xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision e40b563e87fd4ff58474a289909a1827c8d2bca7)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/cpu_data.h>
24 #include <lib/el3_runtime/pubsub_events.h>
25 #include <lib/extensions/amu.h>
26 #include <lib/extensions/brbe.h>
27 #include <lib/extensions/mpam.h>
28 #include <lib/extensions/pmuv3.h>
29 #include <lib/extensions/sme.h>
30 #include <lib/extensions/spe.h>
31 #include <lib/extensions/sve.h>
32 #include <lib/extensions/sys_reg_trace.h>
33 #include <lib/extensions/trbe.h>
34 #include <lib/extensions/trf.h>
35 #include <lib/utils.h>
36 
37 #if ENABLE_FEAT_TWED
38 /* Make sure delay value fits within the range(0-15) */
39 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
40 #endif /* ENABLE_FEAT_TWED */
41 
42 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
43 static bool has_secure_perworld_init;
44 
45 static void manage_extensions_nonsecure(cpu_context_t *ctx);
46 static void manage_extensions_secure(cpu_context_t *ctx);
47 static void manage_extensions_secure_per_world(void);
48 
49 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
50 {
51 	u_register_t sctlr_elx, actlr_elx;
52 
53 	/*
54 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
55 	 * execution state setting all fields rather than relying on the hw.
56 	 * Some fields have architecturally UNKNOWN reset values and these are
57 	 * set to zero.
58 	 *
59 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
60 	 *
61 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
62 	 * required by PSCI specification)
63 	 */
64 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
65 	if (GET_RW(ep->spsr) == MODE_RW_64) {
66 		sctlr_elx |= SCTLR_EL1_RES1;
67 	} else {
68 		/*
69 		 * If the target execution state is AArch32 then the following
70 		 * fields need to be set.
71 		 *
72 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
73 		 *  instructions are not trapped to EL1.
74 		 *
75 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
76 		 *  instructions are not trapped to EL1.
77 		 *
78 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
79 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
80 		 */
81 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
82 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
83 	}
84 
85 #if ERRATA_A75_764081
86 	/*
87 	 * If workaround of errata 764081 for Cortex-A75 is used then set
88 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
89 	 */
90 	sctlr_elx |= SCTLR_IESB_BIT;
91 #endif
92 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
93 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
94 
95 	/*
96 	 * Base the context ACTLR_EL1 on the current value, as it is
97 	 * implementation defined. The context restore process will write
98 	 * the value from the context to the actual register and can cause
99 	 * problems for processor cores that don't expect certain bits to
100 	 * be zero.
101 	 */
102 	actlr_elx = read_actlr_el1();
103 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
104 }
105 
106 /******************************************************************************
107  * This function performs initializations that are specific to SECURE state
108  * and updates the cpu context specified by 'ctx'.
109  *****************************************************************************/
110 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
111 {
112 	u_register_t scr_el3;
113 	el3_state_t *state;
114 
115 	state = get_el3state_ctx(ctx);
116 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
117 
118 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
119 	/*
120 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
121 	 * indicated by the interrupt routing model for BL31.
122 	 */
123 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
124 #endif
125 
126 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
127 	if (is_feat_mte2_supported()) {
128 		scr_el3 |= SCR_ATA_BIT;
129 	}
130 
131 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
132 
133 	/*
134 	 * Initialize EL1 context registers unless SPMC is running
135 	 * at S-EL2.
136 	 */
137 #if !SPMD_SPM_AT_SEL2
138 	setup_el1_context(ctx, ep);
139 #endif
140 
141 	manage_extensions_secure(ctx);
142 
143 	/**
144 	 * manage_extensions_secure_per_world api has to be executed once,
145 	 * as the registers getting initialised, maintain constant value across
146 	 * all the cpus for the secure world.
147 	 * Henceforth, this check ensures that the registers are initialised once
148 	 * and avoids re-initialization from multiple cores.
149 	 */
150 	if (!has_secure_perworld_init) {
151 		manage_extensions_secure_per_world();
152 	}
153 
154 }
155 
156 #if ENABLE_RME
157 /******************************************************************************
158  * This function performs initializations that are specific to REALM state
159  * and updates the cpu context specified by 'ctx'.
160  *****************************************************************************/
161 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
162 {
163 	u_register_t scr_el3;
164 	el3_state_t *state;
165 
166 	state = get_el3state_ctx(ctx);
167 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
168 
169 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
170 
171 	/* CSV2 version 2 and above */
172 	if (is_feat_csv2_2_supported()) {
173 		/* Enable access to the SCXTNUM_ELx registers. */
174 		scr_el3 |= SCR_EnSCXT_BIT;
175 	}
176 
177 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
178 }
179 #endif /* ENABLE_RME */
180 
181 /******************************************************************************
182  * This function performs initializations that are specific to NON-SECURE state
183  * and updates the cpu context specified by 'ctx'.
184  *****************************************************************************/
185 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
186 {
187 	u_register_t scr_el3;
188 	el3_state_t *state;
189 
190 	state = get_el3state_ctx(ctx);
191 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
192 
193 	/* SCR_NS: Set the NS bit */
194 	scr_el3 |= SCR_NS_BIT;
195 
196 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
197 	if (is_feat_mte2_supported()) {
198 		scr_el3 |= SCR_ATA_BIT;
199 	}
200 
201 #if !CTX_INCLUDE_PAUTH_REGS
202 	/*
203 	 * Pointer Authentication feature, if present, is always enabled by default
204 	 * for Non secure lower exception levels. We do not have an explicit
205 	 * flag to set it.
206 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
207 	 * exception levels of secure and realm worlds.
208 	 *
209 	 * To prevent the leakage between the worlds during world switch,
210 	 * we enable it only for the non-secure world.
211 	 *
212 	 * If the Secure/realm world wants to use pointer authentication,
213 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
214 	 * it will be enabled globally for all the contexts.
215 	 *
216 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
217 	 *  other than EL3
218 	 *
219 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
220 	 *  than EL3
221 	 */
222 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
223 
224 #endif /* CTX_INCLUDE_PAUTH_REGS */
225 
226 #if HANDLE_EA_EL3_FIRST_NS
227 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
228 	scr_el3 |= SCR_EA_BIT;
229 #endif
230 
231 #if RAS_TRAP_NS_ERR_REC_ACCESS
232 	/*
233 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
234 	 * and RAS ERX registers from EL1 and EL2(from any security state)
235 	 * are trapped to EL3.
236 	 * Set here to trap only for NS EL1/EL2
237 	 *
238 	 */
239 	scr_el3 |= SCR_TERR_BIT;
240 #endif
241 
242 	/* CSV2 version 2 and above */
243 	if (is_feat_csv2_2_supported()) {
244 		/* Enable access to the SCXTNUM_ELx registers. */
245 		scr_el3 |= SCR_EnSCXT_BIT;
246 	}
247 
248 #ifdef IMAGE_BL31
249 	/*
250 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
251 	 *  indicated by the interrupt routing model for BL31.
252 	 */
253 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
254 #endif
255 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
256 
257 	/* Initialize EL1 context registers */
258 	setup_el1_context(ctx, ep);
259 
260 	/* Initialize EL2 context registers */
261 #if CTX_INCLUDE_EL2_REGS
262 
263 	/*
264 	 * Initialize SCTLR_EL2 context register using Endianness value
265 	 * taken from the entrypoint attribute.
266 	 */
267 	u_register_t sctlr_el2_val = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
268 	sctlr_el2_val |= SCTLR_EL2_RES1;
269 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, sctlr_el2_val);
270 
271 
272 	if (is_feat_hcx_supported()) {
273 		/*
274 		 * Initialize register HCRX_EL2 with its init value.
275 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
276 		 * chance that this can lead to unexpected behavior in lower
277 		 * ELs that have not been updated since the introduction of
278 		 * this feature if not properly initialized, especially when
279 		 * it comes to those bits that enable/disable traps.
280 		 */
281 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
282 			HCRX_EL2_INIT_VAL);
283 	}
284 
285 	if (is_feat_fgt_supported()) {
286 		/*
287 		 * Initialize HFG*_EL2 registers with a default value so legacy
288 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
289 		 * of initialization for this feature.
290 		 */
291 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
292 			HFGITR_EL2_INIT_VAL);
293 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
294 			HFGRTR_EL2_INIT_VAL);
295 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
296 			HFGWTR_EL2_INIT_VAL);
297 	}
298 
299 #endif /* CTX_INCLUDE_EL2_REGS */
300 
301 	manage_extensions_nonsecure(ctx);
302 }
303 
304 /*******************************************************************************
305  * The following function performs initialization of the cpu_context 'ctx'
306  * for first use that is common to all security states, and sets the
307  * initial entrypoint state as specified by the entry_point_info structure.
308  *
309  * The EE and ST attributes are used to configure the endianness and secure
310  * timer availability for the new execution context.
311  ******************************************************************************/
312 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
313 {
314 	u_register_t scr_el3;
315 	el3_state_t *state;
316 	gp_regs_t *gp_regs;
317 
318 	state = get_el3state_ctx(ctx);
319 
320 	/* Clear any residual register values from the context */
321 	zeromem(ctx, sizeof(*ctx));
322 
323 	/*
324 	 * The lower-EL context is zeroed so that no stale values leak to a world.
325 	 * It is assumed that an all-zero lower-EL context is good enough for it
326 	 * to boot correctly. However, there are very few registers where this
327 	 * is not true and some values need to be recreated.
328 	 */
329 #if CTX_INCLUDE_EL2_REGS
330 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
331 
332 	/*
333 	 * These bits are set in the gicv3 driver. Losing them (especially the
334 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
335 	 */
336 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
337 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
338 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
339 #endif /* CTX_INCLUDE_EL2_REGS */
340 
341 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
342 	scr_el3 = SCR_RESET_VAL;
343 
344 	/*
345 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
346 	 *  EL2, EL1 and EL0 are not trapped to EL3.
347 	 *
348 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
349 	 *  EL2, EL1 and EL0 are not trapped to EL3.
350 	 *
351 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
352 	 *  both Security states and both Execution states.
353 	 *
354 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
355 	 *  Non-secure memory.
356 	 */
357 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
358 
359 	scr_el3 |= SCR_SIF_BIT;
360 
361 	/*
362 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
363 	 *  Exception level as specified by SPSR.
364 	 */
365 	if (GET_RW(ep->spsr) == MODE_RW_64) {
366 		scr_el3 |= SCR_RW_BIT;
367 	}
368 
369 	/*
370 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
371 	 * Secure timer registers to EL3, from AArch64 state only, if specified
372 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
373 	 * bit always behaves as 1 (i.e. secure physical timer register access
374 	 * is not trapped)
375 	 */
376 	if (EP_GET_ST(ep->h.attr) != 0U) {
377 		scr_el3 |= SCR_ST_BIT;
378 	}
379 
380 	/*
381 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
382 	 * SCR_EL3.HXEn.
383 	 */
384 	if (is_feat_hcx_supported()) {
385 		scr_el3 |= SCR_HXEn_BIT;
386 	}
387 
388 	/*
389 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
390 	 * registers are trapped to EL3.
391 	 */
392 #if ENABLE_FEAT_RNG_TRAP
393 	scr_el3 |= SCR_TRNDR_BIT;
394 #endif
395 
396 #if FAULT_INJECTION_SUPPORT
397 	/* Enable fault injection from lower ELs */
398 	scr_el3 |= SCR_FIEN_BIT;
399 #endif
400 
401 #if CTX_INCLUDE_PAUTH_REGS
402 	/*
403 	 * Enable Pointer Authentication globally for all the worlds.
404 	 *
405 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
406 	 *  other than EL3
407 	 *
408 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
409 	 *  than EL3
410 	 */
411 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
412 #endif /* CTX_INCLUDE_PAUTH_REGS */
413 
414 	/*
415 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
416 	 */
417 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
418 		scr_el3 |= SCR_TCR2EN_BIT;
419 	}
420 
421 	/*
422 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
423 	 * registers for AArch64 if present.
424 	 */
425 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
426 		scr_el3 |= SCR_PIEN_BIT;
427 	}
428 
429 	/*
430 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
431 	 */
432 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
433 		scr_el3 |= SCR_GCSEn_BIT;
434 	}
435 
436 	/*
437 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
438 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
439 	 * next mode is Hyp.
440 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
441 	 * same conditions as HVC instructions and when the processor supports
442 	 * ARMv8.6-FGT.
443 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
444 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
445 	 * and when the processor supports ECV.
446 	 */
447 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
448 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
449 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
450 		scr_el3 |= SCR_HCE_BIT;
451 
452 		if (is_feat_fgt_supported()) {
453 			scr_el3 |= SCR_FGTEN_BIT;
454 		}
455 
456 		if (is_feat_ecv_supported()) {
457 			scr_el3 |= SCR_ECVEN_BIT;
458 		}
459 	}
460 
461 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
462 	if (is_feat_twed_supported()) {
463 		/* Set delay in SCR_EL3 */
464 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
465 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
466 				<< SCR_TWEDEL_SHIFT);
467 
468 		/* Enable WFE delay */
469 		scr_el3 |= SCR_TWEDEn_BIT;
470 	}
471 
472 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
473 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
474 	if (is_feat_sel2_supported()) {
475 		scr_el3 |= SCR_EEL2_BIT;
476 	}
477 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
478 
479 	/*
480 	 * Populate EL3 state so that we've the right context
481 	 * before doing ERET
482 	 */
483 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
484 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
485 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
486 
487 	/*
488 	 * Store the X0-X7 value from the entrypoint into the context
489 	 * Use memcpy as we are in control of the layout of the structures
490 	 */
491 	gp_regs = get_gpregs_ctx(ctx);
492 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
493 }
494 
495 /*******************************************************************************
496  * Context management library initialization routine. This library is used by
497  * runtime services to share pointers to 'cpu_context' structures for secure
498  * non-secure and realm states. Management of the structures and their associated
499  * memory is not done by the context management library e.g. the PSCI service
500  * manages the cpu context used for entry from and exit to the non-secure state.
501  * The Secure payload dispatcher service manages the context(s) corresponding to
502  * the secure state. It also uses this library to get access to the non-secure
503  * state cpu context pointers.
504  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
505  * which will be used for programming an entry into a lower EL. The same context
506  * will be used to save state upon exception entry from that EL.
507  ******************************************************************************/
508 void __init cm_init(void)
509 {
510 	/*
511 	 * The context management library has only global data to initialize, but
512 	 * that will be done when the BSS is zeroed out.
513 	 */
514 }
515 
516 /*******************************************************************************
517  * This is the high-level function used to initialize the cpu_context 'ctx' for
518  * first use. It performs initializations that are common to all security states
519  * and initializations specific to the security state specified in 'ep'
520  ******************************************************************************/
521 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
522 {
523 	unsigned int security_state;
524 
525 	assert(ctx != NULL);
526 
527 	/*
528 	 * Perform initializations that are common
529 	 * to all security states
530 	 */
531 	setup_context_common(ctx, ep);
532 
533 	security_state = GET_SECURITY_STATE(ep->h.attr);
534 
535 	/* Perform security state specific initializations */
536 	switch (security_state) {
537 	case SECURE:
538 		setup_secure_context(ctx, ep);
539 		break;
540 #if ENABLE_RME
541 	case REALM:
542 		setup_realm_context(ctx, ep);
543 		break;
544 #endif
545 	case NON_SECURE:
546 		setup_ns_context(ctx, ep);
547 		break;
548 	default:
549 		ERROR("Invalid security state\n");
550 		panic();
551 		break;
552 	}
553 }
554 
555 /*******************************************************************************
556  * Enable architecture extensions for EL3 execution. This function only updates
557  * registers in-place which are expected to either never change or be
558  * overwritten by el3_exit.
559  ******************************************************************************/
560 #if IMAGE_BL31
561 void cm_manage_extensions_el3(void)
562 {
563 	if (is_feat_spe_supported()) {
564 		spe_init_el3();
565 	}
566 
567 	if (is_feat_amu_supported()) {
568 		amu_init_el3();
569 	}
570 
571 	if (is_feat_sme_supported()) {
572 		sme_init_el3();
573 	}
574 
575 	if (is_feat_trbe_supported()) {
576 		trbe_init_el3();
577 	}
578 
579 	if (is_feat_brbe_supported()) {
580 		brbe_init_el3();
581 	}
582 
583 	if (is_feat_trf_supported()) {
584 		trf_init_el3();
585 	}
586 
587 	pmuv3_init_el3();
588 }
589 #endif /* IMAGE_BL31 */
590 
591 /******************************************************************************
592  * Function to initialise the registers with the RESET values in the context
593  * memory, which are maintained per world.
594  ******************************************************************************/
595 #if IMAGE_BL31
596 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
597 {
598 	/*
599 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
600 	 *
601 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
602 	 *  by Advanced SIMD, floating-point or SVE instructions (if
603 	 *  implemented) do not trap to EL3.
604 	 *
605 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
606 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
607 	 */
608 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
609 
610 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
611 
612 	/*
613 	 * Initialize MPAM3_EL3 to its default reset value
614 	 *
615 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
616 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
617 	 */
618 
619 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
620 }
621 #endif /* IMAGE_BL31 */
622 
623 /*******************************************************************************
624  * Initialise per_world_context for Non-Secure world.
625  * This function enables the architecture extensions, which have same value
626  * across the cores for the non-secure world.
627  ******************************************************************************/
628 #if IMAGE_BL31
629 void manage_extensions_nonsecure_per_world(void)
630 {
631 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
632 
633 	if (is_feat_sme_supported()) {
634 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
635 	}
636 
637 	if (is_feat_sve_supported()) {
638 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
639 	}
640 
641 	if (is_feat_amu_supported()) {
642 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
643 	}
644 
645 	if (is_feat_sys_reg_trace_supported()) {
646 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
647 	}
648 
649 	if (is_feat_mpam_supported()) {
650 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
651 	}
652 }
653 #endif /* IMAGE_BL31 */
654 
655 /*******************************************************************************
656  * Initialise per_world_context for Secure world.
657  * This function enables the architecture extensions, which have same value
658  * across the cores for the secure world.
659  ******************************************************************************/
660 static void manage_extensions_secure_per_world(void)
661 {
662 #if IMAGE_BL31
663 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
664 
665 	if (is_feat_sme_supported()) {
666 
667 		if (ENABLE_SME_FOR_SWD) {
668 		/*
669 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
670 		 * SME, SVE, and FPU/SIMD context properly managed.
671 		 */
672 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
673 		} else {
674 		/*
675 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
676 		 * world can safely use the associated registers.
677 		 */
678 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
679 		}
680 	}
681 	if (is_feat_sve_supported()) {
682 		if (ENABLE_SVE_FOR_SWD) {
683 		/*
684 		 * Enable SVE and FPU in secure context, SPM must ensure
685 		 * that the SVE and FPU register contexts are properly managed.
686 		 */
687 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
688 		} else {
689 		/*
690 		 * Disable SVE and FPU in secure context so non-secure world
691 		 * can safely use them.
692 		 */
693 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
694 		}
695 	}
696 
697 	/* NS can access this but Secure shouldn't */
698 	if (is_feat_sys_reg_trace_supported()) {
699 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
700 	}
701 
702 	has_secure_perworld_init = true;
703 #endif /* IMAGE_BL31 */
704 }
705 
706 /*******************************************************************************
707  * Enable architecture extensions on first entry to Non-secure world.
708  ******************************************************************************/
709 static void manage_extensions_nonsecure(cpu_context_t *ctx)
710 {
711 #if IMAGE_BL31
712 	if (is_feat_amu_supported()) {
713 		amu_enable(ctx);
714 	}
715 
716 	if (is_feat_sme_supported()) {
717 		sme_enable(ctx);
718 	}
719 
720 	pmuv3_enable(ctx);
721 #endif /* IMAGE_BL31 */
722 }
723 
724 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
725 static __unused void enable_pauth_el2(void)
726 {
727 	u_register_t hcr_el2 = read_hcr_el2();
728 	/*
729 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
730 	 *  accessing key registers or using pointer authentication instructions
731 	 *  from lower ELs.
732 	 */
733 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
734 
735 	write_hcr_el2(hcr_el2);
736 }
737 
738 #if INIT_UNUSED_NS_EL2
739 /*******************************************************************************
740  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
741  * world when EL2 is empty and unused.
742  ******************************************************************************/
743 static void manage_extensions_nonsecure_el2_unused(void)
744 {
745 #if IMAGE_BL31
746 	if (is_feat_spe_supported()) {
747 		spe_init_el2_unused();
748 	}
749 
750 	if (is_feat_amu_supported()) {
751 		amu_init_el2_unused();
752 	}
753 
754 	if (is_feat_mpam_supported()) {
755 		mpam_init_el2_unused();
756 	}
757 
758 	if (is_feat_trbe_supported()) {
759 		trbe_init_el2_unused();
760 	}
761 
762 	if (is_feat_sys_reg_trace_supported()) {
763 		sys_reg_trace_init_el2_unused();
764 	}
765 
766 	if (is_feat_trf_supported()) {
767 		trf_init_el2_unused();
768 	}
769 
770 	pmuv3_init_el2_unused();
771 
772 	if (is_feat_sve_supported()) {
773 		sve_init_el2_unused();
774 	}
775 
776 	if (is_feat_sme_supported()) {
777 		sme_init_el2_unused();
778 	}
779 
780 #if ENABLE_PAUTH
781 	enable_pauth_el2();
782 #endif /* ENABLE_PAUTH */
783 #endif /* IMAGE_BL31 */
784 }
785 #endif /* INIT_UNUSED_NS_EL2 */
786 
787 /*******************************************************************************
788  * Enable architecture extensions on first entry to Secure world.
789  ******************************************************************************/
790 static void manage_extensions_secure(cpu_context_t *ctx)
791 {
792 #if IMAGE_BL31
793 	if (is_feat_sme_supported()) {
794 		if (ENABLE_SME_FOR_SWD) {
795 		/*
796 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
797 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
798 		 */
799 			sme_init_el3();
800 			sme_enable(ctx);
801 		} else {
802 		/*
803 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
804 		 * world can safely use the associated registers.
805 		 */
806 			sme_disable(ctx);
807 		}
808 	}
809 #endif /* IMAGE_BL31 */
810 }
811 
812 /*******************************************************************************
813  * The following function initializes the cpu_context for a CPU specified by
814  * its `cpu_idx` for first use, and sets the initial entrypoint state as
815  * specified by the entry_point_info structure.
816  ******************************************************************************/
817 void cm_init_context_by_index(unsigned int cpu_idx,
818 			      const entry_point_info_t *ep)
819 {
820 	cpu_context_t *ctx;
821 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
822 	cm_setup_context(ctx, ep);
823 }
824 
825 /*******************************************************************************
826  * The following function initializes the cpu_context for the current CPU
827  * for first use, and sets the initial entrypoint state as specified by the
828  * entry_point_info structure.
829  ******************************************************************************/
830 void cm_init_my_context(const entry_point_info_t *ep)
831 {
832 	cpu_context_t *ctx;
833 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
834 	cm_setup_context(ctx, ep);
835 }
836 
837 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
838 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
839 {
840 #if INIT_UNUSED_NS_EL2
841 	u_register_t hcr_el2 = HCR_RESET_VAL;
842 	u_register_t mdcr_el2;
843 	u_register_t scr_el3;
844 
845 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
846 
847 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
848 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
849 		hcr_el2 |= HCR_RW_BIT;
850 	}
851 
852 	write_hcr_el2(hcr_el2);
853 
854 	/*
855 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
856 	 * All fields have architecturally UNKNOWN reset values.
857 	 */
858 	write_cptr_el2(CPTR_EL2_RESET_VAL);
859 
860 	/*
861 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
862 	 * reset and are set to zero except for field(s) listed below.
863 	 *
864 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
865 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
866 	 *
867 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
868 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
869 	 */
870 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
871 
872 	/*
873 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
874 	 * UNKNOWN value.
875 	 */
876 	write_cntvoff_el2(0);
877 
878 	/*
879 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
880 	 * respectively.
881 	 */
882 	write_vpidr_el2(read_midr_el1());
883 	write_vmpidr_el2(read_mpidr_el1());
884 
885 	/*
886 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
887 	 *
888 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
889 	 * translation is disabled, cache maintenance operations depend on the
890 	 * VMID.
891 	 *
892 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
893 	 * disabled.
894 	 */
895 	write_vttbr_el2(VTTBR_RESET_VAL &
896 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
897 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
898 
899 	/*
900 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
901 	 * Some fields are architecturally UNKNOWN on reset.
902 	 *
903 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
904 	 * register accesses to the Debug ROM registers are not trapped to EL2.
905 	 *
906 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
907 	 * accesses to the powerdown debug registers are not trapped to EL2.
908 	 *
909 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
910 	 * debug registers do not trap to EL2.
911 	 *
912 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
913 	 * EL2.
914 	 */
915 	mdcr_el2 = MDCR_EL2_RESET_VAL &
916 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
917 		   MDCR_EL2_TDE_BIT);
918 
919 	write_mdcr_el2(mdcr_el2);
920 
921 	/*
922 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
923 	 *
924 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
925 	 * EL1 accesses to System registers do not trap to EL2.
926 	 */
927 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
928 
929 	/*
930 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
931 	 * reset.
932 	 *
933 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
934 	 * and prevent timer interrupts.
935 	 */
936 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
937 
938 	manage_extensions_nonsecure_el2_unused();
939 #endif /* INIT_UNUSED_NS_EL2 */
940 }
941 
942 /*******************************************************************************
943  * Prepare the CPU system registers for first entry into realm, secure, or
944  * normal world.
945  *
946  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
947  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
948  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
949  * For all entries, the EL1 registers are initialized from the cpu_context
950  ******************************************************************************/
951 void cm_prepare_el3_exit(uint32_t security_state)
952 {
953 	u_register_t sctlr_elx, scr_el3;
954 	cpu_context_t *ctx = cm_get_context(security_state);
955 
956 	assert(ctx != NULL);
957 
958 	if (security_state == NON_SECURE) {
959 		uint64_t el2_implemented = el_implemented(2);
960 
961 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
962 						 CTX_SCR_EL3);
963 
964 		if (el2_implemented != EL_IMPL_NONE) {
965 
966 			/*
967 			 * If context is not being used for EL2, initialize
968 			 * HCRX_EL2 with its init value here.
969 			 */
970 			if (is_feat_hcx_supported()) {
971 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
972 			}
973 
974 			/*
975 			 * Initialize Fine-grained trap registers introduced
976 			 * by FEAT_FGT so all traps are initially disabled when
977 			 * switching to EL2 or a lower EL, preventing undesired
978 			 * behavior.
979 			 */
980 			if (is_feat_fgt_supported()) {
981 				/*
982 				 * Initialize HFG*_EL2 registers with a default
983 				 * value so legacy systems unaware of FEAT_FGT
984 				 * do not get trapped due to their lack of
985 				 * initialization for this feature.
986 				 */
987 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
988 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
989 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
990 			}
991 
992 			/* Condition to ensure EL2 is being used. */
993 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
994 				/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
995 				sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
996 								CTX_SCTLR_EL1);
997 				sctlr_elx &= SCTLR_EE_BIT;
998 				sctlr_elx |= SCTLR_EL2_RES1;
999 #if ERRATA_A75_764081
1000 				/*
1001 				 * If workaround of errata 764081 for Cortex-A75
1002 				 * is used then set SCTLR_EL2.IESB to enable
1003 				 * Implicit Error Synchronization Barrier.
1004 				 */
1005 				sctlr_elx |= SCTLR_IESB_BIT;
1006 #endif /* ERRATA_A75_764081 */
1007 				write_sctlr_el2(sctlr_elx);
1008 			} else {
1009 				/*
1010 				 * (scr_el3 & SCR_HCE_BIT==0)
1011 				 * EL2 implemented but unused.
1012 				 */
1013 				init_nonsecure_el2_unused(ctx);
1014 			}
1015 		}
1016 	}
1017 	cm_el1_sysregs_context_restore(security_state);
1018 	cm_set_next_eret_context(security_state);
1019 }
1020 
1021 #if CTX_INCLUDE_EL2_REGS
1022 
1023 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1024 {
1025 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1026 	if (is_feat_amu_supported()) {
1027 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1028 	}
1029 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1030 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1031 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1032 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1033 }
1034 
1035 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1036 {
1037 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1038 	if (is_feat_amu_supported()) {
1039 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1040 	}
1041 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1042 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1043 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1044 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1045 }
1046 
1047 #if CTX_INCLUDE_MPAM_REGS
1048 
1049 static void el2_sysregs_context_save_mpam(mpam_t *ctx)
1050 {
1051 	u_register_t mpam_idr = read_mpamidr_el1();
1052 
1053 	write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
1054 
1055 	/*
1056 	 * The context registers that we intend to save would be part of the
1057 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1058 	 */
1059 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1060 		return;
1061 	}
1062 
1063 	/*
1064 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1065 	 * MPAMIDR_HAS_HCR_BIT == 1.
1066 	 */
1067 	write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
1068 	write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
1069 	write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
1070 
1071 	/*
1072 	 * The number of MPAMVPM registers is implementation defined, their
1073 	 * number is stored in the MPAMIDR_EL1 register.
1074 	 */
1075 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1076 	case 7:
1077 		write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
1078 		__fallthrough;
1079 	case 6:
1080 		write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
1081 		__fallthrough;
1082 	case 5:
1083 		write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
1084 		__fallthrough;
1085 	case 4:
1086 		write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
1087 		__fallthrough;
1088 	case 3:
1089 		write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
1090 		__fallthrough;
1091 	case 2:
1092 		write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
1093 		__fallthrough;
1094 	case 1:
1095 		write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
1096 		break;
1097 	}
1098 }
1099 
1100 #endif /* CTX_INCLUDE_MPAM_REGS */
1101 
1102 #if CTX_INCLUDE_MPAM_REGS
1103 static void el2_sysregs_context_restore_mpam(mpam_t *ctx)
1104 {
1105 	u_register_t mpam_idr = read_mpamidr_el1();
1106 
1107 	write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
1108 
1109 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1110 		return;
1111 	}
1112 
1113 	write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
1114 	write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
1115 	write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
1116 
1117 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1118 	case 7:
1119 		write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
1120 		__fallthrough;
1121 	case 6:
1122 		write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
1123 		__fallthrough;
1124 	case 5:
1125 		write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
1126 		__fallthrough;
1127 	case 4:
1128 		write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
1129 		__fallthrough;
1130 	case 3:
1131 		write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
1132 		__fallthrough;
1133 	case 2:
1134 		write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
1135 		__fallthrough;
1136 	case 1:
1137 		write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
1138 		break;
1139 	}
1140 }
1141 #endif /* CTX_INCLUDE_MPAM_REGS */
1142 
1143 /* ---------------------------------------------------------------------------
1144  * The following registers are not added:
1145  * ICH_AP0R<n>_EL2
1146  * ICH_AP1R<n>_EL2
1147  * ICH_LR<n>_EL2
1148  *
1149  * NOTE: For a system with S-EL2 present but not enabled, accessing
1150  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1151  * SCR_EL3.NS = 1 before accessing this register.
1152  * ---------------------------------------------------------------------------
1153  */
1154 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx)
1155 {
1156 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1157 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1158 #else
1159 	u_register_t scr_el3 = read_scr_el3();
1160 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1161 	isb();
1162 
1163 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1164 
1165 	write_scr_el3(scr_el3);
1166 	isb();
1167 #endif
1168 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1169 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1170 }
1171 
1172 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx)
1173 {
1174 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1175 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1176 #else
1177 	u_register_t scr_el3 = read_scr_el3();
1178 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1179 	isb();
1180 
1181 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1182 
1183 	write_scr_el3(scr_el3);
1184 	isb();
1185 #endif
1186 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1187 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1188 }
1189 
1190 /* -----------------------------------------------------
1191  * The following registers are not added:
1192  * AMEVCNTVOFF0<n>_EL2
1193  * AMEVCNTVOFF1<n>_EL2
1194  * -----------------------------------------------------
1195  */
1196 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1197 {
1198 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1199 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1200 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1201 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1202 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1203 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1204 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1205 	if (CTX_INCLUDE_AARCH32_REGS) {
1206 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1207 	}
1208 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1209 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1210 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1211 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1212 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1213 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1214 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1215 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1216 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1217 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1218 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1219 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1220 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1221 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1222 	write_el2_ctx_common(ctx, ttbr0_el2, read_ttbr0_el2());
1223 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1224 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1225 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1226 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1227 	write_el2_ctx_common(ctx, vttbr_el2, read_vttbr_el2());
1228 }
1229 
1230 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1231 {
1232 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1233 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1234 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1235 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1236 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1237 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1238 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1239 	if (CTX_INCLUDE_AARCH32_REGS) {
1240 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1241 	}
1242 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1243 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1244 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1245 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1246 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1247 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1248 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1249 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1250 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1251 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1252 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1253 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1254 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1255 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1256 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1257 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1258 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1259 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1260 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1261 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1262 }
1263 
1264 /*******************************************************************************
1265  * Save EL2 sysreg context
1266  ******************************************************************************/
1267 void cm_el2_sysregs_context_save(uint32_t security_state)
1268 {
1269 	cpu_context_t *ctx;
1270 	el2_sysregs_t *el2_sysregs_ctx;
1271 
1272 	ctx = cm_get_context(security_state);
1273 	assert(ctx != NULL);
1274 
1275 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1276 
1277 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1278 	el2_sysregs_context_save_gic(el2_sysregs_ctx);
1279 
1280 	if (is_feat_mte2_supported()) {
1281 		write_el2_ctx_mte(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1282 	}
1283 
1284 #if CTX_INCLUDE_MPAM_REGS
1285 	if (is_feat_mpam_supported()) {
1286 		mpam_t *mpam_ctx = get_mpam_ctx(ctx);
1287 		el2_sysregs_context_save_mpam(mpam_ctx);
1288 	}
1289 #endif
1290 
1291 	if (is_feat_fgt_supported()) {
1292 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1293 	}
1294 
1295 	if (is_feat_ecv_v2_supported()) {
1296 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1297 	}
1298 
1299 	if (is_feat_vhe_supported()) {
1300 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1301 					read_contextidr_el2());
1302 		write_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1303 	}
1304 
1305 	if (is_feat_ras_supported()) {
1306 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1307 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1308 	}
1309 
1310 	if (is_feat_nv2_supported()) {
1311 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1312 	}
1313 
1314 	if (is_feat_trf_supported()) {
1315 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1316 	}
1317 
1318 	if (is_feat_csv2_2_supported()) {
1319 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1320 					read_scxtnum_el2());
1321 	}
1322 
1323 	if (is_feat_hcx_supported()) {
1324 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1325 	}
1326 
1327 	if (is_feat_tcr2_supported()) {
1328 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1329 	}
1330 
1331 	if (is_feat_sxpie_supported()) {
1332 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1333 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1334 	}
1335 
1336 	if (is_feat_sxpoe_supported()) {
1337 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1338 	}
1339 
1340 	if (is_feat_s2pie_supported()) {
1341 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1342 	}
1343 
1344 	if (is_feat_gcs_supported()) {
1345 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1346 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1347 	}
1348 }
1349 
1350 /*******************************************************************************
1351  * Restore EL2 sysreg context
1352  ******************************************************************************/
1353 void cm_el2_sysregs_context_restore(uint32_t security_state)
1354 {
1355 	cpu_context_t *ctx;
1356 	el2_sysregs_t *el2_sysregs_ctx;
1357 
1358 	ctx = cm_get_context(security_state);
1359 	assert(ctx != NULL);
1360 
1361 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1362 
1363 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1364 	el2_sysregs_context_restore_gic(el2_sysregs_ctx);
1365 
1366 	if (is_feat_mte2_supported()) {
1367 		write_tfsr_el2(read_el2_ctx_mte(el2_sysregs_ctx, tfsr_el2));
1368 	}
1369 
1370 #if CTX_INCLUDE_MPAM_REGS
1371 	if (is_feat_mpam_supported()) {
1372 		mpam_t *mpam_ctx = get_mpam_ctx(ctx);
1373 		el2_sysregs_context_restore_mpam(mpam_ctx);
1374 	}
1375 #endif
1376 
1377 	if (is_feat_fgt_supported()) {
1378 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1379 	}
1380 
1381 	if (is_feat_ecv_v2_supported()) {
1382 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1383 	}
1384 
1385 	if (is_feat_vhe_supported()) {
1386 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1387 					contextidr_el2));
1388 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1389 	}
1390 
1391 	if (is_feat_ras_supported()) {
1392 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1393 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1394 	}
1395 
1396 	if (is_feat_nv2_supported()) {
1397 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1398 	}
1399 
1400 	if (is_feat_trf_supported()) {
1401 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1402 	}
1403 
1404 	if (is_feat_csv2_2_supported()) {
1405 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1406 					scxtnum_el2));
1407 	}
1408 
1409 	if (is_feat_hcx_supported()) {
1410 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1411 	}
1412 
1413 	if (is_feat_tcr2_supported()) {
1414 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1415 	}
1416 
1417 	if (is_feat_sxpie_supported()) {
1418 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1419 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1420 	}
1421 
1422 	if (is_feat_sxpoe_supported()) {
1423 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1424 	}
1425 
1426 	if (is_feat_s2pie_supported()) {
1427 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1428 	}
1429 
1430 	if (is_feat_gcs_supported()) {
1431 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1432 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1433 	}
1434 }
1435 #endif /* CTX_INCLUDE_EL2_REGS */
1436 
1437 /*******************************************************************************
1438  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1439  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1440  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1441  * cm_prepare_el3_exit function.
1442  ******************************************************************************/
1443 void cm_prepare_el3_exit_ns(void)
1444 {
1445 #if CTX_INCLUDE_EL2_REGS
1446 #if ENABLE_ASSERTIONS
1447 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1448 	assert(ctx != NULL);
1449 
1450 	/* Assert that EL2 is used. */
1451 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1452 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1453 			(el_implemented(2U) != EL_IMPL_NONE));
1454 #endif /* ENABLE_ASSERTIONS */
1455 
1456 	/* Restore EL2 and EL1 sysreg contexts */
1457 	cm_el2_sysregs_context_restore(NON_SECURE);
1458 	cm_el1_sysregs_context_restore(NON_SECURE);
1459 	cm_set_next_eret_context(NON_SECURE);
1460 #else
1461 	cm_prepare_el3_exit(NON_SECURE);
1462 #endif /* CTX_INCLUDE_EL2_REGS */
1463 }
1464 
1465 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1466 {
1467 	write_ctx_reg(ctx, CTX_SPSR_EL1, read_spsr_el1());
1468 	write_ctx_reg(ctx, CTX_ELR_EL1, read_elr_el1());
1469 
1470 #if !ERRATA_SPECULATIVE_AT
1471 	write_ctx_reg(ctx, CTX_SCTLR_EL1, read_sctlr_el1());
1472 	write_ctx_reg(ctx, CTX_TCR_EL1, read_tcr_el1());
1473 #endif /* (!ERRATA_SPECULATIVE_AT) */
1474 
1475 	write_ctx_reg(ctx, CTX_CPACR_EL1, read_cpacr_el1());
1476 	write_ctx_reg(ctx, CTX_CSSELR_EL1, read_csselr_el1());
1477 	write_ctx_reg(ctx, CTX_SP_EL1, read_sp_el1());
1478 	write_ctx_reg(ctx, CTX_ESR_EL1, read_esr_el1());
1479 	write_ctx_reg(ctx, CTX_TTBR0_EL1, read_ttbr0_el1());
1480 	write_ctx_reg(ctx, CTX_TTBR1_EL1, read_ttbr1_el1());
1481 	write_ctx_reg(ctx, CTX_MAIR_EL1, read_mair_el1());
1482 	write_ctx_reg(ctx, CTX_AMAIR_EL1, read_amair_el1());
1483 	write_ctx_reg(ctx, CTX_ACTLR_EL1, read_actlr_el1());
1484 	write_ctx_reg(ctx, CTX_TPIDR_EL1, read_tpidr_el1());
1485 	write_ctx_reg(ctx, CTX_TPIDR_EL0, read_tpidr_el0());
1486 	write_ctx_reg(ctx, CTX_TPIDRRO_EL0, read_tpidrro_el0());
1487 	write_ctx_reg(ctx, CTX_PAR_EL1, read_par_el1());
1488 	write_ctx_reg(ctx, CTX_FAR_EL1, read_far_el1());
1489 	write_ctx_reg(ctx, CTX_AFSR0_EL1, read_afsr0_el1());
1490 	write_ctx_reg(ctx, CTX_AFSR1_EL1, read_afsr1_el1());
1491 	write_ctx_reg(ctx, CTX_CONTEXTIDR_EL1, read_contextidr_el1());
1492 	write_ctx_reg(ctx, CTX_VBAR_EL1, read_vbar_el1());
1493 	write_ctx_reg(ctx, CTX_MDCCINT_EL1, read_mdccint_el1());
1494 	write_ctx_reg(ctx, CTX_MDSCR_EL1, read_mdscr_el1());
1495 
1496 #if CTX_INCLUDE_AARCH32_REGS
1497 	write_ctx_reg(ctx, CTX_SPSR_ABT, read_spsr_abt());
1498 	write_ctx_reg(ctx, CTX_SPSR_UND, read_spsr_und());
1499 	write_ctx_reg(ctx, CTX_SPSR_IRQ, read_spsr_irq());
1500 	write_ctx_reg(ctx, CTX_SPSR_FIQ, read_spsr_fiq());
1501 	write_ctx_reg(ctx, CTX_DACR32_EL2, read_dacr32_el2());
1502 	write_ctx_reg(ctx, CTX_IFSR32_EL2, read_ifsr32_el2());
1503 #endif /* CTX_INCLUDE_AARCH32_REGS */
1504 
1505 #if NS_TIMER_SWITCH
1506 	write_ctx_reg(ctx, CTX_CNTP_CTL_EL0, read_cntp_ctl_el0());
1507 	write_ctx_reg(ctx, CTX_CNTP_CVAL_EL0, read_cntp_cval_el0());
1508 	write_ctx_reg(ctx, CTX_CNTV_CTL_EL0, read_cntv_ctl_el0());
1509 	write_ctx_reg(ctx, CTX_CNTV_CVAL_EL0, read_cntv_cval_el0());
1510 	write_ctx_reg(ctx, CTX_CNTKCTL_EL1, read_cntkctl_el1());
1511 #endif /* NS_TIMER_SWITCH */
1512 
1513 #if ENABLE_FEAT_MTE2
1514 	write_ctx_reg(ctx, CTX_TFSRE0_EL1, read_tfsre0_el1());
1515 	write_ctx_reg(ctx, CTX_TFSR_EL1, read_tfsr_el1());
1516 	write_ctx_reg(ctx, CTX_RGSR_EL1, read_rgsr_el1());
1517 	write_ctx_reg(ctx, CTX_GCR_EL1, read_gcr_el1());
1518 #endif /* ENABLE_FEAT_MTE2 */
1519 
1520 #if ENABLE_FEAT_RAS
1521 	if (is_feat_ras_supported()) {
1522 		write_ctx_reg(ctx, CTX_DISR_EL1, read_disr_el1());
1523 	}
1524 #endif
1525 
1526 #if ENABLE_FEAT_S1PIE
1527 	if (is_feat_s1pie_supported()) {
1528 		write_ctx_reg(ctx, CTX_PIRE0_EL1, read_pire0_el1());
1529 		write_ctx_reg(ctx, CTX_PIR_EL1, read_pir_el1());
1530 	}
1531 #endif
1532 
1533 #if ENABLE_FEAT_S1POE
1534 	if (is_feat_s1poe_supported()) {
1535 		write_ctx_reg(ctx, CTX_POR_EL1, read_por_el1());
1536 	}
1537 #endif
1538 
1539 #if ENABLE_FEAT_S2POE
1540 	if (is_feat_s2poe_supported()) {
1541 		write_ctx_reg(ctx, CTX_S2POR_EL1, read_s2por_el1());
1542 	}
1543 #endif
1544 
1545 #if ENABLE_FEAT_TCR2
1546 	if (is_feat_tcr2_supported()) {
1547 		write_ctx_reg(ctx, CTX_TCR2_EL1, read_tcr2_el1());
1548 	}
1549 #endif
1550 }
1551 
1552 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1553 {
1554 	write_spsr_el1(read_ctx_reg(ctx, CTX_SPSR_EL1));
1555 	write_elr_el1(read_ctx_reg(ctx, CTX_ELR_EL1));
1556 
1557 #if !ERRATA_SPECULATIVE_AT
1558 	write_sctlr_el1(read_ctx_reg(ctx, CTX_SCTLR_EL1));
1559 	write_tcr_el1(read_ctx_reg(ctx, CTX_TCR_EL1));
1560 #endif /* (!ERRATA_SPECULATIVE_AT) */
1561 
1562 	write_cpacr_el1(read_ctx_reg(ctx, CTX_CPACR_EL1));
1563 	write_csselr_el1(read_ctx_reg(ctx, CTX_CSSELR_EL1));
1564 	write_sp_el1(read_ctx_reg(ctx, CTX_SP_EL1));
1565 	write_esr_el1(read_ctx_reg(ctx, CTX_ESR_EL1));
1566 	write_ttbr0_el1(read_ctx_reg(ctx, CTX_TTBR0_EL1));
1567 	write_ttbr1_el1(read_ctx_reg(ctx, CTX_TTBR1_EL1));
1568 	write_mair_el1(read_ctx_reg(ctx, CTX_MAIR_EL1));
1569 	write_amair_el1(read_ctx_reg(ctx, CTX_AMAIR_EL1));
1570 	write_actlr_el1(read_ctx_reg(ctx, CTX_ACTLR_EL1));
1571 	write_tpidr_el1(read_ctx_reg(ctx, CTX_TPIDR_EL1));
1572 	write_tpidr_el0(read_ctx_reg(ctx, CTX_TPIDR_EL0));
1573 	write_tpidrro_el0(read_ctx_reg(ctx, CTX_TPIDRRO_EL0));
1574 	write_par_el1(read_ctx_reg(ctx, CTX_PAR_EL1));
1575 	write_far_el1(read_ctx_reg(ctx, CTX_FAR_EL1));
1576 	write_afsr0_el1(read_ctx_reg(ctx, CTX_AFSR0_EL1));
1577 	write_afsr1_el1(read_ctx_reg(ctx, CTX_AFSR1_EL1));
1578 	write_contextidr_el1(read_ctx_reg(ctx, CTX_CONTEXTIDR_EL1));
1579 	write_vbar_el1(read_ctx_reg(ctx, CTX_VBAR_EL1));
1580 	write_mdccint_el1(read_ctx_reg(ctx, CTX_MDCCINT_EL1));
1581 	write_mdscr_el1(read_ctx_reg(ctx, CTX_MDSCR_EL1));
1582 
1583 #if CTX_INCLUDE_AARCH32_REGS
1584 	write_spsr_abt(read_ctx_reg(ctx, CTX_SPSR_ABT));
1585 	write_spsr_und(read_ctx_reg(ctx, CTX_SPSR_UND));
1586 	write_spsr_irq(read_ctx_reg(ctx, CTX_SPSR_IRQ));
1587 	write_spsr_fiq(read_ctx_reg(ctx, CTX_SPSR_FIQ));
1588 	write_dacr32_el2(read_ctx_reg(ctx, CTX_DACR32_EL2));
1589 	write_ifsr32_el2(read_ctx_reg(ctx, CTX_IFSR32_EL2));
1590 #endif /* CTX_INCLUDE_AARCH32_REGS */
1591 
1592 #if NS_TIMER_SWITCH
1593 	write_cntp_ctl_el0(read_ctx_reg(ctx, CTX_CNTP_CTL_EL0));
1594 	write_cntp_cval_el0(read_ctx_reg(ctx, CTX_CNTP_CVAL_EL0));
1595 	write_cntv_ctl_el0(read_ctx_reg(ctx, CTX_CNTV_CTL_EL0));
1596 	write_cntv_cval_el0(read_ctx_reg(ctx, CTX_CNTV_CVAL_EL0));
1597 	write_cntkctl_el1(read_ctx_reg(ctx, CTX_CNTKCTL_EL1));
1598 #endif /* NS_TIMER_SWITCH */
1599 
1600 #if ENABLE_FEAT_MTE2
1601 	write_tfsre0_el1(read_ctx_reg(ctx, CTX_TFSRE0_EL1));
1602 	write_tfsr_el1(read_ctx_reg(ctx, CTX_TFSR_EL1));
1603 	write_rgsr_el1(read_ctx_reg(ctx, CTX_RGSR_EL1));
1604 	write_gcr_el1(read_ctx_reg(ctx, CTX_GCR_EL1));
1605 #endif /* ENABLE_FEAT_MTE2 */
1606 
1607 #if ENABLE_FEAT_RAS
1608 	if (is_feat_ras_supported()) {
1609 		write_disr_el1(read_ctx_reg(ctx, CTX_DISR_EL1));
1610 	}
1611 #endif
1612 
1613 #if ENABLE_FEAT_S1PIE
1614 	if (is_feat_s1pie_supported()) {
1615 		write_pire0_el1(read_ctx_reg(ctx, CTX_PIRE0_EL1));
1616 		write_pir_el1(read_ctx_reg(ctx, CTX_PIR_EL1));
1617 	}
1618 #endif
1619 
1620 #if ENABLE_FEAT_S1POE
1621 	if (is_feat_s1poe_supported()) {
1622 		write_por_el1(read_ctx_reg(ctx, CTX_POR_EL1));
1623 	}
1624 #endif
1625 
1626 #if ENABLE_FEAT_S2POE
1627 	if (is_feat_s2poe_supported()) {
1628 		write_s2por_el1(read_ctx_reg(ctx, CTX_S2POR_EL1));
1629 	}
1630 #endif
1631 
1632 #if ENABLE_FEAT_TCR2
1633 	if (is_feat_tcr2_supported()) {
1634 		write_tcr2_el1(read_ctx_reg(ctx, CTX_TCR2_EL1));
1635 	}
1636 #endif
1637 }
1638 
1639 /*******************************************************************************
1640  * The next four functions are used by runtime services to save and restore
1641  * EL1 context on the 'cpu_context' structure for the specified security
1642  * state.
1643  ******************************************************************************/
1644 void cm_el1_sysregs_context_save(uint32_t security_state)
1645 {
1646 	cpu_context_t *ctx;
1647 
1648 	ctx = cm_get_context(security_state);
1649 	assert(ctx != NULL);
1650 
1651 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1652 
1653 #if IMAGE_BL31
1654 	if (security_state == SECURE)
1655 		PUBLISH_EVENT(cm_exited_secure_world);
1656 	else
1657 		PUBLISH_EVENT(cm_exited_normal_world);
1658 #endif
1659 }
1660 
1661 void cm_el1_sysregs_context_restore(uint32_t security_state)
1662 {
1663 	cpu_context_t *ctx;
1664 
1665 	ctx = cm_get_context(security_state);
1666 	assert(ctx != NULL);
1667 
1668 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1669 
1670 #if IMAGE_BL31
1671 	if (security_state == SECURE)
1672 		PUBLISH_EVENT(cm_entering_secure_world);
1673 	else
1674 		PUBLISH_EVENT(cm_entering_normal_world);
1675 #endif
1676 }
1677 
1678 /*******************************************************************************
1679  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1680  * given security state with the given entrypoint
1681  ******************************************************************************/
1682 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1683 {
1684 	cpu_context_t *ctx;
1685 	el3_state_t *state;
1686 
1687 	ctx = cm_get_context(security_state);
1688 	assert(ctx != NULL);
1689 
1690 	/* Populate EL3 state so that ERET jumps to the correct entry */
1691 	state = get_el3state_ctx(ctx);
1692 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1693 }
1694 
1695 /*******************************************************************************
1696  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1697  * pertaining to the given security state
1698  ******************************************************************************/
1699 void cm_set_elr_spsr_el3(uint32_t security_state,
1700 			uintptr_t entrypoint, uint32_t spsr)
1701 {
1702 	cpu_context_t *ctx;
1703 	el3_state_t *state;
1704 
1705 	ctx = cm_get_context(security_state);
1706 	assert(ctx != NULL);
1707 
1708 	/* Populate EL3 state so that ERET jumps to the correct entry */
1709 	state = get_el3state_ctx(ctx);
1710 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1711 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1712 }
1713 
1714 /*******************************************************************************
1715  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1716  * pertaining to the given security state using the value and bit position
1717  * specified in the parameters. It preserves all other bits.
1718  ******************************************************************************/
1719 void cm_write_scr_el3_bit(uint32_t security_state,
1720 			  uint32_t bit_pos,
1721 			  uint32_t value)
1722 {
1723 	cpu_context_t *ctx;
1724 	el3_state_t *state;
1725 	u_register_t scr_el3;
1726 
1727 	ctx = cm_get_context(security_state);
1728 	assert(ctx != NULL);
1729 
1730 	/* Ensure that the bit position is a valid one */
1731 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1732 
1733 	/* Ensure that the 'value' is only a bit wide */
1734 	assert(value <= 1U);
1735 
1736 	/*
1737 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1738 	 * and set it to its new value.
1739 	 */
1740 	state = get_el3state_ctx(ctx);
1741 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1742 	scr_el3 &= ~(1UL << bit_pos);
1743 	scr_el3 |= (u_register_t)value << bit_pos;
1744 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1745 }
1746 
1747 /*******************************************************************************
1748  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1749  * given security state.
1750  ******************************************************************************/
1751 u_register_t cm_get_scr_el3(uint32_t security_state)
1752 {
1753 	cpu_context_t *ctx;
1754 	el3_state_t *state;
1755 
1756 	ctx = cm_get_context(security_state);
1757 	assert(ctx != NULL);
1758 
1759 	/* Populate EL3 state so that ERET jumps to the correct entry */
1760 	state = get_el3state_ctx(ctx);
1761 	return read_ctx_reg(state, CTX_SCR_EL3);
1762 }
1763 
1764 /*******************************************************************************
1765  * This function is used to program the context that's used for exception
1766  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1767  * the required security state
1768  ******************************************************************************/
1769 void cm_set_next_eret_context(uint32_t security_state)
1770 {
1771 	cpu_context_t *ctx;
1772 
1773 	ctx = cm_get_context(security_state);
1774 	assert(ctx != NULL);
1775 
1776 	cm_set_next_context(ctx);
1777 }
1778