xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision fd5da7a84731e9687f56c263ff3aa8ebed75075a)
1 /*
2  * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/sme.h>
24 #include <lib/extensions/spe.h>
25 #include <lib/extensions/sve.h>
26 #include <lib/extensions/sys_reg_trace.h>
27 #include <lib/extensions/trbe.h>
28 #include <lib/extensions/trf.h>
29 #include <lib/extensions/twed.h>
30 #include <lib/utils.h>
31 
32 static void manage_extensions_secure(cpu_context_t *ctx);
33 
34 /******************************************************************************
35  * This function performs initializations that are specific to SECURE state
36  * and updates the cpu context specified by 'ctx'.
37  *****************************************************************************/
38 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
39 {
40 	u_register_t scr_el3;
41 	el3_state_t *state;
42 
43 	state = get_el3state_ctx(ctx);
44 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
45 
46 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
47 	/*
48 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
49 	 * indicated by the interrupt routing model for BL31.
50 	 */
51 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
52 #endif
53 
54 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
55 	/* Get Memory Tagging Extension support level */
56 	unsigned int mte = get_armv8_5_mte_support();
57 #endif
58 	/*
59 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
60 	 * is set, or when MTE is only implemented at EL0.
61 	 */
62 #if CTX_INCLUDE_MTE_REGS
63 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
64 	scr_el3 |= SCR_ATA_BIT;
65 #else
66 	if (mte == MTE_IMPLEMENTED_EL0) {
67 		scr_el3 |= SCR_ATA_BIT;
68 	}
69 #endif /* CTX_INCLUDE_MTE_REGS */
70 
71 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
72 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_armv8_4_sel2_present()) {
73 		if (GET_RW(ep->spsr) != MODE_RW_64) {
74 			ERROR("S-EL2 can not be used in AArch32\n.");
75 			panic();
76 		}
77 
78 		scr_el3 |= SCR_EEL2_BIT;
79 	}
80 
81 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
82 
83 	manage_extensions_secure(ctx);
84 }
85 
86 #if ENABLE_RME
87 /******************************************************************************
88  * This function performs initializations that are specific to REALM state
89  * and updates the cpu context specified by 'ctx'.
90  *****************************************************************************/
91 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
92 {
93 	u_register_t scr_el3;
94 	el3_state_t *state;
95 
96 	state = get_el3state_ctx(ctx);
97 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
98 
99 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT | SCR_EnSCXT_BIT;
100 
101 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
102 }
103 #endif /* ENABLE_RME */
104 
105 /******************************************************************************
106  * This function performs initializations that are specific to NON-SECURE state
107  * and updates the cpu context specified by 'ctx'.
108  *****************************************************************************/
109 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
110 {
111 	u_register_t scr_el3;
112 	el3_state_t *state;
113 
114 	state = get_el3state_ctx(ctx);
115 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
116 
117 	/* SCR_NS: Set the NS bit */
118 	scr_el3 |= SCR_NS_BIT;
119 
120 #if !CTX_INCLUDE_PAUTH_REGS
121 	/*
122 	 * If the pointer authentication registers aren't saved during world
123 	 * switches the value of the registers can be leaked from the Secure to
124 	 * the Non-secure world. To prevent this, rather than enabling pointer
125 	 * authentication everywhere, we only enable it in the Non-secure world.
126 	 *
127 	 * If the Secure world wants to use pointer authentication,
128 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
129 	 */
130 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
131 #endif /* !CTX_INCLUDE_PAUTH_REGS */
132 
133 	/* Allow access to Allocation Tags when MTE is implemented. */
134 	scr_el3 |= SCR_ATA_BIT;
135 
136 #ifdef IMAGE_BL31
137 	/*
138 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
139 	 *  indicated by the interrupt routing model for BL31.
140 	 */
141 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
142 #endif
143 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
144 }
145 
146 /*******************************************************************************
147  * The following function performs initialization of the cpu_context 'ctx'
148  * for first use that is common to all security states, and sets the
149  * initial entrypoint state as specified by the entry_point_info structure.
150  *
151  * The EE and ST attributes are used to configure the endianness and secure
152  * timer availability for the new execution context.
153  ******************************************************************************/
154 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
155 {
156 	u_register_t scr_el3;
157 	el3_state_t *state;
158 	gp_regs_t *gp_regs;
159 	u_register_t sctlr_elx, actlr_elx;
160 
161 	/* Clear any residual register values from the context */
162 	zeromem(ctx, sizeof(*ctx));
163 
164 	/*
165 	 * SCR_EL3 was initialised during reset sequence in macro
166 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
167 	 * affect the next EL.
168 	 *
169 	 * The following fields are initially set to zero and then updated to
170 	 * the required value depending on the state of the SPSR_EL3 and the
171 	 * Security state and entrypoint attributes of the next EL.
172 	 */
173 	scr_el3 = read_scr();
174 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
175 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
176 
177 	/*
178 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
179 	 *  Exception level as specified by SPSR.
180 	 */
181 	if (GET_RW(ep->spsr) == MODE_RW_64) {
182 		scr_el3 |= SCR_RW_BIT;
183 	}
184 
185 	/*
186 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
187 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
188 	 *  by the entrypoint attributes.
189 	 */
190 	if (EP_GET_ST(ep->h.attr) != 0U) {
191 		scr_el3 |= SCR_ST_BIT;
192 	}
193 
194 	/*
195 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
196 	 * SCR_EL3.HXEn.
197 	 */
198 #if ENABLE_FEAT_HCX
199 	scr_el3 |= SCR_HXEn_BIT;
200 #endif
201 
202 #if RAS_TRAP_LOWER_EL_ERR_ACCESS
203 	/*
204 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
205 	 * and RAS ERX registers from EL1 and EL2 are trapped to EL3.
206 	 */
207 	scr_el3 |= SCR_TERR_BIT;
208 #endif
209 
210 #if !HANDLE_EA_EL3_FIRST
211 	/*
212 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
213 	 * to EL3 when executing at a lower EL. When executing at EL3, External
214 	 * Aborts are taken to EL3.
215 	 */
216 	scr_el3 &= ~SCR_EA_BIT;
217 #endif
218 
219 #if FAULT_INJECTION_SUPPORT
220 	/* Enable fault injection from lower ELs */
221 	scr_el3 |= SCR_FIEN_BIT;
222 #endif
223 
224 	/*
225 	 * CPTR_EL3 was initialized out of reset, copy that value to the
226 	 * context register.
227 	 */
228 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
229 
230 	/*
231 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
232 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
233 	 * next mode is Hyp.
234 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
235 	 * same conditions as HVC instructions and when the processor supports
236 	 * ARMv8.6-FGT.
237 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
238 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
239 	 * and when the processor supports ECV.
240 	 */
241 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
242 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
243 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
244 		scr_el3 |= SCR_HCE_BIT;
245 
246 		if (is_armv8_6_fgt_present()) {
247 			scr_el3 |= SCR_FGTEN_BIT;
248 		}
249 
250 		if (get_armv8_6_ecv_support()
251 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
252 			scr_el3 |= SCR_ECVEN_BIT;
253 		}
254 	}
255 
256 	/*
257 	 * FEAT_AMUv1p1 virtual offset registers are only accessible from EL3
258 	 * and EL2, when clear, this bit traps accesses from EL2 so we set it
259 	 * to 1 when EL2 is present.
260 	 */
261 	if (is_armv8_6_feat_amuv1p1_present() &&
262 		(el_implemented(2) != EL_IMPL_NONE)) {
263 		scr_el3 |= SCR_AMVOFFEN_BIT;
264 	}
265 
266 	/*
267 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
268 	 * execution state setting all fields rather than relying of the hw.
269 	 * Some fields have architecturally UNKNOWN reset values and these are
270 	 * set to zero.
271 	 *
272 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
273 	 *
274 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
275 	 *  required by PSCI specification)
276 	 */
277 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
278 	if (GET_RW(ep->spsr) == MODE_RW_64) {
279 		sctlr_elx |= SCTLR_EL1_RES1;
280 	} else {
281 		/*
282 		 * If the target execution state is AArch32 then the following
283 		 * fields need to be set.
284 		 *
285 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
286 		 *  instructions are not trapped to EL1.
287 		 *
288 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
289 		 *  instructions are not trapped to EL1.
290 		 *
291 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
292 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
293 		 */
294 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
295 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
296 	}
297 
298 #if ERRATA_A75_764081
299 	/*
300 	 * If workaround of errata 764081 for Cortex-A75 is used then set
301 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
302 	 */
303 	sctlr_elx |= SCTLR_IESB_BIT;
304 #endif
305 
306 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
307 	if (is_armv8_6_twed_present()) {
308 		uint32_t delay = plat_arm_set_twedel_scr_el3();
309 
310 		if (delay != TWED_DISABLED) {
311 			/* Make sure delay value fits */
312 			assert((delay & ~SCR_TWEDEL_MASK) == 0U);
313 
314 			/* Set delay in SCR_EL3 */
315 			scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
316 			scr_el3 |= ((delay & SCR_TWEDEL_MASK)
317 					<< SCR_TWEDEL_SHIFT);
318 
319 			/* Enable WFE delay */
320 			scr_el3 |= SCR_TWEDEn_BIT;
321 		}
322 	}
323 
324 	/*
325 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
326 	 * and other EL2 registers are set up by cm_prepare_el3_exit() as they
327 	 * are not part of the stored cpu_context.
328 	 */
329 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
330 
331 	/*
332 	 * Base the context ACTLR_EL1 on the current value, as it is
333 	 * implementation defined. The context restore process will write
334 	 * the value from the context to the actual register and can cause
335 	 * problems for processor cores that don't expect certain bits to
336 	 * be zero.
337 	 */
338 	actlr_elx = read_actlr_el1();
339 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
340 
341 	/*
342 	 * Populate EL3 state so that we've the right context
343 	 * before doing ERET
344 	 */
345 	state = get_el3state_ctx(ctx);
346 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
347 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
348 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
349 
350 	/*
351 	 * Store the X0-X7 value from the entrypoint into the context
352 	 * Use memcpy as we are in control of the layout of the structures
353 	 */
354 	gp_regs = get_gpregs_ctx(ctx);
355 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
356 }
357 
358 /*******************************************************************************
359  * Context management library initialization routine. This library is used by
360  * runtime services to share pointers to 'cpu_context' structures for secure
361  * non-secure and realm states. Management of the structures and their associated
362  * memory is not done by the context management library e.g. the PSCI service
363  * manages the cpu context used for entry from and exit to the non-secure state.
364  * The Secure payload dispatcher service manages the context(s) corresponding to
365  * the secure state. It also uses this library to get access to the non-secure
366  * state cpu context pointers.
367  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
368  * which will be used for programming an entry into a lower EL. The same context
369  * will be used to save state upon exception entry from that EL.
370  ******************************************************************************/
371 void __init cm_init(void)
372 {
373 	/*
374 	 * The context management library has only global data to intialize, but
375 	 * that will be done when the BSS is zeroed out.
376 	 */
377 }
378 
379 /*******************************************************************************
380  * This is the high-level function used to initialize the cpu_context 'ctx' for
381  * first use. It performs initializations that are common to all security states
382  * and initializations specific to the security state specified in 'ep'
383  ******************************************************************************/
384 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
385 {
386 	unsigned int security_state;
387 
388 	assert(ctx != NULL);
389 
390 	/*
391 	 * Perform initializations that are common
392 	 * to all security states
393 	 */
394 	setup_context_common(ctx, ep);
395 
396 	security_state = GET_SECURITY_STATE(ep->h.attr);
397 
398 	/* Perform security state specific initializations */
399 	switch (security_state) {
400 	case SECURE:
401 		setup_secure_context(ctx, ep);
402 		break;
403 #if ENABLE_RME
404 	case REALM:
405 		setup_realm_context(ctx, ep);
406 		break;
407 #endif
408 	case NON_SECURE:
409 		setup_ns_context(ctx, ep);
410 		break;
411 	default:
412 		ERROR("Invalid security state\n");
413 		panic();
414 		break;
415 	}
416 }
417 
418 /*******************************************************************************
419  * Enable architecture extensions on first entry to Non-secure world.
420  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
421  * it is zero.
422  ******************************************************************************/
423 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
424 {
425 #if IMAGE_BL31
426 #if ENABLE_SPE_FOR_LOWER_ELS
427 	spe_enable(el2_unused);
428 #endif
429 
430 #if ENABLE_AMU
431 	amu_enable(el2_unused, ctx);
432 #endif
433 
434 #if ENABLE_SME_FOR_NS
435 	/* Enable SME, SVE, and FPU/SIMD for non-secure world. */
436 	sme_enable(ctx);
437 #elif ENABLE_SVE_FOR_NS
438 	/* Enable SVE and FPU/SIMD for non-secure world. */
439 	sve_enable(ctx);
440 #endif
441 
442 #if ENABLE_MPAM_FOR_LOWER_ELS
443 	mpam_enable(el2_unused);
444 #endif
445 
446 #if ENABLE_TRBE_FOR_NS
447 	trbe_enable();
448 #endif /* ENABLE_TRBE_FOR_NS */
449 
450 #if ENABLE_SYS_REG_TRACE_FOR_NS
451 	sys_reg_trace_enable(ctx);
452 #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */
453 
454 #if ENABLE_TRF_FOR_NS
455 	trf_enable();
456 #endif /* ENABLE_TRF_FOR_NS */
457 #endif
458 }
459 
460 /*******************************************************************************
461  * Enable architecture extensions on first entry to Secure world.
462  ******************************************************************************/
463 static void manage_extensions_secure(cpu_context_t *ctx)
464 {
465 #if IMAGE_BL31
466  #if ENABLE_SME_FOR_NS
467   #if ENABLE_SME_FOR_SWD
468 	/*
469 	 * Enable SME, SVE, FPU/SIMD in secure context, secure manager must
470 	 * ensure SME, SVE, and FPU/SIMD context properly managed.
471 	 */
472 	sme_enable(ctx);
473   #else /* ENABLE_SME_FOR_SWD */
474 	/*
475 	 * Disable SME, SVE, FPU/SIMD in secure context so non-secure world can
476 	 * safely use the associated registers.
477 	 */
478 	sme_disable(ctx);
479   #endif /* ENABLE_SME_FOR_SWD */
480  #elif ENABLE_SVE_FOR_NS
481   #if ENABLE_SVE_FOR_SWD
482 	/*
483 	 * Enable SVE and FPU in secure context, secure manager must ensure that
484 	 * the SVE and FPU register contexts are properly managed.
485 	 */
486 	sve_enable(ctx);
487  #else /* ENABLE_SVE_FOR_SWD */
488 	/*
489 	 * Disable SVE and FPU in secure context so non-secure world can safely
490 	 * use them.
491 	 */
492 	sve_disable(ctx);
493   #endif /* ENABLE_SVE_FOR_SWD */
494  #endif /* ENABLE_SVE_FOR_NS */
495 #endif /* IMAGE_BL31 */
496 }
497 
498 /*******************************************************************************
499  * The following function initializes the cpu_context for a CPU specified by
500  * its `cpu_idx` for first use, and sets the initial entrypoint state as
501  * specified by the entry_point_info structure.
502  ******************************************************************************/
503 void cm_init_context_by_index(unsigned int cpu_idx,
504 			      const entry_point_info_t *ep)
505 {
506 	cpu_context_t *ctx;
507 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
508 	cm_setup_context(ctx, ep);
509 }
510 
511 /*******************************************************************************
512  * The following function initializes the cpu_context for the current CPU
513  * for first use, and sets the initial entrypoint state as specified by the
514  * entry_point_info structure.
515  ******************************************************************************/
516 void cm_init_my_context(const entry_point_info_t *ep)
517 {
518 	cpu_context_t *ctx;
519 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
520 	cm_setup_context(ctx, ep);
521 }
522 
523 /*******************************************************************************
524  * Prepare the CPU system registers for first entry into realm, secure, or
525  * normal world.
526  *
527  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
528  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
529  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
530  * For all entries, the EL1 registers are initialized from the cpu_context
531  ******************************************************************************/
532 void cm_prepare_el3_exit(uint32_t security_state)
533 {
534 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
535 	cpu_context_t *ctx = cm_get_context(security_state);
536 	bool el2_unused = false;
537 	uint64_t hcr_el2 = 0U;
538 
539 	assert(ctx != NULL);
540 
541 	if (security_state == NON_SECURE) {
542 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
543 						 CTX_SCR_EL3);
544 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
545 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
546 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
547 							   CTX_SCTLR_EL1);
548 			sctlr_elx &= SCTLR_EE_BIT;
549 			sctlr_elx |= SCTLR_EL2_RES1;
550 #if ERRATA_A75_764081
551 			/*
552 			 * If workaround of errata 764081 for Cortex-A75 is used
553 			 * then set SCTLR_EL2.IESB to enable Implicit Error
554 			 * Synchronization Barrier.
555 			 */
556 			sctlr_elx |= SCTLR_IESB_BIT;
557 #endif
558 			write_sctlr_el2(sctlr_elx);
559 		} else if (el_implemented(2) != EL_IMPL_NONE) {
560 			el2_unused = true;
561 
562 			/*
563 			 * EL2 present but unused, need to disable safely.
564 			 * SCTLR_EL2 can be ignored in this case.
565 			 *
566 			 * Set EL2 register width appropriately: Set HCR_EL2
567 			 * field to match SCR_EL3.RW.
568 			 */
569 			if ((scr_el3 & SCR_RW_BIT) != 0U)
570 				hcr_el2 |= HCR_RW_BIT;
571 
572 			/*
573 			 * For Armv8.3 pointer authentication feature, disable
574 			 * traps to EL2 when accessing key registers or using
575 			 * pointer authentication instructions from lower ELs.
576 			 */
577 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
578 
579 			write_hcr_el2(hcr_el2);
580 
581 			/*
582 			 * Initialise CPTR_EL2 setting all fields rather than
583 			 * relying on the hw. All fields have architecturally
584 			 * UNKNOWN reset values.
585 			 *
586 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
587 			 *  accesses to the CPACR_EL1 or CPACR from both
588 			 *  Execution states do not trap to EL2.
589 			 *
590 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
591 			 *  register accesses to the trace registers from both
592 			 *  Execution states do not trap to EL2.
593 			 *  If PE trace unit System registers are not implemented
594 			 *  then this bit is reserved, and must be set to zero.
595 			 *
596 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
597 			 *  to SIMD and floating-point functionality from both
598 			 *  Execution states do not trap to EL2.
599 			 */
600 			write_cptr_el2(CPTR_EL2_RESET_VAL &
601 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
602 					| CPTR_EL2_TFP_BIT));
603 
604 			/*
605 			 * Initialise CNTHCTL_EL2. All fields are
606 			 * architecturally UNKNOWN on reset and are set to zero
607 			 * except for field(s) listed below.
608 			 *
609 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
610 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
611 			 *  physical timer registers.
612 			 *
613 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
614 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
615 			 *  physical counter registers.
616 			 */
617 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
618 						EL1PCEN_BIT | EL1PCTEN_BIT);
619 
620 			/*
621 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
622 			 * architecturally UNKNOWN value.
623 			 */
624 			write_cntvoff_el2(0);
625 
626 			/*
627 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
628 			 * MPIDR_EL1 respectively.
629 			 */
630 			write_vpidr_el2(read_midr_el1());
631 			write_vmpidr_el2(read_mpidr_el1());
632 
633 			/*
634 			 * Initialise VTTBR_EL2. All fields are architecturally
635 			 * UNKNOWN on reset.
636 			 *
637 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
638 			 *  2 address translation is disabled, cache maintenance
639 			 *  operations depend on the VMID.
640 			 *
641 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
642 			 *  translation is disabled.
643 			 */
644 			write_vttbr_el2(VTTBR_RESET_VAL &
645 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
646 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
647 
648 			/*
649 			 * Initialise MDCR_EL2, setting all fields rather than
650 			 * relying on hw. Some fields are architecturally
651 			 * UNKNOWN on reset.
652 			 *
653 			 * MDCR_EL2.HLP: Set to one so that event counter
654 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
655 			 *  occurs on the increment that changes
656 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
657 			 *  implemented. This bit is RES0 in versions of the
658 			 *  architecture earlier than ARMv8.5, setting it to 1
659 			 *  doesn't have any effect on them.
660 			 *
661 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
662 			 *  Filter Control register TRFCR_EL1 at EL1 is not
663 			 *  trapped to EL2. This bit is RES0 in versions of
664 			 *  the architecture earlier than ARMv8.4.
665 			 *
666 			 * MDCR_EL2.HPMD: Set to one so that event counting is
667 			 *  prohibited at EL2. This bit is RES0 in versions of
668 			 *  the architecture earlier than ARMv8.1, setting it
669 			 *  to 1 doesn't have any effect on them.
670 			 *
671 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
672 			 *  Statistical Profiling control registers from EL1
673 			 *  do not trap to EL2. This bit is RES0 when SPE is
674 			 *  not implemented.
675 			 *
676 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
677 			 *  EL1 System register accesses to the Debug ROM
678 			 *  registers are not trapped to EL2.
679 			 *
680 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
681 			 *  System register accesses to the powerdown debug
682 			 *  registers are not trapped to EL2.
683 			 *
684 			 * MDCR_EL2.TDA: Set to zero so that System register
685 			 *  accesses to the debug registers do not trap to EL2.
686 			 *
687 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
688 			 *  are not routed to EL2.
689 			 *
690 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
691 			 *  Monitors.
692 			 *
693 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
694 			 *  EL1 accesses to all Performance Monitors registers
695 			 *  are not trapped to EL2.
696 			 *
697 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
698 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
699 			 *  trapped to EL2.
700 			 *
701 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
702 			 *  architecturally-defined reset value.
703 			 *
704 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
705 			 *  owning exception level is NS-EL1 and, tracing is
706 			 *  prohibited at NS-EL2. These bits are RES0 when
707 			 *  FEAT_TRBE is not implemented.
708 			 */
709 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
710 				     MDCR_EL2_HPMD) |
711 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
712 				   >> PMCR_EL0_N_SHIFT)) &
713 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
714 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
715 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
716 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
717 				     MDCR_EL2_TPMCR_BIT |
718 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
719 
720 			write_mdcr_el2(mdcr_el2);
721 
722 			/*
723 			 * Initialise HSTR_EL2. All fields are architecturally
724 			 * UNKNOWN on reset.
725 			 *
726 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
727 			 *  Non-secure EL0 or EL1 accesses to System registers
728 			 *  do not trap to EL2.
729 			 */
730 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
731 			/*
732 			 * Initialise CNTHP_CTL_EL2. All fields are
733 			 * architecturally UNKNOWN on reset.
734 			 *
735 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
736 			 *  physical timer and prevent timer interrupts.
737 			 */
738 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
739 						~(CNTHP_CTL_ENABLE_BIT));
740 		}
741 		manage_extensions_nonsecure(el2_unused, ctx);
742 	}
743 
744 	cm_el1_sysregs_context_restore(security_state);
745 	cm_set_next_eret_context(security_state);
746 }
747 
748 #if CTX_INCLUDE_EL2_REGS
749 /*******************************************************************************
750  * Save EL2 sysreg context
751  ******************************************************************************/
752 void cm_el2_sysregs_context_save(uint32_t security_state)
753 {
754 	u_register_t scr_el3 = read_scr();
755 
756 	/*
757 	 * Always save the non-secure and realm EL2 context, only save the
758 	 * S-EL2 context if S-EL2 is enabled.
759 	 */
760 	if ((security_state != SECURE) ||
761 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
762 		cpu_context_t *ctx;
763 
764 		ctx = cm_get_context(security_state);
765 		assert(ctx != NULL);
766 
767 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
768 	}
769 }
770 
771 /*******************************************************************************
772  * Restore EL2 sysreg context
773  ******************************************************************************/
774 void cm_el2_sysregs_context_restore(uint32_t security_state)
775 {
776 	u_register_t scr_el3 = read_scr();
777 
778 	/*
779 	 * Always restore the non-secure and realm EL2 context, only restore the
780 	 * S-EL2 context if S-EL2 is enabled.
781 	 */
782 	if ((security_state != SECURE) ||
783 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
784 		cpu_context_t *ctx;
785 
786 		ctx = cm_get_context(security_state);
787 		assert(ctx != NULL);
788 
789 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
790 	}
791 }
792 #endif /* CTX_INCLUDE_EL2_REGS */
793 
794 /*******************************************************************************
795  * The next four functions are used by runtime services to save and restore
796  * EL1 context on the 'cpu_context' structure for the specified security
797  * state.
798  ******************************************************************************/
799 void cm_el1_sysregs_context_save(uint32_t security_state)
800 {
801 	cpu_context_t *ctx;
802 
803 	ctx = cm_get_context(security_state);
804 	assert(ctx != NULL);
805 
806 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
807 
808 #if IMAGE_BL31
809 	if (security_state == SECURE)
810 		PUBLISH_EVENT(cm_exited_secure_world);
811 	else
812 		PUBLISH_EVENT(cm_exited_normal_world);
813 #endif
814 }
815 
816 void cm_el1_sysregs_context_restore(uint32_t security_state)
817 {
818 	cpu_context_t *ctx;
819 
820 	ctx = cm_get_context(security_state);
821 	assert(ctx != NULL);
822 
823 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
824 
825 #if IMAGE_BL31
826 	if (security_state == SECURE)
827 		PUBLISH_EVENT(cm_entering_secure_world);
828 	else
829 		PUBLISH_EVENT(cm_entering_normal_world);
830 #endif
831 }
832 
833 /*******************************************************************************
834  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
835  * given security state with the given entrypoint
836  ******************************************************************************/
837 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
838 {
839 	cpu_context_t *ctx;
840 	el3_state_t *state;
841 
842 	ctx = cm_get_context(security_state);
843 	assert(ctx != NULL);
844 
845 	/* Populate EL3 state so that ERET jumps to the correct entry */
846 	state = get_el3state_ctx(ctx);
847 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
848 }
849 
850 /*******************************************************************************
851  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
852  * pertaining to the given security state
853  ******************************************************************************/
854 void cm_set_elr_spsr_el3(uint32_t security_state,
855 			uintptr_t entrypoint, uint32_t spsr)
856 {
857 	cpu_context_t *ctx;
858 	el3_state_t *state;
859 
860 	ctx = cm_get_context(security_state);
861 	assert(ctx != NULL);
862 
863 	/* Populate EL3 state so that ERET jumps to the correct entry */
864 	state = get_el3state_ctx(ctx);
865 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
866 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
867 }
868 
869 /*******************************************************************************
870  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
871  * pertaining to the given security state using the value and bit position
872  * specified in the parameters. It preserves all other bits.
873  ******************************************************************************/
874 void cm_write_scr_el3_bit(uint32_t security_state,
875 			  uint32_t bit_pos,
876 			  uint32_t value)
877 {
878 	cpu_context_t *ctx;
879 	el3_state_t *state;
880 	u_register_t scr_el3;
881 
882 	ctx = cm_get_context(security_state);
883 	assert(ctx != NULL);
884 
885 	/* Ensure that the bit position is a valid one */
886 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
887 
888 	/* Ensure that the 'value' is only a bit wide */
889 	assert(value <= 1U);
890 
891 	/*
892 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
893 	 * and set it to its new value.
894 	 */
895 	state = get_el3state_ctx(ctx);
896 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
897 	scr_el3 &= ~(1UL << bit_pos);
898 	scr_el3 |= (u_register_t)value << bit_pos;
899 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
900 }
901 
902 /*******************************************************************************
903  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
904  * given security state.
905  ******************************************************************************/
906 u_register_t cm_get_scr_el3(uint32_t security_state)
907 {
908 	cpu_context_t *ctx;
909 	el3_state_t *state;
910 
911 	ctx = cm_get_context(security_state);
912 	assert(ctx != NULL);
913 
914 	/* Populate EL3 state so that ERET jumps to the correct entry */
915 	state = get_el3state_ctx(ctx);
916 	return read_ctx_reg(state, CTX_SCR_EL3);
917 }
918 
919 /*******************************************************************************
920  * This function is used to program the context that's used for exception
921  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
922  * the required security state
923  ******************************************************************************/
924 void cm_set_next_eret_context(uint32_t security_state)
925 {
926 	cpu_context_t *ctx;
927 
928 	ctx = cm_get_context(security_state);
929 	assert(ctx != NULL);
930 
931 	cm_set_next_context(ctx);
932 }
933