xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision f41e23ea73dcd1cbd6a5239c611da55a3edf2dc3)
1 /*
2  * Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/pubsub_events.h>
24 #include <lib/extensions/amu.h>
25 #include <lib/extensions/brbe.h>
26 #include <lib/extensions/mpam.h>
27 #include <lib/extensions/sme.h>
28 #include <lib/extensions/spe.h>
29 #include <lib/extensions/sve.h>
30 #include <lib/extensions/sys_reg_trace.h>
31 #include <lib/extensions/trbe.h>
32 #include <lib/extensions/trf.h>
33 #include <lib/utils.h>
34 
35 #if ENABLE_FEAT_TWED
36 /* Make sure delay value fits within the range(0-15) */
37 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
38 #endif /* ENABLE_FEAT_TWED */
39 
40 static void manage_extensions_secure(cpu_context_t *ctx);
41 
42 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
43 {
44 	u_register_t sctlr_elx, actlr_elx;
45 
46 	/*
47 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
48 	 * execution state setting all fields rather than relying on the hw.
49 	 * Some fields have architecturally UNKNOWN reset values and these are
50 	 * set to zero.
51 	 *
52 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
53 	 *
54 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
55 	 * required by PSCI specification)
56 	 */
57 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
58 	if (GET_RW(ep->spsr) == MODE_RW_64) {
59 		sctlr_elx |= SCTLR_EL1_RES1;
60 	} else {
61 		/*
62 		 * If the target execution state is AArch32 then the following
63 		 * fields need to be set.
64 		 *
65 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
66 		 *  instructions are not trapped to EL1.
67 		 *
68 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
69 		 *  instructions are not trapped to EL1.
70 		 *
71 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
72 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
73 		 */
74 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
75 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
76 	}
77 
78 #if ERRATA_A75_764081
79 	/*
80 	 * If workaround of errata 764081 for Cortex-A75 is used then set
81 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
82 	 */
83 	sctlr_elx |= SCTLR_IESB_BIT;
84 #endif
85 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
86 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
87 
88 	/*
89 	 * Base the context ACTLR_EL1 on the current value, as it is
90 	 * implementation defined. The context restore process will write
91 	 * the value from the context to the actual register and can cause
92 	 * problems for processor cores that don't expect certain bits to
93 	 * be zero.
94 	 */
95 	actlr_elx = read_actlr_el1();
96 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
97 }
98 
99 /******************************************************************************
100  * This function performs initializations that are specific to SECURE state
101  * and updates the cpu context specified by 'ctx'.
102  *****************************************************************************/
103 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
104 {
105 	u_register_t scr_el3;
106 	el3_state_t *state;
107 
108 	state = get_el3state_ctx(ctx);
109 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
110 
111 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
112 	/*
113 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
114 	 * indicated by the interrupt routing model for BL31.
115 	 */
116 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
117 #endif
118 
119 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
120 	/* Get Memory Tagging Extension support level */
121 	unsigned int mte = get_armv8_5_mte_support();
122 #endif
123 	/*
124 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
125 	 * is set, or when MTE is only implemented at EL0.
126 	 */
127 #if CTX_INCLUDE_MTE_REGS
128 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
129 	scr_el3 |= SCR_ATA_BIT;
130 #else
131 	if (mte == MTE_IMPLEMENTED_EL0) {
132 		scr_el3 |= SCR_ATA_BIT;
133 	}
134 #endif /* CTX_INCLUDE_MTE_REGS */
135 
136 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
137 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_armv8_4_sel2_present()) {
138 		if (GET_RW(ep->spsr) != MODE_RW_64) {
139 			ERROR("S-EL2 can not be used in AArch32\n.");
140 			panic();
141 		}
142 
143 		scr_el3 |= SCR_EEL2_BIT;
144 	}
145 
146 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
147 
148 	/*
149 	 * Initialize EL1 context registers unless SPMC is running
150 	 * at S-EL2.
151 	 */
152 #if !SPMD_SPM_AT_SEL2
153 	setup_el1_context(ctx, ep);
154 #endif
155 
156 	manage_extensions_secure(ctx);
157 }
158 
159 #if ENABLE_RME
160 /******************************************************************************
161  * This function performs initializations that are specific to REALM state
162  * and updates the cpu context specified by 'ctx'.
163  *****************************************************************************/
164 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
165 {
166 	u_register_t scr_el3;
167 	el3_state_t *state;
168 
169 	state = get_el3state_ctx(ctx);
170 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
171 
172 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT | SCR_EnSCXT_BIT;
173 
174 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
175 }
176 #endif /* ENABLE_RME */
177 
178 /******************************************************************************
179  * This function performs initializations that are specific to NON-SECURE state
180  * and updates the cpu context specified by 'ctx'.
181  *****************************************************************************/
182 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
183 {
184 	u_register_t scr_el3;
185 	el3_state_t *state;
186 
187 	state = get_el3state_ctx(ctx);
188 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
189 
190 	/* SCR_NS: Set the NS bit */
191 	scr_el3 |= SCR_NS_BIT;
192 
193 #if !CTX_INCLUDE_PAUTH_REGS
194 	/*
195 	 * If the pointer authentication registers aren't saved during world
196 	 * switches the value of the registers can be leaked from the Secure to
197 	 * the Non-secure world. To prevent this, rather than enabling pointer
198 	 * authentication everywhere, we only enable it in the Non-secure world.
199 	 *
200 	 * If the Secure world wants to use pointer authentication,
201 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
202 	 */
203 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
204 #endif /* !CTX_INCLUDE_PAUTH_REGS */
205 
206 	/* Allow access to Allocation Tags when MTE is implemented. */
207 	scr_el3 |= SCR_ATA_BIT;
208 
209 #if HANDLE_EA_EL3_FIRST_NS
210 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
211 	scr_el3 |= SCR_EA_BIT;
212 #endif
213 
214 #if RAS_TRAP_NS_ERR_REC_ACCESS
215 	/*
216 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
217 	 * and RAS ERX registers from EL1 and EL2(from any security state)
218 	 * are trapped to EL3.
219 	 * Set here to trap only for NS EL1/EL2
220 	 *
221 	 */
222 	scr_el3 |= SCR_TERR_BIT;
223 #endif
224 
225 #ifdef IMAGE_BL31
226 	/*
227 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
228 	 *  indicated by the interrupt routing model for BL31.
229 	 */
230 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
231 #endif
232 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
233 
234 	/* Initialize EL1 context registers */
235 	setup_el1_context(ctx, ep);
236 
237 	/* Initialize EL2 context registers */
238 #if CTX_INCLUDE_EL2_REGS
239 
240 	/*
241 	 * Initialize SCTLR_EL2 context register using Endianness value
242 	 * taken from the entrypoint attribute.
243 	 */
244 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
245 	sctlr_el2 |= SCTLR_EL2_RES1;
246 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
247 			sctlr_el2);
248 
249 	/*
250 	 * Program the ICC_SRE_EL2 to make sure the correct bits are set
251 	 * when restoring NS context.
252 	 */
253 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
254 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
255 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
256 			icc_sre_el2);
257 #endif /* CTX_INCLUDE_EL2_REGS */
258 }
259 
260 /*******************************************************************************
261  * The following function performs initialization of the cpu_context 'ctx'
262  * for first use that is common to all security states, and sets the
263  * initial entrypoint state as specified by the entry_point_info structure.
264  *
265  * The EE and ST attributes are used to configure the endianness and secure
266  * timer availability for the new execution context.
267  ******************************************************************************/
268 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
269 {
270 	u_register_t scr_el3;
271 	el3_state_t *state;
272 	gp_regs_t *gp_regs;
273 
274 	/* Clear any residual register values from the context */
275 	zeromem(ctx, sizeof(*ctx));
276 
277 	/*
278 	 * SCR_EL3 was initialised during reset sequence in macro
279 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
280 	 * affect the next EL.
281 	 *
282 	 * The following fields are initially set to zero and then updated to
283 	 * the required value depending on the state of the SPSR_EL3 and the
284 	 * Security state and entrypoint attributes of the next EL.
285 	 */
286 	scr_el3 = read_scr();
287 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_EA_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
288 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
289 
290 	/*
291 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
292 	 *  Exception level as specified by SPSR.
293 	 */
294 	if (GET_RW(ep->spsr) == MODE_RW_64) {
295 		scr_el3 |= SCR_RW_BIT;
296 	}
297 
298 	/*
299 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
300 	 * Secure timer registers to EL3, from AArch64 state only, if specified
301 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
302 	 * bit always behaves as 1 (i.e. secure physical timer register access
303 	 * is not trapped)
304 	 */
305 	if (EP_GET_ST(ep->h.attr) != 0U) {
306 		scr_el3 |= SCR_ST_BIT;
307 	}
308 
309 	/*
310 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
311 	 * SCR_EL3.HXEn.
312 	 */
313 #if ENABLE_FEAT_HCX
314 	scr_el3 |= SCR_HXEn_BIT;
315 #endif
316 
317 	/*
318 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
319 	 * registers are trapped to EL3.
320 	 */
321 #if ENABLE_FEAT_RNG_TRAP
322 	scr_el3 |= SCR_TRNDR_BIT;
323 #endif
324 
325 #if FAULT_INJECTION_SUPPORT
326 	/* Enable fault injection from lower ELs */
327 	scr_el3 |= SCR_FIEN_BIT;
328 #endif
329 
330 	/*
331 	 * CPTR_EL3 was initialized out of reset, copy that value to the
332 	 * context register.
333 	 */
334 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
335 
336 	/*
337 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
338 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
339 	 * next mode is Hyp.
340 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
341 	 * same conditions as HVC instructions and when the processor supports
342 	 * ARMv8.6-FGT.
343 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
344 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
345 	 * and when the processor supports ECV.
346 	 */
347 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
348 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
349 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
350 		scr_el3 |= SCR_HCE_BIT;
351 
352 		if (is_armv8_6_fgt_present()) {
353 			scr_el3 |= SCR_FGTEN_BIT;
354 		}
355 
356 		if (get_armv8_6_ecv_support()
357 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
358 			scr_el3 |= SCR_ECVEN_BIT;
359 		}
360 	}
361 
362 #if ENABLE_FEAT_TWED
363 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
364 	/* Set delay in SCR_EL3 */
365 	scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
366 	scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
367 			<< SCR_TWEDEL_SHIFT);
368 
369 	/* Enable WFE delay */
370 	scr_el3 |= SCR_TWEDEn_BIT;
371 #endif /* ENABLE_FEAT_TWED */
372 
373 	/*
374 	 * Populate EL3 state so that we've the right context
375 	 * before doing ERET
376 	 */
377 	state = get_el3state_ctx(ctx);
378 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
379 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
380 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
381 
382 	/*
383 	 * Store the X0-X7 value from the entrypoint into the context
384 	 * Use memcpy as we are in control of the layout of the structures
385 	 */
386 	gp_regs = get_gpregs_ctx(ctx);
387 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
388 }
389 
390 /*******************************************************************************
391  * Context management library initialization routine. This library is used by
392  * runtime services to share pointers to 'cpu_context' structures for secure
393  * non-secure and realm states. Management of the structures and their associated
394  * memory is not done by the context management library e.g. the PSCI service
395  * manages the cpu context used for entry from and exit to the non-secure state.
396  * The Secure payload dispatcher service manages the context(s) corresponding to
397  * the secure state. It also uses this library to get access to the non-secure
398  * state cpu context pointers.
399  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
400  * which will be used for programming an entry into a lower EL. The same context
401  * will be used to save state upon exception entry from that EL.
402  ******************************************************************************/
403 void __init cm_init(void)
404 {
405 	/*
406 	 * The context management library has only global data to intialize, but
407 	 * that will be done when the BSS is zeroed out.
408 	 */
409 }
410 
411 /*******************************************************************************
412  * This is the high-level function used to initialize the cpu_context 'ctx' for
413  * first use. It performs initializations that are common to all security states
414  * and initializations specific to the security state specified in 'ep'
415  ******************************************************************************/
416 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
417 {
418 	unsigned int security_state;
419 
420 	assert(ctx != NULL);
421 
422 	/*
423 	 * Perform initializations that are common
424 	 * to all security states
425 	 */
426 	setup_context_common(ctx, ep);
427 
428 	security_state = GET_SECURITY_STATE(ep->h.attr);
429 
430 	/* Perform security state specific initializations */
431 	switch (security_state) {
432 	case SECURE:
433 		setup_secure_context(ctx, ep);
434 		break;
435 #if ENABLE_RME
436 	case REALM:
437 		setup_realm_context(ctx, ep);
438 		break;
439 #endif
440 	case NON_SECURE:
441 		setup_ns_context(ctx, ep);
442 		break;
443 	default:
444 		ERROR("Invalid security state\n");
445 		panic();
446 		break;
447 	}
448 }
449 
450 /*******************************************************************************
451  * Enable architecture extensions on first entry to Non-secure world.
452  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
453  * it is zero.
454  ******************************************************************************/
455 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
456 {
457 #if IMAGE_BL31
458 #if ENABLE_SPE_FOR_LOWER_ELS
459 	spe_enable(el2_unused);
460 #endif
461 
462 #if ENABLE_AMU
463 	amu_enable(el2_unused, ctx);
464 #endif
465 
466 #if ENABLE_SME_FOR_NS
467 	/* Enable SME, SVE, and FPU/SIMD for non-secure world. */
468 	sme_enable(ctx);
469 #elif ENABLE_SVE_FOR_NS
470 	/* Enable SVE and FPU/SIMD for non-secure world. */
471 	sve_enable(ctx);
472 #endif
473 
474 #if ENABLE_MPAM_FOR_LOWER_ELS
475 	mpam_enable(el2_unused);
476 #endif
477 
478 #if ENABLE_TRBE_FOR_NS
479 	trbe_enable();
480 #endif /* ENABLE_TRBE_FOR_NS */
481 
482 #if ENABLE_BRBE_FOR_NS
483 	brbe_enable();
484 #endif /* ENABLE_BRBE_FOR_NS */
485 
486 #if ENABLE_SYS_REG_TRACE_FOR_NS
487 	sys_reg_trace_enable(ctx);
488 #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */
489 
490 #if ENABLE_TRF_FOR_NS
491 	trf_enable();
492 #endif /* ENABLE_TRF_FOR_NS */
493 #endif
494 }
495 
496 /*******************************************************************************
497  * Enable architecture extensions on first entry to Secure world.
498  ******************************************************************************/
499 static void manage_extensions_secure(cpu_context_t *ctx)
500 {
501 #if IMAGE_BL31
502  #if ENABLE_SME_FOR_NS
503   #if ENABLE_SME_FOR_SWD
504 	/*
505 	 * Enable SME, SVE, FPU/SIMD in secure context, secure manager must
506 	 * ensure SME, SVE, and FPU/SIMD context properly managed.
507 	 */
508 	sme_enable(ctx);
509   #else /* ENABLE_SME_FOR_SWD */
510 	/*
511 	 * Disable SME, SVE, FPU/SIMD in secure context so non-secure world can
512 	 * safely use the associated registers.
513 	 */
514 	sme_disable(ctx);
515   #endif /* ENABLE_SME_FOR_SWD */
516  #elif ENABLE_SVE_FOR_NS
517   #if ENABLE_SVE_FOR_SWD
518 	/*
519 	 * Enable SVE and FPU in secure context, secure manager must ensure that
520 	 * the SVE and FPU register contexts are properly managed.
521 	 */
522 	sve_enable(ctx);
523  #else /* ENABLE_SVE_FOR_SWD */
524 	/*
525 	 * Disable SVE and FPU in secure context so non-secure world can safely
526 	 * use them.
527 	 */
528 	sve_disable(ctx);
529   #endif /* ENABLE_SVE_FOR_SWD */
530  #endif /* ENABLE_SVE_FOR_NS */
531 #endif /* IMAGE_BL31 */
532 }
533 
534 /*******************************************************************************
535  * The following function initializes the cpu_context for a CPU specified by
536  * its `cpu_idx` for first use, and sets the initial entrypoint state as
537  * specified by the entry_point_info structure.
538  ******************************************************************************/
539 void cm_init_context_by_index(unsigned int cpu_idx,
540 			      const entry_point_info_t *ep)
541 {
542 	cpu_context_t *ctx;
543 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
544 	cm_setup_context(ctx, ep);
545 }
546 
547 /*******************************************************************************
548  * The following function initializes the cpu_context for the current CPU
549  * for first use, and sets the initial entrypoint state as specified by the
550  * entry_point_info structure.
551  ******************************************************************************/
552 void cm_init_my_context(const entry_point_info_t *ep)
553 {
554 	cpu_context_t *ctx;
555 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
556 	cm_setup_context(ctx, ep);
557 }
558 
559 /*******************************************************************************
560  * Prepare the CPU system registers for first entry into realm, secure, or
561  * normal world.
562  *
563  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
564  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
565  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
566  * For all entries, the EL1 registers are initialized from the cpu_context
567  ******************************************************************************/
568 void cm_prepare_el3_exit(uint32_t security_state)
569 {
570 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
571 	cpu_context_t *ctx = cm_get_context(security_state);
572 	bool el2_unused = false;
573 	uint64_t hcr_el2 = 0U;
574 
575 	assert(ctx != NULL);
576 
577 	if (security_state == NON_SECURE) {
578 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
579 						 CTX_SCR_EL3);
580 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
581 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
582 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
583 							   CTX_SCTLR_EL1);
584 			sctlr_elx &= SCTLR_EE_BIT;
585 			sctlr_elx |= SCTLR_EL2_RES1;
586 #if ERRATA_A75_764081
587 			/*
588 			 * If workaround of errata 764081 for Cortex-A75 is used
589 			 * then set SCTLR_EL2.IESB to enable Implicit Error
590 			 * Synchronization Barrier.
591 			 */
592 			sctlr_elx |= SCTLR_IESB_BIT;
593 #endif
594 			write_sctlr_el2(sctlr_elx);
595 		} else if (el_implemented(2) != EL_IMPL_NONE) {
596 			el2_unused = true;
597 
598 			/*
599 			 * EL2 present but unused, need to disable safely.
600 			 * SCTLR_EL2 can be ignored in this case.
601 			 *
602 			 * Set EL2 register width appropriately: Set HCR_EL2
603 			 * field to match SCR_EL3.RW.
604 			 */
605 			if ((scr_el3 & SCR_RW_BIT) != 0U)
606 				hcr_el2 |= HCR_RW_BIT;
607 
608 			/*
609 			 * For Armv8.3 pointer authentication feature, disable
610 			 * traps to EL2 when accessing key registers or using
611 			 * pointer authentication instructions from lower ELs.
612 			 */
613 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
614 
615 			write_hcr_el2(hcr_el2);
616 
617 			/*
618 			 * Initialise CPTR_EL2 setting all fields rather than
619 			 * relying on the hw. All fields have architecturally
620 			 * UNKNOWN reset values.
621 			 *
622 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
623 			 *  accesses to the CPACR_EL1 or CPACR from both
624 			 *  Execution states do not trap to EL2.
625 			 *
626 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
627 			 *  register accesses to the trace registers from both
628 			 *  Execution states do not trap to EL2.
629 			 *  If PE trace unit System registers are not implemented
630 			 *  then this bit is reserved, and must be set to zero.
631 			 *
632 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
633 			 *  to SIMD and floating-point functionality from both
634 			 *  Execution states do not trap to EL2.
635 			 */
636 			write_cptr_el2(CPTR_EL2_RESET_VAL &
637 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
638 					| CPTR_EL2_TFP_BIT));
639 
640 			/*
641 			 * Initialise CNTHCTL_EL2. All fields are
642 			 * architecturally UNKNOWN on reset and are set to zero
643 			 * except for field(s) listed below.
644 			 *
645 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
646 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
647 			 *  physical timer registers.
648 			 *
649 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
650 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
651 			 *  physical counter registers.
652 			 */
653 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
654 						EL1PCEN_BIT | EL1PCTEN_BIT);
655 
656 			/*
657 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
658 			 * architecturally UNKNOWN value.
659 			 */
660 			write_cntvoff_el2(0);
661 
662 			/*
663 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
664 			 * MPIDR_EL1 respectively.
665 			 */
666 			write_vpidr_el2(read_midr_el1());
667 			write_vmpidr_el2(read_mpidr_el1());
668 
669 			/*
670 			 * Initialise VTTBR_EL2. All fields are architecturally
671 			 * UNKNOWN on reset.
672 			 *
673 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
674 			 *  2 address translation is disabled, cache maintenance
675 			 *  operations depend on the VMID.
676 			 *
677 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
678 			 *  translation is disabled.
679 			 */
680 			write_vttbr_el2(VTTBR_RESET_VAL &
681 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
682 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
683 
684 			/*
685 			 * Initialise MDCR_EL2, setting all fields rather than
686 			 * relying on hw. Some fields are architecturally
687 			 * UNKNOWN on reset.
688 			 *
689 			 * MDCR_EL2.HLP: Set to one so that event counter
690 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
691 			 *  occurs on the increment that changes
692 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
693 			 *  implemented. This bit is RES0 in versions of the
694 			 *  architecture earlier than ARMv8.5, setting it to 1
695 			 *  doesn't have any effect on them.
696 			 *
697 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
698 			 *  Filter Control register TRFCR_EL1 at EL1 is not
699 			 *  trapped to EL2. This bit is RES0 in versions of
700 			 *  the architecture earlier than ARMv8.4.
701 			 *
702 			 * MDCR_EL2.HPMD: Set to one so that event counting is
703 			 *  prohibited at EL2. This bit is RES0 in versions of
704 			 *  the architecture earlier than ARMv8.1, setting it
705 			 *  to 1 doesn't have any effect on them.
706 			 *
707 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
708 			 *  Statistical Profiling control registers from EL1
709 			 *  do not trap to EL2. This bit is RES0 when SPE is
710 			 *  not implemented.
711 			 *
712 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
713 			 *  EL1 System register accesses to the Debug ROM
714 			 *  registers are not trapped to EL2.
715 			 *
716 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
717 			 *  System register accesses to the powerdown debug
718 			 *  registers are not trapped to EL2.
719 			 *
720 			 * MDCR_EL2.TDA: Set to zero so that System register
721 			 *  accesses to the debug registers do not trap to EL2.
722 			 *
723 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
724 			 *  are not routed to EL2.
725 			 *
726 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
727 			 *  Monitors.
728 			 *
729 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
730 			 *  EL1 accesses to all Performance Monitors registers
731 			 *  are not trapped to EL2.
732 			 *
733 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
734 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
735 			 *  trapped to EL2.
736 			 *
737 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
738 			 *  architecturally-defined reset value.
739 			 *
740 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
741 			 *  owning exception level is NS-EL1 and, tracing is
742 			 *  prohibited at NS-EL2. These bits are RES0 when
743 			 *  FEAT_TRBE is not implemented.
744 			 */
745 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
746 				     MDCR_EL2_HPMD) |
747 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
748 				   >> PMCR_EL0_N_SHIFT)) &
749 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
750 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
751 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
752 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
753 				     MDCR_EL2_TPMCR_BIT |
754 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
755 
756 			write_mdcr_el2(mdcr_el2);
757 
758 			/*
759 			 * Initialise HSTR_EL2. All fields are architecturally
760 			 * UNKNOWN on reset.
761 			 *
762 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
763 			 *  Non-secure EL0 or EL1 accesses to System registers
764 			 *  do not trap to EL2.
765 			 */
766 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
767 			/*
768 			 * Initialise CNTHP_CTL_EL2. All fields are
769 			 * architecturally UNKNOWN on reset.
770 			 *
771 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
772 			 *  physical timer and prevent timer interrupts.
773 			 */
774 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
775 						~(CNTHP_CTL_ENABLE_BIT));
776 		}
777 		manage_extensions_nonsecure(el2_unused, ctx);
778 	}
779 
780 	cm_el1_sysregs_context_restore(security_state);
781 	cm_set_next_eret_context(security_state);
782 }
783 
784 #if CTX_INCLUDE_EL2_REGS
785 /*******************************************************************************
786  * Save EL2 sysreg context
787  ******************************************************************************/
788 void cm_el2_sysregs_context_save(uint32_t security_state)
789 {
790 	u_register_t scr_el3 = read_scr();
791 
792 	/*
793 	 * Always save the non-secure and realm EL2 context, only save the
794 	 * S-EL2 context if S-EL2 is enabled.
795 	 */
796 	if ((security_state != SECURE) ||
797 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
798 		cpu_context_t *ctx;
799 		el2_sysregs_t *el2_sysregs_ctx;
800 
801 		ctx = cm_get_context(security_state);
802 		assert(ctx != NULL);
803 
804 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
805 
806 		el2_sysregs_context_save_common(el2_sysregs_ctx);
807 #if ENABLE_SPE_FOR_LOWER_ELS
808 		el2_sysregs_context_save_spe(el2_sysregs_ctx);
809 #endif
810 #if CTX_INCLUDE_MTE_REGS
811 		el2_sysregs_context_save_mte(el2_sysregs_ctx);
812 #endif
813 #if ENABLE_MPAM_FOR_LOWER_ELS
814 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
815 #endif
816 #if ENABLE_FEAT_FGT
817 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
818 #endif
819 #if ENABLE_FEAT_ECV
820 		el2_sysregs_context_save_ecv(el2_sysregs_ctx);
821 #endif
822 #if ENABLE_FEAT_VHE
823 		el2_sysregs_context_save_vhe(el2_sysregs_ctx);
824 #endif
825 #if RAS_EXTENSION
826 		el2_sysregs_context_save_ras(el2_sysregs_ctx);
827 #endif
828 #if CTX_INCLUDE_NEVE_REGS
829 		el2_sysregs_context_save_nv2(el2_sysregs_ctx);
830 #endif
831 #if ENABLE_TRF_FOR_NS
832 		el2_sysregs_context_save_trf(el2_sysregs_ctx);
833 #endif
834 #if ENABLE_FEAT_CSV2_2
835 		el2_sysregs_context_save_csv2(el2_sysregs_ctx);
836 #endif
837 #if ENABLE_FEAT_HCX
838 		el2_sysregs_context_save_hcx(el2_sysregs_ctx);
839 #endif
840 	}
841 }
842 
843 /*******************************************************************************
844  * Restore EL2 sysreg context
845  ******************************************************************************/
846 void cm_el2_sysregs_context_restore(uint32_t security_state)
847 {
848 	u_register_t scr_el3 = read_scr();
849 
850 	/*
851 	 * Always restore the non-secure and realm EL2 context, only restore the
852 	 * S-EL2 context if S-EL2 is enabled.
853 	 */
854 	if ((security_state != SECURE) ||
855 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
856 		cpu_context_t *ctx;
857 		el2_sysregs_t *el2_sysregs_ctx;
858 
859 		ctx = cm_get_context(security_state);
860 		assert(ctx != NULL);
861 
862 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
863 
864 		el2_sysregs_context_restore_common(el2_sysregs_ctx);
865 #if ENABLE_SPE_FOR_LOWER_ELS
866 		el2_sysregs_context_restore_spe(el2_sysregs_ctx);
867 #endif
868 #if CTX_INCLUDE_MTE_REGS
869 		el2_sysregs_context_restore_mte(el2_sysregs_ctx);
870 #endif
871 #if ENABLE_MPAM_FOR_LOWER_ELS
872 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
873 #endif
874 #if ENABLE_FEAT_FGT
875 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
876 #endif
877 #if ENABLE_FEAT_ECV
878 		el2_sysregs_context_restore_ecv(el2_sysregs_ctx);
879 #endif
880 #if ENABLE_FEAT_VHE
881 		el2_sysregs_context_restore_vhe(el2_sysregs_ctx);
882 #endif
883 #if RAS_EXTENSION
884 		el2_sysregs_context_restore_ras(el2_sysregs_ctx);
885 #endif
886 #if CTX_INCLUDE_NEVE_REGS
887 		el2_sysregs_context_restore_nv2(el2_sysregs_ctx);
888 #endif
889 #if ENABLE_TRF_FOR_NS
890 		el2_sysregs_context_restore_trf(el2_sysregs_ctx);
891 #endif
892 #if ENABLE_FEAT_CSV2_2
893 		el2_sysregs_context_restore_csv2(el2_sysregs_ctx);
894 #endif
895 #if ENABLE_FEAT_HCX
896 		el2_sysregs_context_restore_hcx(el2_sysregs_ctx);
897 #endif
898 	}
899 }
900 #endif /* CTX_INCLUDE_EL2_REGS */
901 
902 /*******************************************************************************
903  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
904  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
905  * updating EL1 and EL2 registers. Otherwise, it calls the generic
906  * cm_prepare_el3_exit function.
907  ******************************************************************************/
908 void cm_prepare_el3_exit_ns(void)
909 {
910 #if CTX_INCLUDE_EL2_REGS
911 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
912 	assert(ctx != NULL);
913 
914 	/* Assert that EL2 is used. */
915 #if ENABLE_ASSERTIONS
916 	el3_state_t *state = get_el3state_ctx(ctx);
917 	u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
918 #endif
919 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
920 			(el_implemented(2U) != EL_IMPL_NONE));
921 
922 	/*
923 	 * Currently some extensions are configured using
924 	 * direct register updates. Therefore, do this here
925 	 * instead of when setting up context.
926 	 */
927 	manage_extensions_nonsecure(0, ctx);
928 
929 	/*
930 	 * Set the NS bit to be able to access the ICC_SRE_EL2
931 	 * register when restoring context.
932 	 */
933 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
934 
935 	/*
936 	 * Ensure the NS bit change is committed before the EL2/EL1
937 	 * state restoration.
938 	 */
939 	isb();
940 
941 	/* Restore EL2 and EL1 sysreg contexts */
942 	cm_el2_sysregs_context_restore(NON_SECURE);
943 	cm_el1_sysregs_context_restore(NON_SECURE);
944 	cm_set_next_eret_context(NON_SECURE);
945 #else
946 	cm_prepare_el3_exit(NON_SECURE);
947 #endif /* CTX_INCLUDE_EL2_REGS */
948 }
949 
950 /*******************************************************************************
951  * The next four functions are used by runtime services to save and restore
952  * EL1 context on the 'cpu_context' structure for the specified security
953  * state.
954  ******************************************************************************/
955 void cm_el1_sysregs_context_save(uint32_t security_state)
956 {
957 	cpu_context_t *ctx;
958 
959 	ctx = cm_get_context(security_state);
960 	assert(ctx != NULL);
961 
962 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
963 
964 #if IMAGE_BL31
965 	if (security_state == SECURE)
966 		PUBLISH_EVENT(cm_exited_secure_world);
967 	else
968 		PUBLISH_EVENT(cm_exited_normal_world);
969 #endif
970 }
971 
972 void cm_el1_sysregs_context_restore(uint32_t security_state)
973 {
974 	cpu_context_t *ctx;
975 
976 	ctx = cm_get_context(security_state);
977 	assert(ctx != NULL);
978 
979 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
980 
981 #if IMAGE_BL31
982 	if (security_state == SECURE)
983 		PUBLISH_EVENT(cm_entering_secure_world);
984 	else
985 		PUBLISH_EVENT(cm_entering_normal_world);
986 #endif
987 }
988 
989 /*******************************************************************************
990  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
991  * given security state with the given entrypoint
992  ******************************************************************************/
993 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
994 {
995 	cpu_context_t *ctx;
996 	el3_state_t *state;
997 
998 	ctx = cm_get_context(security_state);
999 	assert(ctx != NULL);
1000 
1001 	/* Populate EL3 state so that ERET jumps to the correct entry */
1002 	state = get_el3state_ctx(ctx);
1003 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1004 }
1005 
1006 /*******************************************************************************
1007  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1008  * pertaining to the given security state
1009  ******************************************************************************/
1010 void cm_set_elr_spsr_el3(uint32_t security_state,
1011 			uintptr_t entrypoint, uint32_t spsr)
1012 {
1013 	cpu_context_t *ctx;
1014 	el3_state_t *state;
1015 
1016 	ctx = cm_get_context(security_state);
1017 	assert(ctx != NULL);
1018 
1019 	/* Populate EL3 state so that ERET jumps to the correct entry */
1020 	state = get_el3state_ctx(ctx);
1021 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1022 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1023 }
1024 
1025 /*******************************************************************************
1026  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1027  * pertaining to the given security state using the value and bit position
1028  * specified in the parameters. It preserves all other bits.
1029  ******************************************************************************/
1030 void cm_write_scr_el3_bit(uint32_t security_state,
1031 			  uint32_t bit_pos,
1032 			  uint32_t value)
1033 {
1034 	cpu_context_t *ctx;
1035 	el3_state_t *state;
1036 	u_register_t scr_el3;
1037 
1038 	ctx = cm_get_context(security_state);
1039 	assert(ctx != NULL);
1040 
1041 	/* Ensure that the bit position is a valid one */
1042 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1043 
1044 	/* Ensure that the 'value' is only a bit wide */
1045 	assert(value <= 1U);
1046 
1047 	/*
1048 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1049 	 * and set it to its new value.
1050 	 */
1051 	state = get_el3state_ctx(ctx);
1052 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1053 	scr_el3 &= ~(1UL << bit_pos);
1054 	scr_el3 |= (u_register_t)value << bit_pos;
1055 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1056 }
1057 
1058 /*******************************************************************************
1059  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1060  * given security state.
1061  ******************************************************************************/
1062 u_register_t cm_get_scr_el3(uint32_t security_state)
1063 {
1064 	cpu_context_t *ctx;
1065 	el3_state_t *state;
1066 
1067 	ctx = cm_get_context(security_state);
1068 	assert(ctx != NULL);
1069 
1070 	/* Populate EL3 state so that ERET jumps to the correct entry */
1071 	state = get_el3state_ctx(ctx);
1072 	return read_ctx_reg(state, CTX_SCR_EL3);
1073 }
1074 
1075 /*******************************************************************************
1076  * This function is used to program the context that's used for exception
1077  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1078  * the required security state
1079  ******************************************************************************/
1080 void cm_set_next_eret_context(uint32_t security_state)
1081 {
1082 	cpu_context_t *ctx;
1083 
1084 	ctx = cm_get_context(security_state);
1085 	assert(ctx != NULL);
1086 
1087 	cm_set_next_context(ctx);
1088 }
1089