xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision f906a44e9ea9ccefaab2a9d40bb2cb3f354609c8)
1 /*
2  * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/spe.h>
24 #include <lib/extensions/sve.h>
25 #include <lib/utils.h>
26 #include <plat/common/platform.h>
27 #include <smccc_helpers.h>
28 
29 
30 /*******************************************************************************
31  * Context management library initialisation routine. This library is used by
32  * runtime services to share pointers to 'cpu_context' structures for the secure
33  * and non-secure states. Management of the structures and their associated
34  * memory is not done by the context management library e.g. the PSCI service
35  * manages the cpu context used for entry from and exit to the non-secure state.
36  * The Secure payload dispatcher service manages the context(s) corresponding to
37  * the secure state. It also uses this library to get access to the non-secure
38  * state cpu context pointers.
39  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
40  * which will used for programming an entry into a lower EL. The same context
41  * will used to save state upon exception entry from that EL.
42  ******************************************************************************/
43 void __init cm_init(void)
44 {
45 	/*
46 	 * The context management library has only global data to intialize, but
47 	 * that will be done when the BSS is zeroed out
48 	 */
49 }
50 
51 /*******************************************************************************
52  * The following function initializes the cpu_context 'ctx' for
53  * first use, and sets the initial entrypoint state as specified by the
54  * entry_point_info structure.
55  *
56  * The security state to initialize is determined by the SECURE attribute
57  * of the entry_point_info.
58  *
59  * The EE and ST attributes are used to configure the endianness and secure
60  * timer availability for the new execution context.
61  *
62  * To prepare the register state for entry call cm_prepare_el3_exit() and
63  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
64  * cm_e1_sysreg_context_restore().
65  ******************************************************************************/
66 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
67 {
68 	unsigned int security_state;
69 	uint32_t scr_el3;
70 	el3_state_t *state;
71 	gp_regs_t *gp_regs;
72 	unsigned long sctlr_elx, actlr_elx;
73 
74 	assert(ctx != NULL);
75 
76 	security_state = GET_SECURITY_STATE(ep->h.attr);
77 
78 	/* Clear any residual register values from the context */
79 	zeromem(ctx, sizeof(*ctx));
80 
81 	/*
82 	 * SCR_EL3 was initialised during reset sequence in macro
83 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
84 	 * affect the next EL.
85 	 *
86 	 * The following fields are initially set to zero and then updated to
87 	 * the required value depending on the state of the SPSR_EL3 and the
88 	 * Security state and entrypoint attributes of the next EL.
89 	 */
90 	scr_el3 = (uint32_t)read_scr();
91 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
92 			SCR_ST_BIT | SCR_HCE_BIT);
93 	/*
94 	 * SCR_NS: Set the security state of the next EL.
95 	 */
96 	if (security_state != SECURE)
97 		scr_el3 |= SCR_NS_BIT;
98 	/*
99 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
100 	 *  Exception level as specified by SPSR.
101 	 */
102 	if (GET_RW(ep->spsr) == MODE_RW_64)
103 		scr_el3 |= SCR_RW_BIT;
104 	/*
105 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
106 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
107 	 *  by the entrypoint attributes.
108 	 */
109 	if (EP_GET_ST(ep->h.attr) != 0U)
110 		scr_el3 |= SCR_ST_BIT;
111 
112 #if !HANDLE_EA_EL3_FIRST
113 	/*
114 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
115 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
116 	 *  Aborts are taken to EL3.
117 	 */
118 	scr_el3 &= ~SCR_EA_BIT;
119 #endif
120 
121 #if FAULT_INJECTION_SUPPORT
122 	/* Enable fault injection from lower ELs */
123 	scr_el3 |= SCR_FIEN_BIT;
124 #endif
125 
126 #if !CTX_INCLUDE_PAUTH_REGS
127 	/*
128 	 * If the pointer authentication registers aren't saved during world
129 	 * switches the value of the registers can be leaked from the Secure to
130 	 * the Non-secure world. To prevent this, rather than enabling pointer
131 	 * authentication everywhere, we only enable it in the Non-secure world.
132 	 *
133 	 * If the Secure world wants to use pointer authentication,
134 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
135 	 */
136 	if (security_state == NON_SECURE)
137 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
138 #endif /* !CTX_INCLUDE_PAUTH_REGS */
139 
140 	unsigned int mte = get_armv8_5_mte_support();
141 
142 	/*
143 	 * Enable MTE support unilaterally for normal world if the CPU supports
144 	 * it.
145 	 */
146 	if (mte != MTE_UNIMPLEMENTED) {
147 		if (security_state == NON_SECURE) {
148 			scr_el3 |= SCR_ATA_BIT;
149 		}
150 	}
151 
152 #ifdef IMAGE_BL31
153 	/*
154 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
155 	 *  indicated by the interrupt routing model for BL31.
156 	 */
157 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
158 #endif
159 
160 	/*
161 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
162 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
163 	 * next mode is Hyp.
164 	 */
165 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
166 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
167 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
168 		scr_el3 |= SCR_HCE_BIT;
169 	}
170 
171 	/*
172 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
173 	 * execution state setting all fields rather than relying of the hw.
174 	 * Some fields have architecturally UNKNOWN reset values and these are
175 	 * set to zero.
176 	 *
177 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
178 	 *
179 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
180 	 *  required by PSCI specification)
181 	 */
182 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
183 	if (GET_RW(ep->spsr) == MODE_RW_64)
184 		sctlr_elx |= SCTLR_EL1_RES1;
185 	else {
186 		/*
187 		 * If the target execution state is AArch32 then the following
188 		 * fields need to be set.
189 		 *
190 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
191 		 *  instructions are not trapped to EL1.
192 		 *
193 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
194 		 *  instructions are not trapped to EL1.
195 		 *
196 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
197 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
198 		 */
199 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
200 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
201 	}
202 
203 #if ERRATA_A75_764081
204 	/*
205 	 * If workaround of errata 764081 for Cortex-A75 is used then set
206 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
207 	 */
208 	sctlr_elx |= SCTLR_IESB_BIT;
209 #endif
210 
211 	/*
212 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
213 	 * and other EL2 registers are set up by cm_prepare_ns_entry() as they
214 	 * are not part of the stored cpu_context.
215 	 */
216 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
217 
218 	/*
219 	 * Base the context ACTLR_EL1 on the current value, as it is
220 	 * implementation defined. The context restore process will write
221 	 * the value from the context to the actual register and can cause
222 	 * problems for processor cores that don't expect certain bits to
223 	 * be zero.
224 	 */
225 	actlr_elx = read_actlr_el1();
226 	write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
227 
228 	/*
229 	 * Populate EL3 state so that we've the right context
230 	 * before doing ERET
231 	 */
232 	state = get_el3state_ctx(ctx);
233 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
234 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
235 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
236 
237 	/*
238 	 * Store the X0-X7 value from the entrypoint into the context
239 	 * Use memcpy as we are in control of the layout of the structures
240 	 */
241 	gp_regs = get_gpregs_ctx(ctx);
242 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
243 }
244 
245 /*******************************************************************************
246  * Enable architecture extensions on first entry to Non-secure world.
247  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
248  * it is zero.
249  ******************************************************************************/
250 static void enable_extensions_nonsecure(bool el2_unused)
251 {
252 #if IMAGE_BL31
253 #if ENABLE_SPE_FOR_LOWER_ELS
254 	spe_enable(el2_unused);
255 #endif
256 
257 #if ENABLE_AMU
258 	amu_enable(el2_unused);
259 #endif
260 
261 #if ENABLE_SVE_FOR_NS
262 	sve_enable(el2_unused);
263 #endif
264 
265 #if ENABLE_MPAM_FOR_LOWER_ELS
266 	mpam_enable(el2_unused);
267 #endif
268 #endif
269 }
270 
271 /*******************************************************************************
272  * The following function initializes the cpu_context for a CPU specified by
273  * its `cpu_idx` for first use, and sets the initial entrypoint state as
274  * specified by the entry_point_info structure.
275  ******************************************************************************/
276 void cm_init_context_by_index(unsigned int cpu_idx,
277 			      const entry_point_info_t *ep)
278 {
279 	cpu_context_t *ctx;
280 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
281 	cm_setup_context(ctx, ep);
282 }
283 
284 /*******************************************************************************
285  * The following function initializes the cpu_context for the current CPU
286  * for first use, and sets the initial entrypoint state as specified by the
287  * entry_point_info structure.
288  ******************************************************************************/
289 void cm_init_my_context(const entry_point_info_t *ep)
290 {
291 	cpu_context_t *ctx;
292 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
293 	cm_setup_context(ctx, ep);
294 }
295 
296 /*******************************************************************************
297  * Prepare the CPU system registers for first entry into secure or normal world
298  *
299  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
300  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
301  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
302  * For all entries, the EL1 registers are initialized from the cpu_context
303  ******************************************************************************/
304 void cm_prepare_el3_exit(uint32_t security_state)
305 {
306 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
307 	cpu_context_t *ctx = cm_get_context(security_state);
308 	bool el2_unused = false;
309 	uint64_t hcr_el2 = 0U;
310 
311 	assert(ctx != NULL);
312 
313 	if (security_state == NON_SECURE) {
314 		scr_el3 = (uint32_t)read_ctx_reg(get_el3state_ctx(ctx),
315 						 CTX_SCR_EL3);
316 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
317 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
318 			sctlr_elx = (uint32_t)read_ctx_reg(get_sysregs_ctx(ctx),
319 							   CTX_SCTLR_EL1);
320 			sctlr_elx &= SCTLR_EE_BIT;
321 			sctlr_elx |= SCTLR_EL2_RES1;
322 #if ERRATA_A75_764081
323 			/*
324 			 * If workaround of errata 764081 for Cortex-A75 is used
325 			 * then set SCTLR_EL2.IESB to enable Implicit Error
326 			 * Synchronization Barrier.
327 			 */
328 			sctlr_elx |= SCTLR_IESB_BIT;
329 #endif
330 			write_sctlr_el2(sctlr_elx);
331 		} else if (el_implemented(2) != EL_IMPL_NONE) {
332 			el2_unused = true;
333 
334 			/*
335 			 * EL2 present but unused, need to disable safely.
336 			 * SCTLR_EL2 can be ignored in this case.
337 			 *
338 			 * Set EL2 register width appropriately: Set HCR_EL2
339 			 * field to match SCR_EL3.RW.
340 			 */
341 			if ((scr_el3 & SCR_RW_BIT) != 0U)
342 				hcr_el2 |= HCR_RW_BIT;
343 
344 			/*
345 			 * For Armv8.3 pointer authentication feature, disable
346 			 * traps to EL2 when accessing key registers or using
347 			 * pointer authentication instructions from lower ELs.
348 			 */
349 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
350 
351 			write_hcr_el2(hcr_el2);
352 
353 			/*
354 			 * Initialise CPTR_EL2 setting all fields rather than
355 			 * relying on the hw. All fields have architecturally
356 			 * UNKNOWN reset values.
357 			 *
358 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
359 			 *  accesses to the CPACR_EL1 or CPACR from both
360 			 *  Execution states do not trap to EL2.
361 			 *
362 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
363 			 *  register accesses to the trace registers from both
364 			 *  Execution states do not trap to EL2.
365 			 *
366 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
367 			 *  to SIMD and floating-point functionality from both
368 			 *  Execution states do not trap to EL2.
369 			 */
370 			write_cptr_el2(CPTR_EL2_RESET_VAL &
371 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
372 					| CPTR_EL2_TFP_BIT));
373 
374 			/*
375 			 * Initialise CNTHCTL_EL2. All fields are
376 			 * architecturally UNKNOWN on reset and are set to zero
377 			 * except for field(s) listed below.
378 			 *
379 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
380 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
381 			 *  physical timer registers.
382 			 *
383 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
384 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
385 			 *  physical counter registers.
386 			 */
387 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
388 						EL1PCEN_BIT | EL1PCTEN_BIT);
389 
390 			/*
391 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
392 			 * architecturally UNKNOWN value.
393 			 */
394 			write_cntvoff_el2(0);
395 
396 			/*
397 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
398 			 * MPIDR_EL1 respectively.
399 			 */
400 			write_vpidr_el2(read_midr_el1());
401 			write_vmpidr_el2(read_mpidr_el1());
402 
403 			/*
404 			 * Initialise VTTBR_EL2. All fields are architecturally
405 			 * UNKNOWN on reset.
406 			 *
407 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
408 			 *  2 address translation is disabled, cache maintenance
409 			 *  operations depend on the VMID.
410 			 *
411 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
412 			 *  translation is disabled.
413 			 */
414 			write_vttbr_el2(VTTBR_RESET_VAL &
415 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
416 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
417 
418 			/*
419 			 * Initialise MDCR_EL2, setting all fields rather than
420 			 * relying on hw. Some fields are architecturally
421 			 * UNKNOWN on reset.
422 			 *
423 			 * MDCR_EL2.HLP: Set to one so that event counter
424 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
425 			 *  occurs on the increment that changes
426 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
427 			 *  implemented. This bit is RES0 in versions of the
428 			 *  architecture earlier than ARMv8.5, setting it to 1
429 			 *  doesn't have any effect on them.
430 			 *
431 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
432 			 *  Filter Control register TRFCR_EL1 at EL1 is not
433 			 *  trapped to EL2. This bit is RES0 in versions of
434 			 *  the architecture earlier than ARMv8.4.
435 			 *
436 			 * MDCR_EL2.HPMD: Set to one so that event counting is
437 			 *  prohibited at EL2. This bit is RES0 in versions of
438 			 *  the architecture earlier than ARMv8.1, setting it
439 			 *  to 1 doesn't have any effect on them.
440 			 *
441 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
442 			 *  Statistical Profiling control registers from EL1
443 			 *  do not trap to EL2. This bit is RES0 when SPE is
444 			 *  not implemented.
445 			 *
446 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
447 			 *  EL1 System register accesses to the Debug ROM
448 			 *  registers are not trapped to EL2.
449 			 *
450 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
451 			 *  System register accesses to the powerdown debug
452 			 *  registers are not trapped to EL2.
453 			 *
454 			 * MDCR_EL2.TDA: Set to zero so that System register
455 			 *  accesses to the debug registers do not trap to EL2.
456 			 *
457 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
458 			 *  are not routed to EL2.
459 			 *
460 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
461 			 *  Monitors.
462 			 *
463 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
464 			 *  EL1 accesses to all Performance Monitors registers
465 			 *  are not trapped to EL2.
466 			 *
467 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
468 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
469 			 *  trapped to EL2.
470 			 *
471 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
472 			 *  architecturally-defined reset value.
473 			 */
474 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
475 				     MDCR_EL2_HPMD) |
476 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
477 				   >> PMCR_EL0_N_SHIFT)) &
478 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
479 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
480 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
481 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
482 				     MDCR_EL2_TPMCR_BIT);
483 
484 			write_mdcr_el2(mdcr_el2);
485 
486 			/*
487 			 * Initialise HSTR_EL2. All fields are architecturally
488 			 * UNKNOWN on reset.
489 			 *
490 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
491 			 *  Non-secure EL0 or EL1 accesses to System registers
492 			 *  do not trap to EL2.
493 			 */
494 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
495 			/*
496 			 * Initialise CNTHP_CTL_EL2. All fields are
497 			 * architecturally UNKNOWN on reset.
498 			 *
499 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
500 			 *  physical timer and prevent timer interrupts.
501 			 */
502 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
503 						~(CNTHP_CTL_ENABLE_BIT));
504 		}
505 		enable_extensions_nonsecure(el2_unused);
506 	}
507 
508 	cm_el1_sysregs_context_restore(security_state);
509 	cm_set_next_eret_context(security_state);
510 }
511 
512 /*******************************************************************************
513  * The next four functions are used by runtime services to save and restore
514  * EL1 context on the 'cpu_context' structure for the specified security
515  * state.
516  ******************************************************************************/
517 void cm_el1_sysregs_context_save(uint32_t security_state)
518 {
519 	cpu_context_t *ctx;
520 
521 	ctx = cm_get_context(security_state);
522 	assert(ctx != NULL);
523 
524 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
525 
526 #if IMAGE_BL31
527 	if (security_state == SECURE)
528 		PUBLISH_EVENT(cm_exited_secure_world);
529 	else
530 		PUBLISH_EVENT(cm_exited_normal_world);
531 #endif
532 }
533 
534 void cm_el1_sysregs_context_restore(uint32_t security_state)
535 {
536 	cpu_context_t *ctx;
537 
538 	ctx = cm_get_context(security_state);
539 	assert(ctx != NULL);
540 
541 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
542 
543 #if IMAGE_BL31
544 	if (security_state == SECURE)
545 		PUBLISH_EVENT(cm_entering_secure_world);
546 	else
547 		PUBLISH_EVENT(cm_entering_normal_world);
548 #endif
549 }
550 
551 /*******************************************************************************
552  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
553  * given security state with the given entrypoint
554  ******************************************************************************/
555 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
556 {
557 	cpu_context_t *ctx;
558 	el3_state_t *state;
559 
560 	ctx = cm_get_context(security_state);
561 	assert(ctx != NULL);
562 
563 	/* Populate EL3 state so that ERET jumps to the correct entry */
564 	state = get_el3state_ctx(ctx);
565 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
566 }
567 
568 /*******************************************************************************
569  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
570  * pertaining to the given security state
571  ******************************************************************************/
572 void cm_set_elr_spsr_el3(uint32_t security_state,
573 			uintptr_t entrypoint, uint32_t spsr)
574 {
575 	cpu_context_t *ctx;
576 	el3_state_t *state;
577 
578 	ctx = cm_get_context(security_state);
579 	assert(ctx != NULL);
580 
581 	/* Populate EL3 state so that ERET jumps to the correct entry */
582 	state = get_el3state_ctx(ctx);
583 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
584 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
585 }
586 
587 /*******************************************************************************
588  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
589  * pertaining to the given security state using the value and bit position
590  * specified in the parameters. It preserves all other bits.
591  ******************************************************************************/
592 void cm_write_scr_el3_bit(uint32_t security_state,
593 			  uint32_t bit_pos,
594 			  uint32_t value)
595 {
596 	cpu_context_t *ctx;
597 	el3_state_t *state;
598 	uint32_t scr_el3;
599 
600 	ctx = cm_get_context(security_state);
601 	assert(ctx != NULL);
602 
603 	/* Ensure that the bit position is a valid one */
604 	assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
605 
606 	/* Ensure that the 'value' is only a bit wide */
607 	assert(value <= 1U);
608 
609 	/*
610 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
611 	 * and set it to its new value.
612 	 */
613 	state = get_el3state_ctx(ctx);
614 	scr_el3 = (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
615 	scr_el3 &= ~(1U << bit_pos);
616 	scr_el3 |= value << bit_pos;
617 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
618 }
619 
620 /*******************************************************************************
621  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
622  * given security state.
623  ******************************************************************************/
624 uint32_t cm_get_scr_el3(uint32_t security_state)
625 {
626 	cpu_context_t *ctx;
627 	el3_state_t *state;
628 
629 	ctx = cm_get_context(security_state);
630 	assert(ctx != NULL);
631 
632 	/* Populate EL3 state so that ERET jumps to the correct entry */
633 	state = get_el3state_ctx(ctx);
634 	return (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
635 }
636 
637 /*******************************************************************************
638  * This function is used to program the context that's used for exception
639  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
640  * the required security state
641  ******************************************************************************/
642 void cm_set_next_eret_context(uint32_t security_state)
643 {
644 	cpu_context_t *ctx;
645 
646 	ctx = cm_get_context(security_state);
647 	assert(ctx != NULL);
648 
649 	cm_set_next_context(ctx);
650 }
651