xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision f05b4894acfb681017bfda71fb16e6079a4f6a43)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/fpmr.h>
32 #include <lib/extensions/mpam.h>
33 #include <lib/extensions/pauth.h>
34 #include <lib/extensions/pmuv3.h>
35 #include <lib/extensions/sme.h>
36 #include <lib/extensions/spe.h>
37 #include <lib/extensions/sve.h>
38 #include <lib/extensions/sysreg128.h>
39 #include <lib/extensions/sys_reg_trace.h>
40 #include <lib/extensions/tcr2.h>
41 #include <lib/extensions/trbe.h>
42 #include <lib/extensions/trf.h>
43 #include <lib/utils.h>
44 
45 #if ENABLE_FEAT_TWED
46 /* Make sure delay value fits within the range(0-15) */
47 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
48 #endif /* ENABLE_FEAT_TWED */
49 
50 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
51 
52 static void manage_extensions_nonsecure(cpu_context_t *ctx);
53 static void manage_extensions_secure(cpu_context_t *ctx);
54 
55 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
56 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
57 {
58 	u_register_t sctlr_elx, actlr_elx;
59 
60 	/*
61 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
62 	 * execution state setting all fields rather than relying on the hw.
63 	 * Some fields have architecturally UNKNOWN reset values and these are
64 	 * set to zero.
65 	 *
66 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
67 	 *
68 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
69 	 * required by PSCI specification)
70 	 */
71 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
72 	if (GET_RW(ep->spsr) == MODE_RW_64) {
73 		sctlr_elx |= SCTLR_EL1_RES1;
74 	} else {
75 		/*
76 		 * If the target execution state is AArch32 then the following
77 		 * fields need to be set.
78 		 *
79 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
80 		 *  instructions are not trapped to EL1.
81 		 *
82 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
83 		 *  instructions are not trapped to EL1.
84 		 *
85 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
86 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
87 		 */
88 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
89 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
90 	}
91 
92 	/*
93 	 * If workaround of errata 764081 for Cortex-A75 is used then set
94 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
95 	 */
96 	if (errata_a75_764081_applies()) {
97 		sctlr_elx |= SCTLR_IESB_BIT;
98 	}
99 
100 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
101 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
102 
103 	/*
104 	 * Base the context ACTLR_EL1 on the current value, as it is
105 	 * implementation defined. The context restore process will write
106 	 * the value from the context to the actual register and can cause
107 	 * problems for processor cores that don't expect certain bits to
108 	 * be zero.
109 	 */
110 	actlr_elx = read_actlr_el1();
111 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
112 }
113 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
114 
115 /******************************************************************************
116  * This function performs initializations that are specific to SECURE state
117  * and updates the cpu context specified by 'ctx'.
118  *****************************************************************************/
119 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
120 {
121 	u_register_t scr_el3;
122 	el3_state_t *state;
123 
124 	state = get_el3state_ctx(ctx);
125 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
126 
127 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
128 	/*
129 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
130 	 * indicated by the interrupt routing model for BL31.
131 	 */
132 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
133 #endif
134 
135 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
136 	if (is_feat_mte2_supported()) {
137 		scr_el3 |= SCR_ATA_BIT;
138 	}
139 
140 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
141 
142 	/*
143 	 * Initialize EL1 context registers unless SPMC is running
144 	 * at S-EL2.
145 	 */
146 #if (!SPMD_SPM_AT_SEL2)
147 	setup_el1_context(ctx, ep);
148 #endif
149 
150 	manage_extensions_secure(ctx);
151 }
152 
153 #if ENABLE_RME
154 /******************************************************************************
155  * This function performs initializations that are specific to REALM state
156  * and updates the cpu context specified by 'ctx'.
157  *****************************************************************************/
158 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
159 {
160 	u_register_t scr_el3;
161 	el3_state_t *state;
162 
163 	state = get_el3state_ctx(ctx);
164 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
165 
166 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
167 
168 	/* CSV2 version 2 and above */
169 	if (is_feat_csv2_2_supported()) {
170 		/* Enable access to the SCXTNUM_ELx registers. */
171 		scr_el3 |= SCR_EnSCXT_BIT;
172 	}
173 
174 	if (is_feat_sctlr2_supported()) {
175 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
176 		 * SCTLR2_ELx registers.
177 		 */
178 		scr_el3 |= SCR_SCTLR2En_BIT;
179 	}
180 
181 	if (is_feat_d128_supported()) {
182 		/*
183 		 * Set the D128En bit in SCR_EL3 to enable access to 128-bit
184 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
185 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
186 		 */
187 		scr_el3 |= SCR_D128En_BIT;
188 	}
189 
190 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
191 
192 	if (is_feat_fgt2_supported()) {
193 		fgt2_enable(ctx);
194 	}
195 
196 	if (is_feat_debugv8p9_supported()) {
197 		debugv8p9_extended_bp_wp_enable(ctx);
198 	}
199 
200 	if (is_feat_brbe_supported()) {
201 		brbe_enable(ctx);
202 	}
203 
204 }
205 #endif /* ENABLE_RME */
206 
207 /******************************************************************************
208  * This function performs initializations that are specific to NON-SECURE state
209  * and updates the cpu context specified by 'ctx'.
210  *****************************************************************************/
211 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
212 {
213 	u_register_t scr_el3;
214 	el3_state_t *state;
215 
216 	state = get_el3state_ctx(ctx);
217 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
218 
219 	/* SCR_NS: Set the NS bit */
220 	scr_el3 |= SCR_NS_BIT;
221 
222 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
223 	if (is_feat_mte2_supported()) {
224 		scr_el3 |= SCR_ATA_BIT;
225 	}
226 
227 	/*
228 	 * Pointer Authentication feature, if present, is always enabled by
229 	 * default for Non secure lower exception levels. We do not have an
230 	 * explicit flag to set it. To prevent the leakage between the worlds
231 	 * during world switch, we enable it only for the non-secure world.
232 	 *
233 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
234 	 * exception levels of secure and realm worlds.
235 	 *
236 	 * If the Secure/realm world wants to use pointer authentication,
237 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
238 	 * it will be enabled globally for all the contexts.
239 	 *
240 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
241 	 *  other than EL3
242 	 *
243 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
244 	 *  than EL3
245 	 */
246 	if (!is_ctx_pauth_supported()) {
247 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
248 	}
249 
250 #if HANDLE_EA_EL3_FIRST_NS
251 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
252 	scr_el3 |= SCR_EA_BIT;
253 #endif
254 
255 #if RAS_TRAP_NS_ERR_REC_ACCESS
256 	/*
257 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
258 	 * and RAS ERX registers from EL1 and EL2(from any security state)
259 	 * are trapped to EL3.
260 	 * Set here to trap only for NS EL1/EL2
261 	 */
262 	scr_el3 |= SCR_TERR_BIT;
263 #endif
264 
265 	/* CSV2 version 2 and above */
266 	if (is_feat_csv2_2_supported()) {
267 		/* Enable access to the SCXTNUM_ELx registers. */
268 		scr_el3 |= SCR_EnSCXT_BIT;
269 	}
270 
271 #ifdef IMAGE_BL31
272 	/*
273 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
274 	 *  indicated by the interrupt routing model for BL31.
275 	 */
276 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
277 #endif
278 
279 	if (is_feat_the_supported()) {
280 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
281 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
282 		 */
283 		scr_el3 |= SCR_RCWMASKEn_BIT;
284 	}
285 
286 	if (is_feat_sctlr2_supported()) {
287 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
288 		 * SCTLR2_ELx registers.
289 		 */
290 		scr_el3 |= SCR_SCTLR2En_BIT;
291 	}
292 
293 	if (is_feat_d128_supported()) {
294 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
295 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
296 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
297 		 */
298 		scr_el3 |= SCR_D128En_BIT;
299 	}
300 
301 	if (is_feat_fpmr_supported()) {
302 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
303 		 * register.
304 		 */
305 		scr_el3 |= SCR_EnFPM_BIT;
306 	}
307 
308 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
309 
310 	/* Initialize EL2 context registers */
311 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
312 
313 	/*
314 	 * Initialize SCTLR_EL2 context register with reset value.
315 	 */
316 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
317 
318 	if (is_feat_hcx_supported()) {
319 		/*
320 		 * Initialize register HCRX_EL2 with its init value.
321 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
322 		 * chance that this can lead to unexpected behavior in lower
323 		 * ELs that have not been updated since the introduction of
324 		 * this feature if not properly initialized, especially when
325 		 * it comes to those bits that enable/disable traps.
326 		 */
327 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
328 			HCRX_EL2_INIT_VAL);
329 	}
330 
331 	if (is_feat_fgt_supported()) {
332 		/*
333 		 * Initialize HFG*_EL2 registers with a default value so legacy
334 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
335 		 * of initialization for this feature.
336 		 */
337 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
338 			HFGITR_EL2_INIT_VAL);
339 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
340 			HFGRTR_EL2_INIT_VAL);
341 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
342 			HFGWTR_EL2_INIT_VAL);
343 	}
344 #else
345 	/* Initialize EL1 context registers */
346 	setup_el1_context(ctx, ep);
347 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
348 
349 	manage_extensions_nonsecure(ctx);
350 }
351 
352 /*******************************************************************************
353  * The following function performs initialization of the cpu_context 'ctx'
354  * for first use that is common to all security states, and sets the
355  * initial entrypoint state as specified by the entry_point_info structure.
356  *
357  * The EE and ST attributes are used to configure the endianness and secure
358  * timer availability for the new execution context.
359  ******************************************************************************/
360 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
361 {
362 	u_register_t scr_el3;
363 	u_register_t mdcr_el3;
364 	el3_state_t *state;
365 	gp_regs_t *gp_regs;
366 
367 	state = get_el3state_ctx(ctx);
368 
369 	/* Clear any residual register values from the context */
370 	zeromem(ctx, sizeof(*ctx));
371 
372 	/*
373 	 * The lower-EL context is zeroed so that no stale values leak to a world.
374 	 * It is assumed that an all-zero lower-EL context is good enough for it
375 	 * to boot correctly. However, there are very few registers where this
376 	 * is not true and some values need to be recreated.
377 	 */
378 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
379 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
380 
381 	/*
382 	 * These bits are set in the gicv3 driver. Losing them (especially the
383 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
384 	 */
385 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
386 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
387 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
388 
389 	/*
390 	 * The actlr_el2 register can be initialized in platform's reset handler
391 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
392 	 */
393 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
394 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
395 
396 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
397 	scr_el3 = SCR_RESET_VAL;
398 
399 	/*
400 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
401 	 *  EL2, EL1 and EL0 are not trapped to EL3.
402 	 *
403 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
404 	 *  EL2, EL1 and EL0 are not trapped to EL3.
405 	 *
406 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
407 	 *  both Security states and both Execution states.
408 	 *
409 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
410 	 *  Non-secure memory.
411 	 */
412 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
413 
414 	scr_el3 |= SCR_SIF_BIT;
415 
416 	/*
417 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
418 	 *  Exception level as specified by SPSR.
419 	 */
420 	if (GET_RW(ep->spsr) == MODE_RW_64) {
421 		scr_el3 |= SCR_RW_BIT;
422 	}
423 
424 	/*
425 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
426 	 * Secure timer registers to EL3, from AArch64 state only, if specified
427 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
428 	 * bit always behaves as 1 (i.e. secure physical timer register access
429 	 * is not trapped)
430 	 */
431 	if (EP_GET_ST(ep->h.attr) != 0U) {
432 		scr_el3 |= SCR_ST_BIT;
433 	}
434 
435 	/*
436 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
437 	 * SCR_EL3.HXEn.
438 	 */
439 	if (is_feat_hcx_supported()) {
440 		scr_el3 |= SCR_HXEn_BIT;
441 	}
442 
443 	/*
444 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
445 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
446 	 * SCR_EL3.EnAS0.
447 	 */
448 	if (is_feat_ls64_accdata_supported()) {
449 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
450 	}
451 
452 	/*
453 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
454 	 * registers are trapped to EL3.
455 	 */
456 	if (is_feat_rng_trap_supported()) {
457 		scr_el3 |= SCR_TRNDR_BIT;
458 	}
459 
460 #if FAULT_INJECTION_SUPPORT
461 	/* Enable fault injection from lower ELs */
462 	scr_el3 |= SCR_FIEN_BIT;
463 #endif
464 
465 	/*
466 	 * Enable Pointer Authentication globally for all the worlds.
467 	 *
468 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
469 	 *  other than EL3
470 	 *
471 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
472 	 *  than EL3
473 	 */
474 	if (is_ctx_pauth_supported()) {
475 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
476 	}
477 
478 	/*
479 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
480 	 * registers for AArch64 if present.
481 	 */
482 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
483 		scr_el3 |= SCR_PIEN_BIT;
484 	}
485 
486 	/*
487 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
488 	 */
489 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
490 		scr_el3 |= SCR_GCSEn_BIT;
491 	}
492 
493 	/*
494 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
495 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
496 	 * next mode is Hyp.
497 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
498 	 * same conditions as HVC instructions and when the processor supports
499 	 * ARMv8.6-FGT.
500 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
501 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
502 	 * and when the processor supports ECV.
503 	 */
504 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
505 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
506 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
507 		scr_el3 |= SCR_HCE_BIT;
508 
509 		if (is_feat_fgt_supported()) {
510 			scr_el3 |= SCR_FGTEN_BIT;
511 		}
512 
513 		if (is_feat_ecv_supported()) {
514 			scr_el3 |= SCR_ECVEN_BIT;
515 		}
516 	}
517 
518 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
519 	if (is_feat_twed_supported()) {
520 		/* Set delay in SCR_EL3 */
521 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
522 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
523 				<< SCR_TWEDEL_SHIFT);
524 
525 		/* Enable WFE delay */
526 		scr_el3 |= SCR_TWEDEn_BIT;
527 	}
528 
529 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
530 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
531 	if (is_feat_sel2_supported()) {
532 		scr_el3 |= SCR_EEL2_BIT;
533 	}
534 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
535 
536 	if (is_feat_mec_supported()) {
537 		scr_el3 |= SCR_MECEn_BIT;
538 	}
539 
540 	/*
541 	 * Populate EL3 state so that we've the right context
542 	 * before doing ERET
543 	 */
544 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
545 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
546 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
547 
548 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
549 	mdcr_el3 = MDCR_EL3_RESET_VAL;
550 
551 	/* ---------------------------------------------------------------------
552 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
553 	 * Some fields are architecturally UNKNOWN on reset.
554 	 *
555 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
556 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
557 	 *  disabled from all ELs in Secure state.
558 	 *
559 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
560 	 *  privileged debug from S-EL1.
561 	 *
562 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
563 	 *  access to the powerdown debug registers do not trap to EL3.
564 	 *
565 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
566 	 *  debug registers, other than those registers that are controlled by
567 	 *  MDCR_EL3.TDOSA.
568 	 */
569 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
570 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
571 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
572 
573 #if IMAGE_BL31
574 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
575 	if (is_feat_trf_supported()) {
576 		trf_enable(ctx);
577 	}
578 
579 	if (is_feat_tcr2_supported()) {
580 		tcr2_enable(ctx);
581 	}
582 
583 	pmuv3_enable(ctx);
584 #endif /* IMAGE_BL31 */
585 
586 	/*
587 	 * Store the X0-X7 value from the entrypoint into the context
588 	 * Use memcpy as we are in control of the layout of the structures
589 	 */
590 	gp_regs = get_gpregs_ctx(ctx);
591 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
592 }
593 
594 /*******************************************************************************
595  * Context management library initialization routine. This library is used by
596  * runtime services to share pointers to 'cpu_context' structures for secure
597  * non-secure and realm states. Management of the structures and their associated
598  * memory is not done by the context management library e.g. the PSCI service
599  * manages the cpu context used for entry from and exit to the non-secure state.
600  * The Secure payload dispatcher service manages the context(s) corresponding to
601  * the secure state. It also uses this library to get access to the non-secure
602  * state cpu context pointers.
603  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
604  * which will be used for programming an entry into a lower EL. The same context
605  * will be used to save state upon exception entry from that EL.
606  ******************************************************************************/
607 void __init cm_init(void)
608 {
609 	/*
610 	 * The context management library has only global data to initialize, but
611 	 * that will be done when the BSS is zeroed out.
612 	 */
613 }
614 
615 /*******************************************************************************
616  * This is the high-level function used to initialize the cpu_context 'ctx' for
617  * first use. It performs initializations that are common to all security states
618  * and initializations specific to the security state specified in 'ep'
619  ******************************************************************************/
620 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
621 {
622 	size_t security_state;
623 
624 	assert(ctx != NULL);
625 
626 	/*
627 	 * Perform initializations that are common
628 	 * to all security states
629 	 */
630 	setup_context_common(ctx, ep);
631 
632 	security_state = GET_SECURITY_STATE(ep->h.attr);
633 
634 	/* Perform security state specific initializations */
635 	switch (security_state) {
636 	case SECURE:
637 		setup_secure_context(ctx, ep);
638 		break;
639 #if ENABLE_RME
640 	case REALM:
641 		setup_realm_context(ctx, ep);
642 		break;
643 #endif
644 	case NON_SECURE:
645 		setup_ns_context(ctx, ep);
646 		break;
647 	default:
648 		ERROR("Invalid security state\n");
649 		panic();
650 		break;
651 	}
652 }
653 
654 /*******************************************************************************
655  * Enable architecture extensions for EL3 execution. This function only updates
656  * registers in-place which are expected to either never change or be
657  * overwritten by el3_exit. Expects the core_pos of the current core as argument.
658  ******************************************************************************/
659 #if IMAGE_BL31
660 void cm_manage_extensions_el3(unsigned int my_idx)
661 {
662 	if (is_feat_sve_supported()) {
663 		sve_init_el3();
664 	}
665 
666 	if (is_feat_amu_supported()) {
667 		amu_init_el3(my_idx);
668 	}
669 
670 	if (is_feat_sme_supported()) {
671 		sme_init_el3();
672 	}
673 
674 	pmuv3_init_el3();
675 }
676 
677 /******************************************************************************
678  * Function to initialise the registers with the RESET values in the context
679  * memory, which are maintained per world.
680  ******************************************************************************/
681 static void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
682 {
683 	/*
684 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
685 	 *
686 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
687 	 *  by Advanced SIMD, floating-point or SVE instructions (if
688 	 *  implemented) do not trap to EL3.
689 	 *
690 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
691 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
692 	 */
693 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
694 
695 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
696 
697 	/*
698 	 * Initialize MPAM3_EL3 to its default reset value
699 	 *
700 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
701 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
702 	 */
703 
704 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
705 }
706 
707 /*******************************************************************************
708  * Initialise per_world_context for Non-Secure world.
709  * This function enables the architecture extensions, which have same value
710  * across the cores for the non-secure world.
711  ******************************************************************************/
712 static void manage_extensions_nonsecure_per_world(void)
713 {
714 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
715 
716 	if (is_feat_sme_supported()) {
717 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
718 	}
719 
720 	if (is_feat_sve_supported()) {
721 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
722 	}
723 
724 	if (is_feat_amu_supported()) {
725 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
726 	}
727 
728 	if (is_feat_sys_reg_trace_supported()) {
729 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
730 	}
731 
732 	if (is_feat_mpam_supported()) {
733 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
734 	}
735 
736 	if (is_feat_fpmr_supported()) {
737 		fpmr_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
738 	}
739 }
740 
741 /*******************************************************************************
742  * Initialise per_world_context for Secure world.
743  * This function enables the architecture extensions, which have same value
744  * across the cores for the secure world.
745  ******************************************************************************/
746 static void manage_extensions_secure_per_world(void)
747 {
748 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
749 
750 	if (is_feat_sme_supported()) {
751 
752 		if (ENABLE_SME_FOR_SWD) {
753 		/*
754 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
755 		 * SME, SVE, and FPU/SIMD context properly managed.
756 		 */
757 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
758 		} else {
759 		/*
760 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
761 		 * world can safely use the associated registers.
762 		 */
763 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
764 		}
765 	}
766 	if (is_feat_sve_supported()) {
767 		if (ENABLE_SVE_FOR_SWD) {
768 		/*
769 		 * Enable SVE and FPU in secure context, SPM must ensure
770 		 * that the SVE and FPU register contexts are properly managed.
771 		 */
772 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
773 		} else {
774 		/*
775 		 * Disable SVE and FPU in secure context so non-secure world
776 		 * can safely use them.
777 		 */
778 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
779 		}
780 	}
781 
782 	/* NS can access this but Secure shouldn't */
783 	if (is_feat_sys_reg_trace_supported()) {
784 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
785 	}
786 }
787 
788 static void manage_extensions_realm_per_world(void)
789 {
790 #if ENABLE_RME
791 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_REALM]);
792 
793 	if (is_feat_sve_supported()) {
794 	/*
795 	 * Enable SVE and FPU in realm context when it is enabled for NS.
796 	 * Realm manager must ensure that the SVE and FPU register
797 	 * contexts are properly managed.
798 	 */
799 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
800 	}
801 
802 	/* NS can access this but Realm shouldn't */
803 	if (is_feat_sys_reg_trace_supported()) {
804 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
805 	}
806 
807 	/*
808 	 * If SME/SME2 is supported and enabled for NS world, then disable trapping
809 	 * of SME instructions for Realm world. RMM will save/restore required
810 	 * registers that are shared with SVE/FPU so that Realm can use FPU or SVE.
811 	 */
812 	if (is_feat_sme_supported()) {
813 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
814 	}
815 
816 	/*
817 	 * If FEAT_MPAM is supported and enabled, then disable trapping access
818 	 * to the MPAM registers for Realm world. Instead, RMM will configure
819 	 * the access to be trapped by itself so it can inject undefined aborts
820 	 * back to the Realm.
821 	 */
822 	if (is_feat_mpam_supported()) {
823 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
824 	}
825 #endif /* ENABLE_RME */
826 }
827 
828 void cm_manage_extensions_per_world(void)
829 {
830 	manage_extensions_nonsecure_per_world();
831 	manage_extensions_secure_per_world();
832 	manage_extensions_realm_per_world();
833 }
834 #endif /* IMAGE_BL31 */
835 
836 /*******************************************************************************
837  * Enable architecture extensions on first entry to Non-secure world.
838  ******************************************************************************/
839 static void manage_extensions_nonsecure(cpu_context_t *ctx)
840 {
841 #if IMAGE_BL31
842 	/* NOTE: registers are not context switched */
843 	if (is_feat_amu_supported()) {
844 		amu_enable(ctx);
845 	}
846 
847 	if (is_feat_sme_supported()) {
848 		sme_enable(ctx);
849 	}
850 
851 	if (is_feat_fgt2_supported()) {
852 		fgt2_enable(ctx);
853 	}
854 
855 	if (is_feat_debugv8p9_supported()) {
856 		debugv8p9_extended_bp_wp_enable(ctx);
857 	}
858 
859 	/*
860 	 * SPE, TRBE, and BRBE have multi-field enables that affect which world
861 	 * they apply to. Despite this, it is useful to ignore these for
862 	 * simplicity in determining the feature's per world enablement status.
863 	 * This is only possible when context is written per-world. Relied on
864 	 * by SMCCC_ARCH_FEATURE_AVAILABILITY
865 	 */
866 	if (is_feat_spe_supported()) {
867 		spe_enable(ctx);
868 	}
869 
870 	if (!check_if_trbe_disable_affected_core()) {
871 		if (is_feat_trbe_supported()) {
872 			trbe_enable(ctx);
873 		}
874 	}
875 
876 	if (is_feat_brbe_supported()) {
877 		brbe_enable(ctx);
878 	}
879 #endif /* IMAGE_BL31 */
880 }
881 
882 #if INIT_UNUSED_NS_EL2
883 /*******************************************************************************
884  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
885  * world when EL2 is empty and unused.
886  ******************************************************************************/
887 static void manage_extensions_nonsecure_el2_unused(void)
888 {
889 #if IMAGE_BL31
890 	if (is_feat_spe_supported()) {
891 		spe_init_el2_unused();
892 	}
893 
894 	if (is_feat_amu_supported()) {
895 		amu_init_el2_unused();
896 	}
897 
898 	if (is_feat_mpam_supported()) {
899 		mpam_init_el2_unused();
900 	}
901 
902 	if (is_feat_trbe_supported()) {
903 		trbe_init_el2_unused();
904 	}
905 
906 	if (is_feat_sys_reg_trace_supported()) {
907 		sys_reg_trace_init_el2_unused();
908 	}
909 
910 	if (is_feat_trf_supported()) {
911 		trf_init_el2_unused();
912 	}
913 
914 	pmuv3_init_el2_unused();
915 
916 	if (is_feat_sve_supported()) {
917 		sve_init_el2_unused();
918 	}
919 
920 	if (is_feat_sme_supported()) {
921 		sme_init_el2_unused();
922 	}
923 
924 	if (is_feat_mops_supported() && is_feat_hcx_supported()) {
925 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
926 	}
927 
928 	if (is_feat_pauth_supported()) {
929 		pauth_enable_el2();
930 	}
931 #endif /* IMAGE_BL31 */
932 }
933 #endif /* INIT_UNUSED_NS_EL2 */
934 
935 /*******************************************************************************
936  * Enable architecture extensions on first entry to Secure world.
937  ******************************************************************************/
938 static void manage_extensions_secure(cpu_context_t *ctx)
939 {
940 #if IMAGE_BL31
941 	if (is_feat_sme_supported()) {
942 		if (ENABLE_SME_FOR_SWD) {
943 		/*
944 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
945 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
946 		 */
947 			sme_init_el3();
948 			sme_enable(ctx);
949 		} else {
950 		/*
951 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
952 		 * world can safely use the associated registers.
953 		 */
954 			sme_disable(ctx);
955 		}
956 	}
957 
958 	/*
959 	 * SPE and TRBE cannot be fully disabled from EL3 registers alone, only
960 	 * sysreg access can. In case the EL1 controls leave them active on
961 	 * context switch, we want the owning security state to be NS so Secure
962 	 * can't be DOSed.
963 	 */
964 	if (is_feat_spe_supported()) {
965 		spe_disable(ctx);
966 	}
967 
968 	if (is_feat_trbe_supported()) {
969 		trbe_disable(ctx);
970 	}
971 #endif /* IMAGE_BL31 */
972 }
973 
974 /*******************************************************************************
975  * The following function initializes the cpu_context for the current CPU
976  * for first use, and sets the initial entrypoint state as specified by the
977  * entry_point_info structure.
978  ******************************************************************************/
979 void cm_init_my_context(const entry_point_info_t *ep)
980 {
981 	cpu_context_t *ctx;
982 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
983 	cm_setup_context(ctx, ep);
984 }
985 
986 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
987 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
988 {
989 #if INIT_UNUSED_NS_EL2
990 	u_register_t hcr_el2 = HCR_RESET_VAL;
991 	u_register_t mdcr_el2;
992 	u_register_t scr_el3;
993 
994 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
995 
996 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
997 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
998 		hcr_el2 |= HCR_RW_BIT;
999 	}
1000 
1001 	write_hcr_el2(hcr_el2);
1002 
1003 	/*
1004 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
1005 	 * All fields have architecturally UNKNOWN reset values.
1006 	 */
1007 	write_cptr_el2(CPTR_EL2_RESET_VAL);
1008 
1009 	/*
1010 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
1011 	 * reset and are set to zero except for field(s) listed below.
1012 	 *
1013 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
1014 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
1015 	 *
1016 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
1017 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
1018 	 */
1019 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
1020 
1021 	/*
1022 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
1023 	 * UNKNOWN value.
1024 	 */
1025 	write_cntvoff_el2(0);
1026 
1027 	/*
1028 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1029 	 * respectively.
1030 	 */
1031 	write_vpidr_el2(read_midr_el1());
1032 	write_vmpidr_el2(read_mpidr_el1());
1033 
1034 	/*
1035 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1036 	 *
1037 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1038 	 * translation is disabled, cache maintenance operations depend on the
1039 	 * VMID.
1040 	 *
1041 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1042 	 * disabled.
1043 	 */
1044 	write_vttbr_el2(VTTBR_RESET_VAL &
1045 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1046 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1047 
1048 	/*
1049 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1050 	 * Some fields are architecturally UNKNOWN on reset.
1051 	 *
1052 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1053 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1054 	 *
1055 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1056 	 * accesses to the powerdown debug registers are not trapped to EL2.
1057 	 *
1058 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1059 	 * debug registers do not trap to EL2.
1060 	 *
1061 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1062 	 * EL2.
1063 	 */
1064 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1065 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1066 		   MDCR_EL2_TDE_BIT);
1067 
1068 	write_mdcr_el2(mdcr_el2);
1069 
1070 	/*
1071 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1072 	 *
1073 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1074 	 * EL1 accesses to System registers do not trap to EL2.
1075 	 */
1076 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1077 
1078 	/*
1079 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1080 	 * reset.
1081 	 *
1082 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1083 	 * and prevent timer interrupts.
1084 	 */
1085 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1086 
1087 	manage_extensions_nonsecure_el2_unused();
1088 #endif /* INIT_UNUSED_NS_EL2 */
1089 }
1090 
1091 /*******************************************************************************
1092  * Prepare the CPU system registers for first entry into realm, secure, or
1093  * normal world.
1094  *
1095  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1096  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1097  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1098  * For all entries, the EL1 registers are initialized from the cpu_context
1099  ******************************************************************************/
1100 void cm_prepare_el3_exit(size_t security_state)
1101 {
1102 	u_register_t sctlr_el2, scr_el3;
1103 	cpu_context_t *ctx = cm_get_context(security_state);
1104 
1105 	assert(ctx != NULL);
1106 
1107 	if (security_state == NON_SECURE) {
1108 		uint64_t el2_implemented = el_implemented(2);
1109 
1110 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1111 						 CTX_SCR_EL3);
1112 
1113 		if (el2_implemented != EL_IMPL_NONE) {
1114 
1115 			/*
1116 			 * If context is not being used for EL2, initialize
1117 			 * HCRX_EL2 with its init value here.
1118 			 */
1119 			if (is_feat_hcx_supported()) {
1120 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1121 			}
1122 
1123 			/*
1124 			 * Initialize Fine-grained trap registers introduced
1125 			 * by FEAT_FGT so all traps are initially disabled when
1126 			 * switching to EL2 or a lower EL, preventing undesired
1127 			 * behavior.
1128 			 */
1129 			if (is_feat_fgt_supported()) {
1130 				/*
1131 				 * Initialize HFG*_EL2 registers with a default
1132 				 * value so legacy systems unaware of FEAT_FGT
1133 				 * do not get trapped due to their lack of
1134 				 * initialization for this feature.
1135 				 */
1136 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1137 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1138 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1139 			}
1140 
1141 			/* Condition to ensure EL2 is being used. */
1142 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1143 				/* Initialize SCTLR_EL2 register with reset value. */
1144 				sctlr_el2 = SCTLR_EL2_RES1;
1145 
1146 				/*
1147 				 * If workaround of errata 764081 for Cortex-A75
1148 				 * is used then set SCTLR_EL2.IESB to enable
1149 				 * Implicit Error Synchronization Barrier.
1150 				 */
1151 				if (errata_a75_764081_applies()) {
1152 					sctlr_el2 |= SCTLR_IESB_BIT;
1153 				}
1154 
1155 				write_sctlr_el2(sctlr_el2);
1156 			} else {
1157 				/*
1158 				 * (scr_el3 & SCR_HCE_BIT==0)
1159 				 * EL2 implemented but unused.
1160 				 */
1161 				init_nonsecure_el2_unused(ctx);
1162 			}
1163 		}
1164 	}
1165 #if (!CTX_INCLUDE_EL2_REGS)
1166 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1167 	cm_el1_sysregs_context_restore(security_state);
1168 #endif
1169 	cm_set_next_eret_context(security_state);
1170 }
1171 
1172 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1173 
1174 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1175 {
1176 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1177 	if (is_feat_amu_supported()) {
1178 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1179 	}
1180 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1181 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1182 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1183 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1184 }
1185 
1186 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1187 {
1188 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1189 	if (is_feat_amu_supported()) {
1190 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1191 	}
1192 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1193 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1194 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1195 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1196 }
1197 
1198 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1199 {
1200 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1201 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1202 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1203 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1204 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1205 }
1206 
1207 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1208 {
1209 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1210 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1211 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1212 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1213 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1214 }
1215 
1216 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1217 {
1218 	u_register_t mpam_idr = read_mpamidr_el1();
1219 
1220 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1221 
1222 	/*
1223 	 * The context registers that we intend to save would be part of the
1224 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1225 	 */
1226 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1227 		return;
1228 	}
1229 
1230 	/*
1231 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1232 	 * MPAMIDR_HAS_HCR_BIT == 1.
1233 	 */
1234 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1235 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1236 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1237 
1238 	/*
1239 	 * The number of MPAMVPM registers is implementation defined, their
1240 	 * number is stored in the MPAMIDR_EL1 register.
1241 	 */
1242 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1243 	case 7:
1244 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1245 		__fallthrough;
1246 	case 6:
1247 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1248 		__fallthrough;
1249 	case 5:
1250 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1251 		__fallthrough;
1252 	case 4:
1253 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1254 		__fallthrough;
1255 	case 3:
1256 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1257 		__fallthrough;
1258 	case 2:
1259 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1260 		__fallthrough;
1261 	case 1:
1262 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1263 		break;
1264 	}
1265 }
1266 
1267 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1268 {
1269 	u_register_t mpam_idr = read_mpamidr_el1();
1270 
1271 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1272 
1273 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1274 		return;
1275 	}
1276 
1277 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1278 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1279 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1280 
1281 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1282 	case 7:
1283 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1284 		__fallthrough;
1285 	case 6:
1286 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1287 		__fallthrough;
1288 	case 5:
1289 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1290 		__fallthrough;
1291 	case 4:
1292 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1293 		__fallthrough;
1294 	case 3:
1295 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1296 		__fallthrough;
1297 	case 2:
1298 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1299 		__fallthrough;
1300 	case 1:
1301 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1302 		break;
1303 	}
1304 }
1305 
1306 /* ---------------------------------------------------------------------------
1307  * The following registers are not added:
1308  * ICH_AP0R<n>_EL2
1309  * ICH_AP1R<n>_EL2
1310  * ICH_LR<n>_EL2
1311  *
1312  * NOTE: For a system with S-EL2 present but not enabled, accessing
1313  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1314  * SCR_EL3.NS = 1 before accessing this register.
1315  * ---------------------------------------------------------------------------
1316  */
1317 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1318 {
1319 	u_register_t scr_el3 = read_scr_el3();
1320 
1321 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1322 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1323 #else
1324 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1325 	isb();
1326 
1327 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1328 
1329 	write_scr_el3(scr_el3);
1330 	isb();
1331 #endif
1332 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1333 
1334 	if (errata_ich_vmcr_el2_applies()) {
1335 		if (security_state == SECURE) {
1336 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1337 		} else {
1338 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1339 		}
1340 		isb();
1341 	}
1342 
1343 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1344 
1345 	if (errata_ich_vmcr_el2_applies()) {
1346 		write_scr_el3(scr_el3);
1347 		isb();
1348 	}
1349 }
1350 
1351 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1352 {
1353 	u_register_t scr_el3 = read_scr_el3();
1354 
1355 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1356 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1357 #else
1358 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1359 	isb();
1360 
1361 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1362 
1363 	write_scr_el3(scr_el3);
1364 	isb();
1365 #endif
1366 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1367 
1368 	if (errata_ich_vmcr_el2_applies()) {
1369 		if (security_state == SECURE) {
1370 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1371 		} else {
1372 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1373 		}
1374 		isb();
1375 	}
1376 
1377 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1378 
1379 	if (errata_ich_vmcr_el2_applies()) {
1380 		write_scr_el3(scr_el3);
1381 		isb();
1382 	}
1383 }
1384 
1385 /* -----------------------------------------------------
1386  * The following registers are not added:
1387  * AMEVCNTVOFF0<n>_EL2
1388  * AMEVCNTVOFF1<n>_EL2
1389  * -----------------------------------------------------
1390  */
1391 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1392 {
1393 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1394 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1395 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1396 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1397 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1398 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1399 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1400 	if (CTX_INCLUDE_AARCH32_REGS) {
1401 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1402 	}
1403 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1404 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1405 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1406 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1407 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1408 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1409 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1410 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1411 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1412 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1413 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1414 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1415 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1416 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1417 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1418 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1419 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1420 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1421 
1422 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1423 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1424 }
1425 
1426 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1427 {
1428 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1429 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1430 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1431 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1432 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1433 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1434 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1435 	if (CTX_INCLUDE_AARCH32_REGS) {
1436 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1437 	}
1438 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1439 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1440 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1441 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1442 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1443 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1444 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1445 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1446 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1447 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1448 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1449 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1450 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1451 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1452 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1453 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1454 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1455 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1456 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1457 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1458 }
1459 
1460 /*******************************************************************************
1461  * Save EL2 sysreg context
1462  ******************************************************************************/
1463 void cm_el2_sysregs_context_save(uint32_t security_state)
1464 {
1465 	cpu_context_t *ctx;
1466 	el2_sysregs_t *el2_sysregs_ctx;
1467 
1468 	ctx = cm_get_context(security_state);
1469 	assert(ctx != NULL);
1470 
1471 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1472 
1473 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1474 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1475 
1476 	if (is_feat_mte2_supported()) {
1477 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1478 	}
1479 
1480 	if (is_feat_mpam_supported()) {
1481 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1482 	}
1483 
1484 	if (is_feat_fgt_supported()) {
1485 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1486 	}
1487 
1488 	if (is_feat_fgt2_supported()) {
1489 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1490 	}
1491 
1492 	if (is_feat_ecv_v2_supported()) {
1493 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1494 	}
1495 
1496 	if (is_feat_vhe_supported()) {
1497 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1498 					read_contextidr_el2());
1499 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1500 	}
1501 
1502 	if (is_feat_ras_supported()) {
1503 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1504 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1505 	}
1506 
1507 	if (is_feat_nv2_supported()) {
1508 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1509 	}
1510 
1511 	if (is_feat_trf_supported()) {
1512 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1513 	}
1514 
1515 	if (is_feat_csv2_2_supported()) {
1516 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1517 					read_scxtnum_el2());
1518 	}
1519 
1520 	if (is_feat_hcx_supported()) {
1521 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1522 	}
1523 
1524 	if (is_feat_tcr2_supported()) {
1525 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1526 	}
1527 
1528 	if (is_feat_sxpie_supported()) {
1529 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1530 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1531 	}
1532 
1533 	if (is_feat_sxpoe_supported()) {
1534 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1535 	}
1536 
1537 	if (is_feat_brbe_supported()) {
1538 		write_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2, read_brbcr_el2());
1539 	}
1540 
1541 	if (is_feat_s2pie_supported()) {
1542 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1543 	}
1544 
1545 	if (is_feat_gcs_supported()) {
1546 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1547 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1548 	}
1549 
1550 	if (is_feat_sctlr2_supported()) {
1551 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1552 	}
1553 }
1554 
1555 /*******************************************************************************
1556  * Restore EL2 sysreg context
1557  ******************************************************************************/
1558 void cm_el2_sysregs_context_restore(uint32_t security_state)
1559 {
1560 	cpu_context_t *ctx;
1561 	el2_sysregs_t *el2_sysregs_ctx;
1562 
1563 	ctx = cm_get_context(security_state);
1564 	assert(ctx != NULL);
1565 
1566 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1567 
1568 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1569 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1570 
1571 	if (is_feat_mte2_supported()) {
1572 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1573 	}
1574 
1575 	if (is_feat_mpam_supported()) {
1576 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1577 	}
1578 
1579 	if (is_feat_fgt_supported()) {
1580 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1581 	}
1582 
1583 	if (is_feat_fgt2_supported()) {
1584 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1585 	}
1586 
1587 	if (is_feat_ecv_v2_supported()) {
1588 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1589 	}
1590 
1591 	if (is_feat_vhe_supported()) {
1592 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1593 					contextidr_el2));
1594 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1595 	}
1596 
1597 	if (is_feat_ras_supported()) {
1598 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1599 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1600 	}
1601 
1602 	if (is_feat_nv2_supported()) {
1603 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1604 	}
1605 
1606 	if (is_feat_trf_supported()) {
1607 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1608 	}
1609 
1610 	if (is_feat_csv2_2_supported()) {
1611 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1612 					scxtnum_el2));
1613 	}
1614 
1615 	if (is_feat_hcx_supported()) {
1616 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1617 	}
1618 
1619 	if (is_feat_tcr2_supported()) {
1620 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1621 	}
1622 
1623 	if (is_feat_sxpie_supported()) {
1624 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1625 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1626 	}
1627 
1628 	if (is_feat_sxpoe_supported()) {
1629 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1630 	}
1631 
1632 	if (is_feat_s2pie_supported()) {
1633 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1634 	}
1635 
1636 	if (is_feat_gcs_supported()) {
1637 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1638 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1639 	}
1640 
1641 	if (is_feat_sctlr2_supported()) {
1642 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1643 	}
1644 
1645 	if (is_feat_brbe_supported()) {
1646 		write_brbcr_el2(read_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2));
1647 	}
1648 }
1649 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1650 
1651 /*******************************************************************************
1652  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1653  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1654  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1655  * cm_prepare_el3_exit function.
1656  ******************************************************************************/
1657 void cm_prepare_el3_exit_ns(void)
1658 {
1659 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1660 #if ENABLE_ASSERTIONS
1661 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1662 	assert(ctx != NULL);
1663 
1664 	/* Assert that EL2 is used. */
1665 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1666 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1667 			(el_implemented(2U) != EL_IMPL_NONE));
1668 #endif /* ENABLE_ASSERTIONS */
1669 
1670 	/* Restore EL2 sysreg contexts */
1671 	cm_el2_sysregs_context_restore(NON_SECURE);
1672 	cm_set_next_eret_context(NON_SECURE);
1673 #else
1674 	cm_prepare_el3_exit(NON_SECURE);
1675 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1676 }
1677 
1678 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1679 /*******************************************************************************
1680  * The next set of six functions are used by runtime services to save and restore
1681  * EL1 context on the 'cpu_context' structure for the specified security state.
1682  ******************************************************************************/
1683 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1684 {
1685 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1686 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1687 
1688 #if (!ERRATA_SPECULATIVE_AT)
1689 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1690 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1691 #endif /* (!ERRATA_SPECULATIVE_AT) */
1692 
1693 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1694 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1695 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1696 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1697 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1698 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1699 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1700 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1701 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1702 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1703 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1704 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1705 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1706 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1707 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1708 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1709 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1710 
1711 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1712 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1713 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1714 
1715 	if (CTX_INCLUDE_AARCH32_REGS) {
1716 		/* Save Aarch32 registers */
1717 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1718 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1719 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1720 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1721 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1722 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1723 	}
1724 
1725 	if (NS_TIMER_SWITCH) {
1726 		/* Save NS Timer registers */
1727 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1728 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1729 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1730 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1731 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1732 	}
1733 
1734 	if (is_feat_mte2_supported()) {
1735 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1736 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1737 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1738 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1739 	}
1740 
1741 	if (is_feat_ras_supported()) {
1742 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1743 	}
1744 
1745 	if (is_feat_s1pie_supported()) {
1746 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1747 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1748 	}
1749 
1750 	if (is_feat_s1poe_supported()) {
1751 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1752 	}
1753 
1754 	if (is_feat_s2poe_supported()) {
1755 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1756 	}
1757 
1758 	if (is_feat_tcr2_supported()) {
1759 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1760 	}
1761 
1762 	if (is_feat_trf_supported()) {
1763 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1764 	}
1765 
1766 	if (is_feat_csv2_2_supported()) {
1767 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1768 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1769 	}
1770 
1771 	if (is_feat_gcs_supported()) {
1772 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1773 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1774 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1775 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1776 	}
1777 
1778 	if (is_feat_the_supported()) {
1779 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1780 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1781 	}
1782 
1783 	if (is_feat_sctlr2_supported()) {
1784 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1785 	}
1786 
1787 	if (is_feat_ls64_accdata_supported()) {
1788 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1789 	}
1790 }
1791 
1792 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1793 {
1794 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1795 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1796 
1797 #if (!ERRATA_SPECULATIVE_AT)
1798 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1799 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1800 #endif /* (!ERRATA_SPECULATIVE_AT) */
1801 
1802 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1803 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1804 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1805 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1806 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1807 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1808 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1809 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1810 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1811 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1812 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1813 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1814 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1815 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1816 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1817 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1818 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1819 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1820 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1821 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1822 
1823 	if (CTX_INCLUDE_AARCH32_REGS) {
1824 		/* Restore Aarch32 registers */
1825 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1826 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1827 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1828 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1829 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1830 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1831 	}
1832 
1833 	if (NS_TIMER_SWITCH) {
1834 		/* Restore NS Timer registers */
1835 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1836 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1837 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1838 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1839 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1840 	}
1841 
1842 	if (is_feat_mte2_supported()) {
1843 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1844 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1845 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1846 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1847 	}
1848 
1849 	if (is_feat_ras_supported()) {
1850 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1851 	}
1852 
1853 	if (is_feat_s1pie_supported()) {
1854 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1855 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1856 	}
1857 
1858 	if (is_feat_s1poe_supported()) {
1859 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1860 	}
1861 
1862 	if (is_feat_s2poe_supported()) {
1863 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1864 	}
1865 
1866 	if (is_feat_tcr2_supported()) {
1867 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1868 	}
1869 
1870 	if (is_feat_trf_supported()) {
1871 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1872 	}
1873 
1874 	if (is_feat_csv2_2_supported()) {
1875 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1876 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1877 	}
1878 
1879 	if (is_feat_gcs_supported()) {
1880 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1881 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1882 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1883 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1884 	}
1885 
1886 	if (is_feat_the_supported()) {
1887 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1888 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1889 	}
1890 
1891 	if (is_feat_sctlr2_supported()) {
1892 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1893 	}
1894 
1895 	if (is_feat_ls64_accdata_supported()) {
1896 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1897 	}
1898 }
1899 
1900 /*******************************************************************************
1901  * The next couple of functions are used by runtime services to save and restore
1902  * EL1 context on the 'cpu_context' structure for the specified security state.
1903  ******************************************************************************/
1904 void cm_el1_sysregs_context_save(uint32_t security_state)
1905 {
1906 	cpu_context_t *ctx;
1907 
1908 	ctx = cm_get_context(security_state);
1909 	assert(ctx != NULL);
1910 
1911 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1912 
1913 #if IMAGE_BL31
1914 	if (security_state == SECURE) {
1915 		PUBLISH_EVENT(cm_exited_secure_world);
1916 	} else {
1917 		PUBLISH_EVENT(cm_exited_normal_world);
1918 	}
1919 #endif
1920 }
1921 
1922 void cm_el1_sysregs_context_restore(uint32_t security_state)
1923 {
1924 	cpu_context_t *ctx;
1925 
1926 	ctx = cm_get_context(security_state);
1927 	assert(ctx != NULL);
1928 
1929 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1930 
1931 #if IMAGE_BL31
1932 	if (security_state == SECURE) {
1933 		PUBLISH_EVENT(cm_entering_secure_world);
1934 	} else {
1935 		PUBLISH_EVENT(cm_entering_normal_world);
1936 	}
1937 #endif
1938 }
1939 
1940 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1941 
1942 /*******************************************************************************
1943  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1944  * given security state with the given entrypoint
1945  ******************************************************************************/
1946 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1947 {
1948 	cpu_context_t *ctx;
1949 	el3_state_t *state;
1950 
1951 	ctx = cm_get_context(security_state);
1952 	assert(ctx != NULL);
1953 
1954 	/* Populate EL3 state so that ERET jumps to the correct entry */
1955 	state = get_el3state_ctx(ctx);
1956 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1957 }
1958 
1959 /*******************************************************************************
1960  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1961  * pertaining to the given security state
1962  ******************************************************************************/
1963 void cm_set_elr_spsr_el3(uint32_t security_state,
1964 			uintptr_t entrypoint, uint32_t spsr)
1965 {
1966 	cpu_context_t *ctx;
1967 	el3_state_t *state;
1968 
1969 	ctx = cm_get_context(security_state);
1970 	assert(ctx != NULL);
1971 
1972 	/* Populate EL3 state so that ERET jumps to the correct entry */
1973 	state = get_el3state_ctx(ctx);
1974 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1975 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1976 }
1977 
1978 /*******************************************************************************
1979  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1980  * pertaining to the given security state using the value and bit position
1981  * specified in the parameters. It preserves all other bits.
1982  ******************************************************************************/
1983 void cm_write_scr_el3_bit(uint32_t security_state,
1984 			  uint32_t bit_pos,
1985 			  uint32_t value)
1986 {
1987 	cpu_context_t *ctx;
1988 	el3_state_t *state;
1989 	u_register_t scr_el3;
1990 
1991 	ctx = cm_get_context(security_state);
1992 	assert(ctx != NULL);
1993 
1994 	/* Ensure that the bit position is a valid one */
1995 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1996 
1997 	/* Ensure that the 'value' is only a bit wide */
1998 	assert(value <= 1U);
1999 
2000 	/*
2001 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
2002 	 * and set it to its new value.
2003 	 */
2004 	state = get_el3state_ctx(ctx);
2005 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
2006 	scr_el3 &= ~(1UL << bit_pos);
2007 	scr_el3 |= (u_register_t)value << bit_pos;
2008 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
2009 }
2010 
2011 /*******************************************************************************
2012  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
2013  * given security state.
2014  ******************************************************************************/
2015 u_register_t cm_get_scr_el3(uint32_t security_state)
2016 {
2017 	const cpu_context_t *ctx;
2018 	const el3_state_t *state;
2019 
2020 	ctx = cm_get_context(security_state);
2021 	assert(ctx != NULL);
2022 
2023 	/* Populate EL3 state so that ERET jumps to the correct entry */
2024 	state = get_el3state_ctx(ctx);
2025 	return read_ctx_reg(state, CTX_SCR_EL3);
2026 }
2027 
2028 /*******************************************************************************
2029  * This function is used to program the context that's used for exception
2030  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2031  * the required security state
2032  ******************************************************************************/
2033 void cm_set_next_eret_context(uint32_t security_state)
2034 {
2035 	cpu_context_t *ctx;
2036 
2037 	ctx = cm_get_context(security_state);
2038 	assert(ctx != NULL);
2039 
2040 	cm_set_next_context(ctx);
2041 }
2042