctx != NULL);
506 
507 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
508 
509 #if IMAGE_BL31
510 	if (security_state == SECURE)
511 		PUBLISH_EVENT(cm_exited_secure_world);
512 	else
513 		PUBLISH_EVENT(cm_exited_normal_world);
514 #endif
515 }
516 
517 void cm_el1_sysregs_context_restore(uint32_t security_state)
518 {
519 	cpu_context_t *ctx;
520 
521 	ctx = cm_get_context(security_state);
522 	assert(ctx != NULL);
523 
524 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
525 
526 #if IMAGE_BL31
527 	if (security_state == SECURE)
528 		PUBLISH_EVENT(cm_entering_secure_world);
529 	else
530 		PUBLISH_EVENT(cm_entering_normal_world);
531 #endif
532 }
533 
534 /*******************************************************************************
535  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
536  * given security state with the given entrypoint
537  ******************************************************************************/
538 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
539 {
540 	cpu_context_t *ctx;
541 	el3_state_t *state;
542 
543 	ctx = cm_get_context(security_state);
544 	assert(ctx != NULL);
545 
546 	/* Populate EL3 state so that ERET jumps to the correct entry */
547 	state = get_el3state_ctx(ctx);
548 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
549 }
550 
551 /*******************************************************************************
552  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
553  * pertaining to the given security state
554  ******************************************************************************/
555 void cm_set_elr_spsr_el3(uint32_t security_state,
556 			uintptr_t entrypoint, uint32_t spsr)
557 {
558 	cpu_context_t *ctx;
559 	el3_state_t *state;
560 
561 	ctx = cm_get_context(security_state);
562 	assert(ctx != NULL);
563 
564 	/* Populate EL3 state so that ERET jumps to the correct entry */
565 	state = get_el3state_ctx(ctx);
566 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
567 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
568 }
569 
570 /*******************************************************************************
571  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
572  * pertaining to the given security state using the value and bit position
573  * specified in the parameters. It preserves all other bits.
574  ******************************************************************************/
575 void cm_write_scr_el3_bit(uint32_t security_state,
576 			  uint32_t bit_pos,
577 			  uint32_t value)
578 {
579 	cpu_context_t *ctx;
580 	el3_state_t *state;
581 	uint32_t scr_el3;
582 
583 	ctx = cm_get_context(security_state);
584 	assert(ctx != NULL);
585 
586 	/* Ensure that the bit position is a valid one */
587 	assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
588 
589 	/* Ensure that the 'value' is only a bit wide */
590 	assert(value <= 1U);
591 
592 	/*
593 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
594 	 * and set it to its new value.
595 	 */
596 	state = get_el3state_ctx(ctx);
597 	scr_el3 = (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
598 	scr_el3 &= ~(1U << bit_pos);
599 	scr_el3 |= value << bit_pos;
600 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
601 }
602 
603 /*******************************************************************************
604  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
605  * given security state.
606  ******************************************************************************/
607 uint32_t cm_get_scr_el3(uint32_t security_state)
608 {
609 	cpu_context_t *ctx;
610 	el3_state_t *state;
611 
612 	ctx = cm_get_context(security_state);
613 	assert(ctx != NULL);
614 
615 	/* Populate EL3 state so that ERET jumps to the correct entry */
616 	state = get_el3state_ctx(ctx);
617 	return (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
618 }
619 
620 /*******************************************************************************
621  * This function is used to program the context that's used for exception
622  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
623  * the required security state
624  ******************************************************************************/
625 void cm_set_next_eret_context(uint32_t security_state)
626 {
627 	cpu_context_t *ctx;
628 
629 	ctx = cm_get_context(security_state);
630 	assert(ctx != NULL);
631 
632 	cm_set_next_context(ctx);
633 }
634