xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision f036ddaf08b52ac57baefd29f5c51faa33296dea)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/fpmr.h>
32 #include <lib/extensions/mpam.h>
33 #include <lib/extensions/pmuv3.h>
34 #include <lib/extensions/sme.h>
35 #include <lib/extensions/spe.h>
36 #include <lib/extensions/sve.h>
37 #include <lib/extensions/sysreg128.h>
38 #include <lib/extensions/sys_reg_trace.h>
39 #include <lib/extensions/tcr2.h>
40 #include <lib/extensions/trbe.h>
41 #include <lib/extensions/trf.h>
42 #include <lib/utils.h>
43 
44 #if ENABLE_FEAT_TWED
45 /* Make sure delay value fits within the range(0-15) */
46 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
47 #endif /* ENABLE_FEAT_TWED */
48 
49 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
50 static bool has_secure_perworld_init;
51 
52 static void manage_extensions_nonsecure(cpu_context_t *ctx);
53 static void manage_extensions_secure(cpu_context_t *ctx);
54 static void manage_extensions_secure_per_world(void);
55 
56 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
57 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
58 {
59 	u_register_t sctlr_elx, actlr_elx;
60 
61 	/*
62 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
63 	 * execution state setting all fields rather than relying on the hw.
64 	 * Some fields have architecturally UNKNOWN reset values and these are
65 	 * set to zero.
66 	 *
67 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
68 	 *
69 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
70 	 * required by PSCI specification)
71 	 */
72 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
73 	if (GET_RW(ep->spsr) == MODE_RW_64) {
74 		sctlr_elx |= SCTLR_EL1_RES1;
75 	} else {
76 		/*
77 		 * If the target execution state is AArch32 then the following
78 		 * fields need to be set.
79 		 *
80 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
81 		 *  instructions are not trapped to EL1.
82 		 *
83 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
84 		 *  instructions are not trapped to EL1.
85 		 *
86 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
87 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
88 		 */
89 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
90 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
91 	}
92 
93 	/*
94 	 * If workaround of errata 764081 for Cortex-A75 is used then set
95 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
96 	 */
97 	if (errata_a75_764081_applies()) {
98 		sctlr_elx |= SCTLR_IESB_BIT;
99 	}
100 
101 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
102 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
103 
104 	/*
105 	 * Base the context ACTLR_EL1 on the current value, as it is
106 	 * implementation defined. The context restore process will write
107 	 * the value from the context to the actual register and can cause
108 	 * problems for processor cores that don't expect certain bits to
109 	 * be zero.
110 	 */
111 	actlr_elx = read_actlr_el1();
112 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
113 }
114 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
115 
116 /******************************************************************************
117  * This function performs initializations that are specific to SECURE state
118  * and updates the cpu context specified by 'ctx'.
119  *****************************************************************************/
120 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
121 {
122 	u_register_t scr_el3;
123 	el3_state_t *state;
124 
125 	state = get_el3state_ctx(ctx);
126 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
127 
128 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
129 	/*
130 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
131 	 * indicated by the interrupt routing model for BL31.
132 	 */
133 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
134 #endif
135 
136 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
137 	if (is_feat_mte2_supported()) {
138 		scr_el3 |= SCR_ATA_BIT;
139 	}
140 
141 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
142 
143 	/*
144 	 * Initialize EL1 context registers unless SPMC is running
145 	 * at S-EL2.
146 	 */
147 #if (!SPMD_SPM_AT_SEL2)
148 	setup_el1_context(ctx, ep);
149 #endif
150 
151 	manage_extensions_secure(ctx);
152 
153 	/**
154 	 * manage_extensions_secure_per_world api has to be executed once,
155 	 * as the registers getting initialised, maintain constant value across
156 	 * all the cpus for the secure world.
157 	 * Henceforth, this check ensures that the registers are initialised once
158 	 * and avoids re-initialization from multiple cores.
159 	 */
160 	if (!has_secure_perworld_init) {
161 		manage_extensions_secure_per_world();
162 	}
163 }
164 
165 #if ENABLE_RME
166 /******************************************************************************
167  * This function performs initializations that are specific to REALM state
168  * and updates the cpu context specified by 'ctx'.
169  *****************************************************************************/
170 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
171 {
172 	u_register_t scr_el3;
173 	el3_state_t *state;
174 
175 	state = get_el3state_ctx(ctx);
176 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
177 
178 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
179 
180 	/* CSV2 version 2 and above */
181 	if (is_feat_csv2_2_supported()) {
182 		/* Enable access to the SCXTNUM_ELx registers. */
183 		scr_el3 |= SCR_EnSCXT_BIT;
184 	}
185 
186 	if (is_feat_sctlr2_supported()) {
187 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
188 		 * SCTLR2_ELx registers.
189 		 */
190 		scr_el3 |= SCR_SCTLR2En_BIT;
191 	}
192 
193 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
194 
195 	if (is_feat_fgt2_supported()) {
196 		fgt2_enable(ctx);
197 	}
198 
199 	if (is_feat_debugv8p9_supported()) {
200 		debugv8p9_extended_bp_wp_enable(ctx);
201 	}
202 
203 	if (is_feat_brbe_supported()) {
204 		brbe_enable(ctx);
205 	}
206 
207 }
208 #endif /* ENABLE_RME */
209 
210 /******************************************************************************
211  * This function performs initializations that are specific to NON-SECURE state
212  * and updates the cpu context specified by 'ctx'.
213  *****************************************************************************/
214 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
215 {
216 	u_register_t scr_el3;
217 	el3_state_t *state;
218 
219 	state = get_el3state_ctx(ctx);
220 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
221 
222 	/* SCR_NS: Set the NS bit */
223 	scr_el3 |= SCR_NS_BIT;
224 
225 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
226 	if (is_feat_mte2_supported()) {
227 		scr_el3 |= SCR_ATA_BIT;
228 	}
229 
230 #if !CTX_INCLUDE_PAUTH_REGS
231 	/*
232 	 * Pointer Authentication feature, if present, is always enabled by default
233 	 * for Non secure lower exception levels. We do not have an explicit
234 	 * flag to set it.
235 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
236 	 * exception levels of secure and realm worlds.
237 	 *
238 	 * To prevent the leakage between the worlds during world switch,
239 	 * we enable it only for the non-secure world.
240 	 *
241 	 * If the Secure/realm world wants to use pointer authentication,
242 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
243 	 * it will be enabled globally for all the contexts.
244 	 *
245 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
246 	 *  other than EL3
247 	 *
248 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
249 	 *  than EL3
250 	 */
251 	if (is_armv8_3_pauth_present()) {
252 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
253 	}
254 #endif /* CTX_INCLUDE_PAUTH_REGS */
255 
256 #if HANDLE_EA_EL3_FIRST_NS
257 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
258 	scr_el3 |= SCR_EA_BIT;
259 #endif
260 
261 #if RAS_TRAP_NS_ERR_REC_ACCESS
262 	/*
263 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
264 	 * and RAS ERX registers from EL1 and EL2(from any security state)
265 	 * are trapped to EL3.
266 	 * Set here to trap only for NS EL1/EL2
267 	 */
268 	scr_el3 |= SCR_TERR_BIT;
269 #endif
270 
271 	/* CSV2 version 2 and above */
272 	if (is_feat_csv2_2_supported()) {
273 		/* Enable access to the SCXTNUM_ELx registers. */
274 		scr_el3 |= SCR_EnSCXT_BIT;
275 	}
276 
277 #ifdef IMAGE_BL31
278 	/*
279 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
280 	 *  indicated by the interrupt routing model for BL31.
281 	 */
282 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
283 #endif
284 
285 	if (is_feat_the_supported()) {
286 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
287 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
288 		 */
289 		scr_el3 |= SCR_RCWMASKEn_BIT;
290 	}
291 
292 	if (is_feat_sctlr2_supported()) {
293 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
294 		 * SCTLR2_ELx registers.
295 		 */
296 		scr_el3 |= SCR_SCTLR2En_BIT;
297 	}
298 
299 	if (is_feat_d128_supported()) {
300 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
301 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
302 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
303 		 */
304 		scr_el3 |= SCR_D128En_BIT;
305 	}
306 
307 	if (is_feat_fpmr_supported()) {
308 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
309 		 * register.
310 		 */
311 		scr_el3 |= SCR_EnFPM_BIT;
312 	}
313 
314 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
315 
316 	/* Initialize EL2 context registers */
317 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
318 
319 	/*
320 	 * Initialize SCTLR_EL2 context register with reset value.
321 	 */
322 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
323 
324 	if (is_feat_hcx_supported()) {
325 		/*
326 		 * Initialize register HCRX_EL2 with its init value.
327 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
328 		 * chance that this can lead to unexpected behavior in lower
329 		 * ELs that have not been updated since the introduction of
330 		 * this feature if not properly initialized, especially when
331 		 * it comes to those bits that enable/disable traps.
332 		 */
333 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
334 			HCRX_EL2_INIT_VAL);
335 	}
336 
337 	if (is_feat_fgt_supported()) {
338 		/*
339 		 * Initialize HFG*_EL2 registers with a default value so legacy
340 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
341 		 * of initialization for this feature.
342 		 */
343 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
344 			HFGITR_EL2_INIT_VAL);
345 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
346 			HFGRTR_EL2_INIT_VAL);
347 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
348 			HFGWTR_EL2_INIT_VAL);
349 	}
350 #else
351 	/* Initialize EL1 context registers */
352 	setup_el1_context(ctx, ep);
353 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
354 
355 	manage_extensions_nonsecure(ctx);
356 }
357 
358 /*******************************************************************************
359  * The following function performs initialization of the cpu_context 'ctx'
360  * for first use that is common to all security states, and sets the
361  * initial entrypoint state as specified by the entry_point_info structure.
362  *
363  * The EE and ST attributes are used to configure the endianness and secure
364  * timer availability for the new execution context.
365  ******************************************************************************/
366 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
367 {
368 	u_register_t scr_el3;
369 	u_register_t mdcr_el3;
370 	el3_state_t *state;
371 	gp_regs_t *gp_regs;
372 
373 	state = get_el3state_ctx(ctx);
374 
375 	/* Clear any residual register values from the context */
376 	zeromem(ctx, sizeof(*ctx));
377 
378 	/*
379 	 * The lower-EL context is zeroed so that no stale values leak to a world.
380 	 * It is assumed that an all-zero lower-EL context is good enough for it
381 	 * to boot correctly. However, there are very few registers where this
382 	 * is not true and some values need to be recreated.
383 	 */
384 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
385 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
386 
387 	/*
388 	 * These bits are set in the gicv3 driver. Losing them (especially the
389 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
390 	 */
391 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
392 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
393 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
394 
395 	/*
396 	 * The actlr_el2 register can be initialized in platform's reset handler
397 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
398 	 */
399 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
400 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
401 
402 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
403 	scr_el3 = SCR_RESET_VAL;
404 
405 	/*
406 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
407 	 *  EL2, EL1 and EL0 are not trapped to EL3.
408 	 *
409 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
410 	 *  EL2, EL1 and EL0 are not trapped to EL3.
411 	 *
412 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
413 	 *  both Security states and both Execution states.
414 	 *
415 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
416 	 *  Non-secure memory.
417 	 */
418 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
419 
420 	scr_el3 |= SCR_SIF_BIT;
421 
422 	/*
423 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
424 	 *  Exception level as specified by SPSR.
425 	 */
426 	if (GET_RW(ep->spsr) == MODE_RW_64) {
427 		scr_el3 |= SCR_RW_BIT;
428 	}
429 
430 	/*
431 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
432 	 * Secure timer registers to EL3, from AArch64 state only, if specified
433 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
434 	 * bit always behaves as 1 (i.e. secure physical timer register access
435 	 * is not trapped)
436 	 */
437 	if (EP_GET_ST(ep->h.attr) != 0U) {
438 		scr_el3 |= SCR_ST_BIT;
439 	}
440 
441 	/*
442 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
443 	 * SCR_EL3.HXEn.
444 	 */
445 	if (is_feat_hcx_supported()) {
446 		scr_el3 |= SCR_HXEn_BIT;
447 	}
448 
449 	/*
450 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
451 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
452 	 * SCR_EL3.EnAS0.
453 	 */
454 	if (is_feat_ls64_accdata_supported()) {
455 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
456 	}
457 
458 	/*
459 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
460 	 * registers are trapped to EL3.
461 	 */
462 	if (is_feat_rng_trap_supported()) {
463 		scr_el3 |= SCR_TRNDR_BIT;
464 	}
465 
466 #if FAULT_INJECTION_SUPPORT
467 	/* Enable fault injection from lower ELs */
468 	scr_el3 |= SCR_FIEN_BIT;
469 #endif
470 
471 #if CTX_INCLUDE_PAUTH_REGS
472 	/*
473 	 * Enable Pointer Authentication globally for all the worlds.
474 	 *
475 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
476 	 *  other than EL3
477 	 *
478 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
479 	 *  than EL3
480 	 */
481 	if (is_armv8_3_pauth_present()) {
482 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
483 	}
484 #endif /* CTX_INCLUDE_PAUTH_REGS */
485 
486 	/*
487 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
488 	 * registers for AArch64 if present.
489 	 */
490 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
491 		scr_el3 |= SCR_PIEN_BIT;
492 	}
493 
494 	/*
495 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
496 	 */
497 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
498 		scr_el3 |= SCR_GCSEn_BIT;
499 	}
500 
501 	/*
502 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
503 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
504 	 * next mode is Hyp.
505 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
506 	 * same conditions as HVC instructions and when the processor supports
507 	 * ARMv8.6-FGT.
508 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
509 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
510 	 * and when the processor supports ECV.
511 	 */
512 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
513 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
514 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
515 		scr_el3 |= SCR_HCE_BIT;
516 
517 		if (is_feat_fgt_supported()) {
518 			scr_el3 |= SCR_FGTEN_BIT;
519 		}
520 
521 		if (is_feat_ecv_supported()) {
522 			scr_el3 |= SCR_ECVEN_BIT;
523 		}
524 	}
525 
526 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
527 	if (is_feat_twed_supported()) {
528 		/* Set delay in SCR_EL3 */
529 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
530 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
531 				<< SCR_TWEDEL_SHIFT);
532 
533 		/* Enable WFE delay */
534 		scr_el3 |= SCR_TWEDEn_BIT;
535 	}
536 
537 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
538 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
539 	if (is_feat_sel2_supported()) {
540 		scr_el3 |= SCR_EEL2_BIT;
541 	}
542 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
543 
544 	if (is_feat_mec_supported()) {
545 		scr_el3 |= SCR_MECEn_BIT;
546 	}
547 
548 	/*
549 	 * Populate EL3 state so that we've the right context
550 	 * before doing ERET
551 	 */
552 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
553 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
554 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
555 
556 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
557 	mdcr_el3 = MDCR_EL3_RESET_VAL;
558 
559 	/* ---------------------------------------------------------------------
560 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
561 	 * Some fields are architecturally UNKNOWN on reset.
562 	 *
563 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
564 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
565 	 *  disabled from all ELs in Secure state.
566 	 *
567 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
568 	 *  privileged debug from S-EL1.
569 	 *
570 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
571 	 *  access to the powerdown debug registers do not trap to EL3.
572 	 *
573 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
574 	 *  debug registers, other than those registers that are controlled by
575 	 *  MDCR_EL3.TDOSA.
576 	 */
577 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
578 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
579 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
580 
581 #if IMAGE_BL31
582 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
583 	if (is_feat_trf_supported()) {
584 		trf_enable(ctx);
585 	}
586 
587 	if (is_feat_tcr2_supported()) {
588 		tcr2_enable(ctx);
589 	}
590 
591 	pmuv3_enable(ctx);
592 #endif /* IMAGE_BL31 */
593 
594 	/*
595 	 * Store the X0-X7 value from the entrypoint into the context
596 	 * Use memcpy as we are in control of the layout of the structures
597 	 */
598 	gp_regs = get_gpregs_ctx(ctx);
599 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
600 }
601 
602 /*******************************************************************************
603  * Context management library initialization routine. This library is used by
604  * runtime services to share pointers to 'cpu_context' structures for secure
605  * non-secure and realm states. Management of the structures and their associated
606  * memory is not done by the context management library e.g. the PSCI service
607  * manages the cpu context used for entry from and exit to the non-secure state.
608  * The Secure payload dispatcher service manages the context(s) corresponding to
609  * the secure state. It also uses this library to get access to the non-secure
610  * state cpu context pointers.
611  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
612  * which will be used for programming an entry into a lower EL. The same context
613  * will be used to save state upon exception entry from that EL.
614  ******************************************************************************/
615 void __init cm_init(void)
616 {
617 	/*
618 	 * The context management library has only global data to initialize, but
619 	 * that will be done when the BSS is zeroed out.
620 	 */
621 }
622 
623 /*******************************************************************************
624  * This is the high-level function used to initialize the cpu_context 'ctx' for
625  * first use. It performs initializations that are common to all security states
626  * and initializations specific to the security state specified in 'ep'
627  ******************************************************************************/
628 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
629 {
630 	unsigned int security_state;
631 
632 	assert(ctx != NULL);
633 
634 	/*
635 	 * Perform initializations that are common
636 	 * to all security states
637 	 */
638 	setup_context_common(ctx, ep);
639 
640 	security_state = GET_SECURITY_STATE(ep->h.attr);
641 
642 	/* Perform security state specific initializations */
643 	switch (security_state) {
644 	case SECURE:
645 		setup_secure_context(ctx, ep);
646 		break;
647 #if ENABLE_RME
648 	case REALM:
649 		setup_realm_context(ctx, ep);
650 		break;
651 #endif
652 	case NON_SECURE:
653 		setup_ns_context(ctx, ep);
654 		break;
655 	default:
656 		ERROR("Invalid security state\n");
657 		panic();
658 		break;
659 	}
660 }
661 
662 /*******************************************************************************
663  * Enable architecture extensions for EL3 execution. This function only updates
664  * registers in-place which are expected to either never change or be
665  * overwritten by el3_exit. Expects the core_pos of the current core as argument.
666  ******************************************************************************/
667 #if IMAGE_BL31
668 void cm_manage_extensions_el3(unsigned int my_idx)
669 {
670 	if (is_feat_sve_supported()) {
671 		sve_init_el3();
672 	}
673 
674 	if (is_feat_amu_supported()) {
675 		amu_init_el3(my_idx);
676 	}
677 
678 	if (is_feat_sme_supported()) {
679 		sme_init_el3();
680 	}
681 
682 	pmuv3_init_el3();
683 }
684 #endif /* IMAGE_BL31 */
685 
686 /******************************************************************************
687  * Function to initialise the registers with the RESET values in the context
688  * memory, which are maintained per world.
689  ******************************************************************************/
690 #if IMAGE_BL31
691 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
692 {
693 	/*
694 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
695 	 *
696 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
697 	 *  by Advanced SIMD, floating-point or SVE instructions (if
698 	 *  implemented) do not trap to EL3.
699 	 *
700 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
701 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
702 	 */
703 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
704 
705 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
706 
707 	/*
708 	 * Initialize MPAM3_EL3 to its default reset value
709 	 *
710 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
711 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
712 	 */
713 
714 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
715 }
716 #endif /* IMAGE_BL31 */
717 
718 /*******************************************************************************
719  * Initialise per_world_context for Non-Secure world.
720  * This function enables the architecture extensions, which have same value
721  * across the cores for the non-secure world.
722  ******************************************************************************/
723 #if IMAGE_BL31
724 void manage_extensions_nonsecure_per_world(void)
725 {
726 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
727 
728 	if (is_feat_sme_supported()) {
729 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
730 	}
731 
732 	if (is_feat_sve_supported()) {
733 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
734 	}
735 
736 	if (is_feat_amu_supported()) {
737 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
738 	}
739 
740 	if (is_feat_sys_reg_trace_supported()) {
741 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
742 	}
743 
744 	if (is_feat_mpam_supported()) {
745 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
746 	}
747 
748 	if (is_feat_fpmr_supported()) {
749 		fpmr_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
750 	}
751 }
752 #endif /* IMAGE_BL31 */
753 
754 /*******************************************************************************
755  * Initialise per_world_context for Secure world.
756  * This function enables the architecture extensions, which have same value
757  * across the cores for the secure world.
758  ******************************************************************************/
759 static void manage_extensions_secure_per_world(void)
760 {
761 #if IMAGE_BL31
762 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
763 
764 	if (is_feat_sme_supported()) {
765 
766 		if (ENABLE_SME_FOR_SWD) {
767 		/*
768 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
769 		 * SME, SVE, and FPU/SIMD context properly managed.
770 		 */
771 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
772 		} else {
773 		/*
774 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
775 		 * world can safely use the associated registers.
776 		 */
777 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
778 		}
779 	}
780 	if (is_feat_sve_supported()) {
781 		if (ENABLE_SVE_FOR_SWD) {
782 		/*
783 		 * Enable SVE and FPU in secure context, SPM must ensure
784 		 * that the SVE and FPU register contexts are properly managed.
785 		 */
786 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
787 		} else {
788 		/*
789 		 * Disable SVE and FPU in secure context so non-secure world
790 		 * can safely use them.
791 		 */
792 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
793 		}
794 	}
795 
796 	/* NS can access this but Secure shouldn't */
797 	if (is_feat_sys_reg_trace_supported()) {
798 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
799 	}
800 
801 	has_secure_perworld_init = true;
802 #endif /* IMAGE_BL31 */
803 }
804 
805 /*******************************************************************************
806  * Enable architecture extensions on first entry to Non-secure world.
807  ******************************************************************************/
808 static void manage_extensions_nonsecure(cpu_context_t *ctx)
809 {
810 #if IMAGE_BL31
811 	/* NOTE: registers are not context switched */
812 	if (is_feat_amu_supported()) {
813 		amu_enable(ctx);
814 	}
815 
816 	if (is_feat_sme_supported()) {
817 		sme_enable(ctx);
818 	}
819 
820 	if (is_feat_fgt2_supported()) {
821 		fgt2_enable(ctx);
822 	}
823 
824 	if (is_feat_debugv8p9_supported()) {
825 		debugv8p9_extended_bp_wp_enable(ctx);
826 	}
827 
828 	/*
829 	 * SPE, TRBE, and BRBE have multi-field enables that affect which world
830 	 * they apply to. Despite this, it is useful to ignore these for
831 	 * simplicity in determining the feature's per world enablement status.
832 	 * This is only possible when context is written per-world. Relied on
833 	 * by SMCCC_ARCH_FEATURE_AVAILABILITY
834 	 */
835 	if (is_feat_spe_supported()) {
836 		spe_enable(ctx);
837 	}
838 
839 	if (!check_if_trbe_disable_affected_core()) {
840 		if (is_feat_trbe_supported()) {
841 			trbe_enable(ctx);
842 		}
843 	}
844 
845 	if (is_feat_brbe_supported()) {
846 		brbe_enable(ctx);
847 	}
848 #endif /* IMAGE_BL31 */
849 }
850 
851 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
852 static __unused void enable_pauth_el2(void)
853 {
854 	u_register_t hcr_el2 = read_hcr_el2();
855 	/*
856 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
857 	 *  accessing key registers or using pointer authentication instructions
858 	 *  from lower ELs.
859 	 */
860 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
861 
862 	write_hcr_el2(hcr_el2);
863 }
864 
865 #if INIT_UNUSED_NS_EL2
866 /*******************************************************************************
867  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
868  * world when EL2 is empty and unused.
869  ******************************************************************************/
870 static void manage_extensions_nonsecure_el2_unused(void)
871 {
872 #if IMAGE_BL31
873 	if (is_feat_spe_supported()) {
874 		spe_init_el2_unused();
875 	}
876 
877 	if (is_feat_amu_supported()) {
878 		amu_init_el2_unused();
879 	}
880 
881 	if (is_feat_mpam_supported()) {
882 		mpam_init_el2_unused();
883 	}
884 
885 	if (is_feat_trbe_supported()) {
886 		trbe_init_el2_unused();
887 	}
888 
889 	if (is_feat_sys_reg_trace_supported()) {
890 		sys_reg_trace_init_el2_unused();
891 	}
892 
893 	if (is_feat_trf_supported()) {
894 		trf_init_el2_unused();
895 	}
896 
897 	pmuv3_init_el2_unused();
898 
899 	if (is_feat_sve_supported()) {
900 		sve_init_el2_unused();
901 	}
902 
903 	if (is_feat_sme_supported()) {
904 		sme_init_el2_unused();
905 	}
906 
907 	if (is_feat_mops_supported() && is_feat_hcx_supported()) {
908 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
909 	}
910 
911 #if ENABLE_PAUTH
912 	enable_pauth_el2();
913 #endif /* ENABLE_PAUTH */
914 #endif /* IMAGE_BL31 */
915 }
916 #endif /* INIT_UNUSED_NS_EL2 */
917 
918 /*******************************************************************************
919  * Enable architecture extensions on first entry to Secure world.
920  ******************************************************************************/
921 static void manage_extensions_secure(cpu_context_t *ctx)
922 {
923 #if IMAGE_BL31
924 	if (is_feat_sme_supported()) {
925 		if (ENABLE_SME_FOR_SWD) {
926 		/*
927 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
928 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
929 		 */
930 			sme_init_el3();
931 			sme_enable(ctx);
932 		} else {
933 		/*
934 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
935 		 * world can safely use the associated registers.
936 		 */
937 			sme_disable(ctx);
938 		}
939 	}
940 
941 	/*
942 	 * SPE and TRBE cannot be fully disabled from EL3 registers alone, only
943 	 * sysreg access can. In case the EL1 controls leave them active on
944 	 * context switch, we want the owning security state to be NS so Secure
945 	 * can't be DOSed.
946 	 */
947 	if (is_feat_spe_supported()) {
948 		spe_disable(ctx);
949 	}
950 
951 	if (is_feat_trbe_supported()) {
952 		trbe_disable(ctx);
953 	}
954 #endif /* IMAGE_BL31 */
955 }
956 
957 /*******************************************************************************
958  * The following function initializes the cpu_context for the current CPU
959  * for first use, and sets the initial entrypoint state as specified by the
960  * entry_point_info structure.
961  ******************************************************************************/
962 void cm_init_my_context(const entry_point_info_t *ep)
963 {
964 	cpu_context_t *ctx;
965 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
966 	cm_setup_context(ctx, ep);
967 }
968 
969 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
970 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
971 {
972 #if INIT_UNUSED_NS_EL2
973 	u_register_t hcr_el2 = HCR_RESET_VAL;
974 	u_register_t mdcr_el2;
975 	u_register_t scr_el3;
976 
977 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
978 
979 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
980 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
981 		hcr_el2 |= HCR_RW_BIT;
982 	}
983 
984 	write_hcr_el2(hcr_el2);
985 
986 	/*
987 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
988 	 * All fields have architecturally UNKNOWN reset values.
989 	 */
990 	write_cptr_el2(CPTR_EL2_RESET_VAL);
991 
992 	/*
993 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
994 	 * reset and are set to zero except for field(s) listed below.
995 	 *
996 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
997 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
998 	 *
999 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
1000 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
1001 	 */
1002 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
1003 
1004 	/*
1005 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
1006 	 * UNKNOWN value.
1007 	 */
1008 	write_cntvoff_el2(0);
1009 
1010 	/*
1011 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1012 	 * respectively.
1013 	 */
1014 	write_vpidr_el2(read_midr_el1());
1015 	write_vmpidr_el2(read_mpidr_el1());
1016 
1017 	/*
1018 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1019 	 *
1020 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1021 	 * translation is disabled, cache maintenance operations depend on the
1022 	 * VMID.
1023 	 *
1024 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1025 	 * disabled.
1026 	 */
1027 	write_vttbr_el2(VTTBR_RESET_VAL &
1028 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1029 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1030 
1031 	/*
1032 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1033 	 * Some fields are architecturally UNKNOWN on reset.
1034 	 *
1035 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1036 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1037 	 *
1038 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1039 	 * accesses to the powerdown debug registers are not trapped to EL2.
1040 	 *
1041 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1042 	 * debug registers do not trap to EL2.
1043 	 *
1044 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1045 	 * EL2.
1046 	 */
1047 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1048 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1049 		   MDCR_EL2_TDE_BIT);
1050 
1051 	write_mdcr_el2(mdcr_el2);
1052 
1053 	/*
1054 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1055 	 *
1056 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1057 	 * EL1 accesses to System registers do not trap to EL2.
1058 	 */
1059 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1060 
1061 	/*
1062 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1063 	 * reset.
1064 	 *
1065 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1066 	 * and prevent timer interrupts.
1067 	 */
1068 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1069 
1070 	manage_extensions_nonsecure_el2_unused();
1071 #endif /* INIT_UNUSED_NS_EL2 */
1072 }
1073 
1074 /*******************************************************************************
1075  * Prepare the CPU system registers for first entry into realm, secure, or
1076  * normal world.
1077  *
1078  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1079  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1080  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1081  * For all entries, the EL1 registers are initialized from the cpu_context
1082  ******************************************************************************/
1083 void cm_prepare_el3_exit(uint32_t security_state)
1084 {
1085 	u_register_t sctlr_el2, scr_el3;
1086 	cpu_context_t *ctx = cm_get_context(security_state);
1087 
1088 	assert(ctx != NULL);
1089 
1090 	if (security_state == NON_SECURE) {
1091 		uint64_t el2_implemented = el_implemented(2);
1092 
1093 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1094 						 CTX_SCR_EL3);
1095 
1096 		if (el2_implemented != EL_IMPL_NONE) {
1097 
1098 			/*
1099 			 * If context is not being used for EL2, initialize
1100 			 * HCRX_EL2 with its init value here.
1101 			 */
1102 			if (is_feat_hcx_supported()) {
1103 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1104 			}
1105 
1106 			/*
1107 			 * Initialize Fine-grained trap registers introduced
1108 			 * by FEAT_FGT so all traps are initially disabled when
1109 			 * switching to EL2 or a lower EL, preventing undesired
1110 			 * behavior.
1111 			 */
1112 			if (is_feat_fgt_supported()) {
1113 				/*
1114 				 * Initialize HFG*_EL2 registers with a default
1115 				 * value so legacy systems unaware of FEAT_FGT
1116 				 * do not get trapped due to their lack of
1117 				 * initialization for this feature.
1118 				 */
1119 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1120 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1121 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1122 			}
1123 
1124 			/* Condition to ensure EL2 is being used. */
1125 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1126 				/* Initialize SCTLR_EL2 register with reset value. */
1127 				sctlr_el2 = SCTLR_EL2_RES1;
1128 
1129 				/*
1130 				 * If workaround of errata 764081 for Cortex-A75
1131 				 * is used then set SCTLR_EL2.IESB to enable
1132 				 * Implicit Error Synchronization Barrier.
1133 				 */
1134 				if (errata_a75_764081_applies()) {
1135 					sctlr_el2 |= SCTLR_IESB_BIT;
1136 				}
1137 
1138 				write_sctlr_el2(sctlr_el2);
1139 			} else {
1140 				/*
1141 				 * (scr_el3 & SCR_HCE_BIT==0)
1142 				 * EL2 implemented but unused.
1143 				 */
1144 				init_nonsecure_el2_unused(ctx);
1145 			}
1146 		}
1147 	}
1148 #if (!CTX_INCLUDE_EL2_REGS)
1149 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1150 	cm_el1_sysregs_context_restore(security_state);
1151 #endif
1152 	cm_set_next_eret_context(security_state);
1153 }
1154 
1155 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1156 
1157 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1158 {
1159 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1160 	if (is_feat_amu_supported()) {
1161 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1162 	}
1163 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1164 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1165 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1166 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1167 }
1168 
1169 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1170 {
1171 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1172 	if (is_feat_amu_supported()) {
1173 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1174 	}
1175 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1176 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1177 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1178 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1179 }
1180 
1181 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1182 {
1183 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1184 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1185 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1186 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1187 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1188 }
1189 
1190 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1191 {
1192 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1193 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1194 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1195 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1196 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1197 }
1198 
1199 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1200 {
1201 	u_register_t mpam_idr = read_mpamidr_el1();
1202 
1203 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1204 
1205 	/*
1206 	 * The context registers that we intend to save would be part of the
1207 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1208 	 */
1209 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1210 		return;
1211 	}
1212 
1213 	/*
1214 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1215 	 * MPAMIDR_HAS_HCR_BIT == 1.
1216 	 */
1217 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1218 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1219 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1220 
1221 	/*
1222 	 * The number of MPAMVPM registers is implementation defined, their
1223 	 * number is stored in the MPAMIDR_EL1 register.
1224 	 */
1225 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1226 	case 7:
1227 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1228 		__fallthrough;
1229 	case 6:
1230 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1231 		__fallthrough;
1232 	case 5:
1233 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1234 		__fallthrough;
1235 	case 4:
1236 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1237 		__fallthrough;
1238 	case 3:
1239 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1240 		__fallthrough;
1241 	case 2:
1242 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1243 		__fallthrough;
1244 	case 1:
1245 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1246 		break;
1247 	}
1248 }
1249 
1250 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1251 {
1252 	u_register_t mpam_idr = read_mpamidr_el1();
1253 
1254 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1255 
1256 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1257 		return;
1258 	}
1259 
1260 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1261 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1262 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1263 
1264 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1265 	case 7:
1266 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1267 		__fallthrough;
1268 	case 6:
1269 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1270 		__fallthrough;
1271 	case 5:
1272 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1273 		__fallthrough;
1274 	case 4:
1275 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1276 		__fallthrough;
1277 	case 3:
1278 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1279 		__fallthrough;
1280 	case 2:
1281 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1282 		__fallthrough;
1283 	case 1:
1284 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1285 		break;
1286 	}
1287 }
1288 
1289 /* ---------------------------------------------------------------------------
1290  * The following registers are not added:
1291  * ICH_AP0R<n>_EL2
1292  * ICH_AP1R<n>_EL2
1293  * ICH_LR<n>_EL2
1294  *
1295  * NOTE: For a system with S-EL2 present but not enabled, accessing
1296  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1297  * SCR_EL3.NS = 1 before accessing this register.
1298  * ---------------------------------------------------------------------------
1299  */
1300 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1301 {
1302 	u_register_t scr_el3 = read_scr_el3();
1303 
1304 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1305 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1306 #else
1307 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1308 	isb();
1309 
1310 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1311 
1312 	write_scr_el3(scr_el3);
1313 	isb();
1314 #endif
1315 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1316 
1317 	if (errata_ich_vmcr_el2_applies()) {
1318 		if (security_state == SECURE) {
1319 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1320 		} else {
1321 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1322 		}
1323 		isb();
1324 	}
1325 
1326 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1327 
1328 	if (errata_ich_vmcr_el2_applies()) {
1329 		write_scr_el3(scr_el3);
1330 		isb();
1331 	}
1332 }
1333 
1334 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1335 {
1336 	u_register_t scr_el3 = read_scr_el3();
1337 
1338 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1339 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1340 #else
1341 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1342 	isb();
1343 
1344 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1345 
1346 	write_scr_el3(scr_el3);
1347 	isb();
1348 #endif
1349 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1350 
1351 	if (errata_ich_vmcr_el2_applies()) {
1352 		if (security_state == SECURE) {
1353 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1354 		} else {
1355 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1356 		}
1357 		isb();
1358 	}
1359 
1360 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1361 
1362 	if (errata_ich_vmcr_el2_applies()) {
1363 		write_scr_el3(scr_el3);
1364 		isb();
1365 	}
1366 }
1367 
1368 /* -----------------------------------------------------
1369  * The following registers are not added:
1370  * AMEVCNTVOFF0<n>_EL2
1371  * AMEVCNTVOFF1<n>_EL2
1372  * -----------------------------------------------------
1373  */
1374 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1375 {
1376 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1377 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1378 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1379 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1380 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1381 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1382 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1383 	if (CTX_INCLUDE_AARCH32_REGS) {
1384 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1385 	}
1386 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1387 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1388 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1389 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1390 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1391 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1392 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1393 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1394 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1395 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1396 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1397 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1398 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1399 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1400 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1401 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1402 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1403 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1404 
1405 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1406 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1407 }
1408 
1409 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1410 {
1411 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1412 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1413 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1414 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1415 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1416 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1417 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1418 	if (CTX_INCLUDE_AARCH32_REGS) {
1419 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1420 	}
1421 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1422 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1423 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1424 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1425 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1426 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1427 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1428 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1429 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1430 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1431 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1432 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1433 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1434 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1435 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1436 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1437 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1438 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1439 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1440 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1441 }
1442 
1443 /*******************************************************************************
1444  * Save EL2 sysreg context
1445  ******************************************************************************/
1446 void cm_el2_sysregs_context_save(uint32_t security_state)
1447 {
1448 	cpu_context_t *ctx;
1449 	el2_sysregs_t *el2_sysregs_ctx;
1450 
1451 	ctx = cm_get_context(security_state);
1452 	assert(ctx != NULL);
1453 
1454 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1455 
1456 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1457 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1458 
1459 	if (is_feat_mte2_supported()) {
1460 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1461 	}
1462 
1463 	if (is_feat_mpam_supported()) {
1464 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1465 	}
1466 
1467 	if (is_feat_fgt_supported()) {
1468 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1469 	}
1470 
1471 	if (is_feat_fgt2_supported()) {
1472 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1473 	}
1474 
1475 	if (is_feat_ecv_v2_supported()) {
1476 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1477 	}
1478 
1479 	if (is_feat_vhe_supported()) {
1480 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1481 					read_contextidr_el2());
1482 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1483 	}
1484 
1485 	if (is_feat_ras_supported()) {
1486 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1487 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1488 	}
1489 
1490 	if (is_feat_nv2_supported()) {
1491 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1492 	}
1493 
1494 	if (is_feat_trf_supported()) {
1495 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1496 	}
1497 
1498 	if (is_feat_csv2_2_supported()) {
1499 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1500 					read_scxtnum_el2());
1501 	}
1502 
1503 	if (is_feat_hcx_supported()) {
1504 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1505 	}
1506 
1507 	if (is_feat_tcr2_supported()) {
1508 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1509 	}
1510 
1511 	if (is_feat_sxpie_supported()) {
1512 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1513 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1514 	}
1515 
1516 	if (is_feat_sxpoe_supported()) {
1517 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1518 	}
1519 
1520 	if (is_feat_brbe_supported()) {
1521 		write_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2, read_brbcr_el2());
1522 	}
1523 
1524 	if (is_feat_s2pie_supported()) {
1525 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1526 	}
1527 
1528 	if (is_feat_gcs_supported()) {
1529 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1530 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1531 	}
1532 
1533 	if (is_feat_sctlr2_supported()) {
1534 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1535 	}
1536 }
1537 
1538 /*******************************************************************************
1539  * Restore EL2 sysreg context
1540  ******************************************************************************/
1541 void cm_el2_sysregs_context_restore(uint32_t security_state)
1542 {
1543 	cpu_context_t *ctx;
1544 	el2_sysregs_t *el2_sysregs_ctx;
1545 
1546 	ctx = cm_get_context(security_state);
1547 	assert(ctx != NULL);
1548 
1549 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1550 
1551 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1552 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1553 
1554 	if (is_feat_mte2_supported()) {
1555 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1556 	}
1557 
1558 	if (is_feat_mpam_supported()) {
1559 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1560 	}
1561 
1562 	if (is_feat_fgt_supported()) {
1563 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1564 	}
1565 
1566 	if (is_feat_fgt2_supported()) {
1567 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1568 	}
1569 
1570 	if (is_feat_ecv_v2_supported()) {
1571 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1572 	}
1573 
1574 	if (is_feat_vhe_supported()) {
1575 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1576 					contextidr_el2));
1577 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1578 	}
1579 
1580 	if (is_feat_ras_supported()) {
1581 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1582 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1583 	}
1584 
1585 	if (is_feat_nv2_supported()) {
1586 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1587 	}
1588 
1589 	if (is_feat_trf_supported()) {
1590 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1591 	}
1592 
1593 	if (is_feat_csv2_2_supported()) {
1594 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1595 					scxtnum_el2));
1596 	}
1597 
1598 	if (is_feat_hcx_supported()) {
1599 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1600 	}
1601 
1602 	if (is_feat_tcr2_supported()) {
1603 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1604 	}
1605 
1606 	if (is_feat_sxpie_supported()) {
1607 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1608 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1609 	}
1610 
1611 	if (is_feat_sxpoe_supported()) {
1612 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1613 	}
1614 
1615 	if (is_feat_s2pie_supported()) {
1616 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1617 	}
1618 
1619 	if (is_feat_gcs_supported()) {
1620 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1621 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1622 	}
1623 
1624 	if (is_feat_sctlr2_supported()) {
1625 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1626 	}
1627 
1628 	if (is_feat_brbe_supported()) {
1629 		write_brbcr_el2(read_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2));
1630 	}
1631 }
1632 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1633 
1634 /*******************************************************************************
1635  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1636  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1637  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1638  * cm_prepare_el3_exit function.
1639  ******************************************************************************/
1640 void cm_prepare_el3_exit_ns(void)
1641 {
1642 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1643 #if ENABLE_ASSERTIONS
1644 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1645 	assert(ctx != NULL);
1646 
1647 	/* Assert that EL2 is used. */
1648 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1649 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1650 			(el_implemented(2U) != EL_IMPL_NONE));
1651 #endif /* ENABLE_ASSERTIONS */
1652 
1653 	/* Restore EL2 sysreg contexts */
1654 	cm_el2_sysregs_context_restore(NON_SECURE);
1655 	cm_set_next_eret_context(NON_SECURE);
1656 #else
1657 	cm_prepare_el3_exit(NON_SECURE);
1658 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1659 }
1660 
1661 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1662 /*******************************************************************************
1663  * The next set of six functions are used by runtime services to save and restore
1664  * EL1 context on the 'cpu_context' structure for the specified security state.
1665  ******************************************************************************/
1666 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1667 {
1668 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1669 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1670 
1671 #if (!ERRATA_SPECULATIVE_AT)
1672 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1673 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1674 #endif /* (!ERRATA_SPECULATIVE_AT) */
1675 
1676 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1677 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1678 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1679 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1680 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1681 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1682 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1683 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1684 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1685 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1686 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1687 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1688 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1689 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1690 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1691 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1692 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1693 
1694 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1695 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1696 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1697 
1698 	if (CTX_INCLUDE_AARCH32_REGS) {
1699 		/* Save Aarch32 registers */
1700 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1701 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1702 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1703 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1704 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1705 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1706 	}
1707 
1708 	if (NS_TIMER_SWITCH) {
1709 		/* Save NS Timer registers */
1710 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1711 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1712 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1713 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1714 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1715 	}
1716 
1717 	if (is_feat_mte2_supported()) {
1718 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1719 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1720 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1721 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1722 	}
1723 
1724 	if (is_feat_ras_supported()) {
1725 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1726 	}
1727 
1728 	if (is_feat_s1pie_supported()) {
1729 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1730 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1731 	}
1732 
1733 	if (is_feat_s1poe_supported()) {
1734 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1735 	}
1736 
1737 	if (is_feat_s2poe_supported()) {
1738 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1739 	}
1740 
1741 	if (is_feat_tcr2_supported()) {
1742 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1743 	}
1744 
1745 	if (is_feat_trf_supported()) {
1746 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1747 	}
1748 
1749 	if (is_feat_csv2_2_supported()) {
1750 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1751 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1752 	}
1753 
1754 	if (is_feat_gcs_supported()) {
1755 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1756 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1757 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1758 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1759 	}
1760 
1761 	if (is_feat_the_supported()) {
1762 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1763 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1764 	}
1765 
1766 	if (is_feat_sctlr2_supported()) {
1767 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1768 	}
1769 
1770 	if (is_feat_ls64_accdata_supported()) {
1771 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1772 	}
1773 }
1774 
1775 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1776 {
1777 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1778 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1779 
1780 #if (!ERRATA_SPECULATIVE_AT)
1781 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1782 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1783 #endif /* (!ERRATA_SPECULATIVE_AT) */
1784 
1785 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1786 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1787 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1788 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1789 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1790 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1791 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1792 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1793 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1794 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1795 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1796 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1797 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1798 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1799 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1800 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1801 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1802 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1803 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1804 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1805 
1806 	if (CTX_INCLUDE_AARCH32_REGS) {
1807 		/* Restore Aarch32 registers */
1808 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1809 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1810 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1811 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1812 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1813 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1814 	}
1815 
1816 	if (NS_TIMER_SWITCH) {
1817 		/* Restore NS Timer registers */
1818 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1819 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1820 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1821 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1822 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1823 	}
1824 
1825 	if (is_feat_mte2_supported()) {
1826 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1827 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1828 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1829 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1830 	}
1831 
1832 	if (is_feat_ras_supported()) {
1833 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1834 	}
1835 
1836 	if (is_feat_s1pie_supported()) {
1837 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1838 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1839 	}
1840 
1841 	if (is_feat_s1poe_supported()) {
1842 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1843 	}
1844 
1845 	if (is_feat_s2poe_supported()) {
1846 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1847 	}
1848 
1849 	if (is_feat_tcr2_supported()) {
1850 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1851 	}
1852 
1853 	if (is_feat_trf_supported()) {
1854 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1855 	}
1856 
1857 	if (is_feat_csv2_2_supported()) {
1858 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1859 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1860 	}
1861 
1862 	if (is_feat_gcs_supported()) {
1863 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1864 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1865 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1866 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1867 	}
1868 
1869 	if (is_feat_the_supported()) {
1870 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1871 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1872 	}
1873 
1874 	if (is_feat_sctlr2_supported()) {
1875 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1876 	}
1877 
1878 	if (is_feat_ls64_accdata_supported()) {
1879 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1880 	}
1881 }
1882 
1883 /*******************************************************************************
1884  * The next couple of functions are used by runtime services to save and restore
1885  * EL1 context on the 'cpu_context' structure for the specified security state.
1886  ******************************************************************************/
1887 void cm_el1_sysregs_context_save(uint32_t security_state)
1888 {
1889 	cpu_context_t *ctx;
1890 
1891 	ctx = cm_get_context(security_state);
1892 	assert(ctx != NULL);
1893 
1894 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1895 
1896 #if IMAGE_BL31
1897 	if (security_state == SECURE) {
1898 		PUBLISH_EVENT(cm_exited_secure_world);
1899 	} else {
1900 		PUBLISH_EVENT(cm_exited_normal_world);
1901 	}
1902 #endif
1903 }
1904 
1905 void cm_el1_sysregs_context_restore(uint32_t security_state)
1906 {
1907 	cpu_context_t *ctx;
1908 
1909 	ctx = cm_get_context(security_state);
1910 	assert(ctx != NULL);
1911 
1912 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1913 
1914 #if IMAGE_BL31
1915 	if (security_state == SECURE) {
1916 		PUBLISH_EVENT(cm_entering_secure_world);
1917 	} else {
1918 		PUBLISH_EVENT(cm_entering_normal_world);
1919 	}
1920 #endif
1921 }
1922 
1923 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1924 
1925 /*******************************************************************************
1926  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1927  * given security state with the given entrypoint
1928  ******************************************************************************/
1929 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1930 {
1931 	cpu_context_t *ctx;
1932 	el3_state_t *state;
1933 
1934 	ctx = cm_get_context(security_state);
1935 	assert(ctx != NULL);
1936 
1937 	/* Populate EL3 state so that ERET jumps to the correct entry */
1938 	state = get_el3state_ctx(ctx);
1939 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1940 }
1941 
1942 /*******************************************************************************
1943  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1944  * pertaining to the given security state
1945  ******************************************************************************/
1946 void cm_set_elr_spsr_el3(uint32_t security_state,
1947 			uintptr_t entrypoint, uint32_t spsr)
1948 {
1949 	cpu_context_t *ctx;
1950 	el3_state_t *state;
1951 
1952 	ctx = cm_get_context(security_state);
1953 	assert(ctx != NULL);
1954 
1955 	/* Populate EL3 state so that ERET jumps to the correct entry */
1956 	state = get_el3state_ctx(ctx);
1957 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1958 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1959 }
1960 
1961 /*******************************************************************************
1962  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1963  * pertaining to the given security state using the value and bit position
1964  * specified in the parameters. It preserves all other bits.
1965  ******************************************************************************/
1966 void cm_write_scr_el3_bit(uint32_t security_state,
1967 			  uint32_t bit_pos,
1968 			  uint32_t value)
1969 {
1970 	cpu_context_t *ctx;
1971 	el3_state_t *state;
1972 	u_register_t scr_el3;
1973 
1974 	ctx = cm_get_context(security_state);
1975 	assert(ctx != NULL);
1976 
1977 	/* Ensure that the bit position is a valid one */
1978 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1979 
1980 	/* Ensure that the 'value' is only a bit wide */
1981 	assert(value <= 1U);
1982 
1983 	/*
1984 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1985 	 * and set it to its new value.
1986 	 */
1987 	state = get_el3state_ctx(ctx);
1988 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1989 	scr_el3 &= ~(1UL << bit_pos);
1990 	scr_el3 |= (u_register_t)value << bit_pos;
1991 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1992 }
1993 
1994 /*******************************************************************************
1995  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1996  * given security state.
1997  ******************************************************************************/
1998 u_register_t cm_get_scr_el3(uint32_t security_state)
1999 {
2000 	const cpu_context_t *ctx;
2001 	const el3_state_t *state;
2002 
2003 	ctx = cm_get_context(security_state);
2004 	assert(ctx != NULL);
2005 
2006 	/* Populate EL3 state so that ERET jumps to the correct entry */
2007 	state = get_el3state_ctx(ctx);
2008 	return read_ctx_reg(state, CTX_SCR_EL3);
2009 }
2010 
2011 /*******************************************************************************
2012  * This function is used to program the context that's used for exception
2013  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2014  * the required security state
2015  ******************************************************************************/
2016 void cm_set_next_eret_context(uint32_t security_state)
2017 {
2018 	cpu_context_t *ctx;
2019 
2020 	ctx = cm_get_context(security_state);
2021 	assert(ctx != NULL);
2022 
2023 	cm_set_next_context(ctx);
2024 }
2025