xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision d5384b69d1180a596a48014d99e46eb4341f3455)
1 /*
2  * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/pubsub_events.h>
24 #include <lib/extensions/amu.h>
25 #include <lib/extensions/brbe.h>
26 #include <lib/extensions/mpam.h>
27 #include <lib/extensions/sme.h>
28 #include <lib/extensions/spe.h>
29 #include <lib/extensions/sve.h>
30 #include <lib/extensions/sys_reg_trace.h>
31 #include <lib/extensions/trbe.h>
32 #include <lib/extensions/trf.h>
33 #include <lib/utils.h>
34 
35 #if ENABLE_FEAT_TWED
36 /* Make sure delay value fits within the range(0-15) */
37 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
38 #endif /* ENABLE_FEAT_TWED */
39 
40 static void manage_extensions_secure(cpu_context_t *ctx);
41 
42 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
43 {
44 	u_register_t sctlr_elx, actlr_elx;
45 
46 	/*
47 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
48 	 * execution state setting all fields rather than relying on the hw.
49 	 * Some fields have architecturally UNKNOWN reset values and these are
50 	 * set to zero.
51 	 *
52 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
53 	 *
54 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
55 	 * required by PSCI specification)
56 	 */
57 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
58 	if (GET_RW(ep->spsr) == MODE_RW_64) {
59 		sctlr_elx |= SCTLR_EL1_RES1;
60 	} else {
61 		/*
62 		 * If the target execution state is AArch32 then the following
63 		 * fields need to be set.
64 		 *
65 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
66 		 *  instructions are not trapped to EL1.
67 		 *
68 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
69 		 *  instructions are not trapped to EL1.
70 		 *
71 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
72 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
73 		 */
74 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
75 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
76 	}
77 
78 #if ERRATA_A75_764081
79 	/*
80 	 * If workaround of errata 764081 for Cortex-A75 is used then set
81 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
82 	 */
83 	sctlr_elx |= SCTLR_IESB_BIT;
84 #endif
85 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
86 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
87 
88 	/*
89 	 * Base the context ACTLR_EL1 on the current value, as it is
90 	 * implementation defined. The context restore process will write
91 	 * the value from the context to the actual register and can cause
92 	 * problems for processor cores that don't expect certain bits to
93 	 * be zero.
94 	 */
95 	actlr_elx = read_actlr_el1();
96 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
97 }
98 
99 /******************************************************************************
100  * This function performs initializations that are specific to SECURE state
101  * and updates the cpu context specified by 'ctx'.
102  *****************************************************************************/
103 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
104 {
105 	u_register_t scr_el3;
106 	el3_state_t *state;
107 
108 	state = get_el3state_ctx(ctx);
109 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
110 
111 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
112 	/*
113 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
114 	 * indicated by the interrupt routing model for BL31.
115 	 */
116 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
117 #endif
118 
119 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
120 	/* Get Memory Tagging Extension support level */
121 	unsigned int mte = get_armv8_5_mte_support();
122 #endif
123 	/*
124 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
125 	 * is set, or when MTE is only implemented at EL0.
126 	 */
127 #if CTX_INCLUDE_MTE_REGS
128 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
129 	scr_el3 |= SCR_ATA_BIT;
130 #else
131 	if (mte == MTE_IMPLEMENTED_EL0) {
132 		scr_el3 |= SCR_ATA_BIT;
133 	}
134 #endif /* CTX_INCLUDE_MTE_REGS */
135 
136 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
137 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_armv8_4_sel2_present()) {
138 		if (GET_RW(ep->spsr) != MODE_RW_64) {
139 			ERROR("S-EL2 can not be used in AArch32\n.");
140 			panic();
141 		}
142 
143 		scr_el3 |= SCR_EEL2_BIT;
144 	}
145 
146 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
147 
148 	/*
149 	 * Initialize EL1 context registers unless SPMC is running
150 	 * at S-EL2.
151 	 */
152 #if !SPMD_SPM_AT_SEL2
153 	setup_el1_context(ctx, ep);
154 #endif
155 
156 	manage_extensions_secure(ctx);
157 }
158 
159 #if ENABLE_RME
160 /******************************************************************************
161  * This function performs initializations that are specific to REALM state
162  * and updates the cpu context specified by 'ctx'.
163  *****************************************************************************/
164 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
165 {
166 	u_register_t scr_el3;
167 	el3_state_t *state;
168 
169 	state = get_el3state_ctx(ctx);
170 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
171 
172 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
173 
174 	if (is_feat_csv2_2_supported()) {
175 		/* Enable access to the SCXTNUM_ELx registers. */
176 		scr_el3 |= SCR_EnSCXT_BIT;
177 	}
178 
179 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
180 }
181 #endif /* ENABLE_RME */
182 
183 /******************************************************************************
184  * This function performs initializations that are specific to NON-SECURE state
185  * and updates the cpu context specified by 'ctx'.
186  *****************************************************************************/
187 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
188 {
189 	u_register_t scr_el3;
190 	el3_state_t *state;
191 
192 	state = get_el3state_ctx(ctx);
193 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
194 
195 	/* SCR_NS: Set the NS bit */
196 	scr_el3 |= SCR_NS_BIT;
197 
198 #if !CTX_INCLUDE_PAUTH_REGS
199 	/*
200 	 * If the pointer authentication registers aren't saved during world
201 	 * switches the value of the registers can be leaked from the Secure to
202 	 * the Non-secure world. To prevent this, rather than enabling pointer
203 	 * authentication everywhere, we only enable it in the Non-secure world.
204 	 *
205 	 * If the Secure world wants to use pointer authentication,
206 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
207 	 */
208 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
209 #endif /* !CTX_INCLUDE_PAUTH_REGS */
210 
211 	/* Allow access to Allocation Tags when MTE is implemented. */
212 	scr_el3 |= SCR_ATA_BIT;
213 
214 #if HANDLE_EA_EL3_FIRST_NS
215 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
216 	scr_el3 |= SCR_EA_BIT;
217 #endif
218 
219 #if RAS_TRAP_NS_ERR_REC_ACCESS
220 	/*
221 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
222 	 * and RAS ERX registers from EL1 and EL2(from any security state)
223 	 * are trapped to EL3.
224 	 * Set here to trap only for NS EL1/EL2
225 	 *
226 	 */
227 	scr_el3 |= SCR_TERR_BIT;
228 #endif
229 
230 	if (is_feat_csv2_2_supported()) {
231 		/* Enable access to the SCXTNUM_ELx registers. */
232 		scr_el3 |= SCR_EnSCXT_BIT;
233 	}
234 
235 #ifdef IMAGE_BL31
236 	/*
237 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
238 	 *  indicated by the interrupt routing model for BL31.
239 	 */
240 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
241 #endif
242 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
243 
244 	/* Initialize EL1 context registers */
245 	setup_el1_context(ctx, ep);
246 
247 	/* Initialize EL2 context registers */
248 #if CTX_INCLUDE_EL2_REGS
249 
250 	/*
251 	 * Initialize SCTLR_EL2 context register using Endianness value
252 	 * taken from the entrypoint attribute.
253 	 */
254 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
255 	sctlr_el2 |= SCTLR_EL2_RES1;
256 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
257 			sctlr_el2);
258 
259 	/*
260 	 * Program the ICC_SRE_EL2 to make sure the correct bits are set
261 	 * when restoring NS context.
262 	 */
263 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
264 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
265 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
266 			icc_sre_el2);
267 
268 	/*
269 	 * Initialize MDCR_EL2.HPMN to its hardware reset value so we don't
270 	 * throw anyone off who expects this to be sensible.
271 	 * TODO: A similar thing happens in cm_prepare_el3_exit. They should be
272 	 * unified with the proper PMU implementation
273 	 */
274 	u_register_t mdcr_el2 = ((read_pmcr_el0() >> PMCR_EL0_N_SHIFT) &
275 			PMCR_EL0_N_MASK);
276 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_MDCR_EL2, mdcr_el2);
277 #endif /* CTX_INCLUDE_EL2_REGS */
278 }
279 
280 /*******************************************************************************
281  * The following function performs initialization of the cpu_context 'ctx'
282  * for first use that is common to all security states, and sets the
283  * initial entrypoint state as specified by the entry_point_info structure.
284  *
285  * The EE and ST attributes are used to configure the endianness and secure
286  * timer availability for the new execution context.
287  ******************************************************************************/
288 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
289 {
290 	u_register_t scr_el3;
291 	el3_state_t *state;
292 	gp_regs_t *gp_regs;
293 
294 	/* Clear any residual register values from the context */
295 	zeromem(ctx, sizeof(*ctx));
296 
297 	/*
298 	 * SCR_EL3 was initialised during reset sequence in macro
299 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
300 	 * affect the next EL.
301 	 *
302 	 * The following fields are initially set to zero and then updated to
303 	 * the required value depending on the state of the SPSR_EL3 and the
304 	 * Security state and entrypoint attributes of the next EL.
305 	 */
306 	scr_el3 = read_scr();
307 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_EA_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
308 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
309 
310 	/*
311 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
312 	 *  Exception level as specified by SPSR.
313 	 */
314 	if (GET_RW(ep->spsr) == MODE_RW_64) {
315 		scr_el3 |= SCR_RW_BIT;
316 	}
317 
318 	/*
319 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
320 	 * Secure timer registers to EL3, from AArch64 state only, if specified
321 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
322 	 * bit always behaves as 1 (i.e. secure physical timer register access
323 	 * is not trapped)
324 	 */
325 	if (EP_GET_ST(ep->h.attr) != 0U) {
326 		scr_el3 |= SCR_ST_BIT;
327 	}
328 
329 	/*
330 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
331 	 * SCR_EL3.HXEn.
332 	 */
333 	if (is_feat_hcx_supported()) {
334 		scr_el3 |= SCR_HXEn_BIT;
335 	}
336 
337 	/*
338 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
339 	 * registers are trapped to EL3.
340 	 */
341 #if ENABLE_FEAT_RNG_TRAP
342 	scr_el3 |= SCR_TRNDR_BIT;
343 #endif
344 
345 #if FAULT_INJECTION_SUPPORT
346 	/* Enable fault injection from lower ELs */
347 	scr_el3 |= SCR_FIEN_BIT;
348 #endif
349 
350 	/*
351 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
352 	 */
353 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
354 		scr_el3 |= SCR_TCR2EN_BIT;
355 	}
356 
357 	/*
358 	 * CPTR_EL3 was initialized out of reset, copy that value to the
359 	 * context register.
360 	 */
361 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
362 
363 	/*
364 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
365 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
366 	 * next mode is Hyp.
367 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
368 	 * same conditions as HVC instructions and when the processor supports
369 	 * ARMv8.6-FGT.
370 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
371 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
372 	 * and when the processor supports ECV.
373 	 */
374 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
375 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
376 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
377 		scr_el3 |= SCR_HCE_BIT;
378 
379 		if (is_feat_fgt_supported()) {
380 			scr_el3 |= SCR_FGTEN_BIT;
381 		}
382 
383 		if (is_feat_ecv_supported()) {
384 			scr_el3 |= SCR_ECVEN_BIT;
385 		}
386 	}
387 
388 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
389 	if (is_feat_twed_supported()) {
390 		/* Set delay in SCR_EL3 */
391 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
392 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
393 				<< SCR_TWEDEL_SHIFT);
394 
395 		/* Enable WFE delay */
396 		scr_el3 |= SCR_TWEDEn_BIT;
397 	}
398 
399 	/*
400 	 * Populate EL3 state so that we've the right context
401 	 * before doing ERET
402 	 */
403 	state = get_el3state_ctx(ctx);
404 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
405 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
406 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
407 
408 	/*
409 	 * Store the X0-X7 value from the entrypoint into the context
410 	 * Use memcpy as we are in control of the layout of the structures
411 	 */
412 	gp_regs = get_gpregs_ctx(ctx);
413 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
414 }
415 
416 /*******************************************************************************
417  * Context management library initialization routine. This library is used by
418  * runtime services to share pointers to 'cpu_context' structures for secure
419  * non-secure and realm states. Management of the structures and their associated
420  * memory is not done by the context management library e.g. the PSCI service
421  * manages the cpu context used for entry from and exit to the non-secure state.
422  * The Secure payload dispatcher service manages the context(s) corresponding to
423  * the secure state. It also uses this library to get access to the non-secure
424  * state cpu context pointers.
425  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
426  * which will be used for programming an entry into a lower EL. The same context
427  * will be used to save state upon exception entry from that EL.
428  ******************************************************************************/
429 void __init cm_init(void)
430 {
431 	/*
432 	 * The context management library has only global data to intialize, but
433 	 * that will be done when the BSS is zeroed out.
434 	 */
435 }
436 
437 /*******************************************************************************
438  * This is the high-level function used to initialize the cpu_context 'ctx' for
439  * first use. It performs initializations that are common to all security states
440  * and initializations specific to the security state specified in 'ep'
441  ******************************************************************************/
442 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
443 {
444 	unsigned int security_state;
445 
446 	assert(ctx != NULL);
447 
448 	/*
449 	 * Perform initializations that are common
450 	 * to all security states
451 	 */
452 	setup_context_common(ctx, ep);
453 
454 	security_state = GET_SECURITY_STATE(ep->h.attr);
455 
456 	/* Perform security state specific initializations */
457 	switch (security_state) {
458 	case SECURE:
459 		setup_secure_context(ctx, ep);
460 		break;
461 #if ENABLE_RME
462 	case REALM:
463 		setup_realm_context(ctx, ep);
464 		break;
465 #endif
466 	case NON_SECURE:
467 		setup_ns_context(ctx, ep);
468 		break;
469 	default:
470 		ERROR("Invalid security state\n");
471 		panic();
472 		break;
473 	}
474 }
475 
476 /*******************************************************************************
477  * Enable architecture extensions on first entry to Non-secure world.
478  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
479  * it is zero.
480  ******************************************************************************/
481 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
482 {
483 #if IMAGE_BL31
484 	if (is_feat_spe_supported()) {
485 		spe_enable(el2_unused);
486 	}
487 
488 #if ENABLE_AMU
489 	amu_enable(el2_unused, ctx);
490 #endif
491 
492 #if ENABLE_SME_FOR_NS
493 	/* Enable SME, SVE, and FPU/SIMD for non-secure world. */
494 	sme_enable(ctx);
495 #elif ENABLE_SVE_FOR_NS
496 	/* Enable SVE and FPU/SIMD for non-secure world. */
497 	sve_enable(ctx);
498 #endif
499 
500 	if (is_feat_mpam_supported()) {
501 		mpam_enable(el2_unused);
502 	}
503 
504 	if (is_feat_trbe_supported()) {
505 		trbe_enable();
506 	}
507 
508 	if (is_feat_brbe_supported()) {
509 		brbe_enable();
510 	}
511 
512 	if (is_feat_sys_reg_trace_supported()) {
513 		sys_reg_trace_enable(ctx);
514 	}
515 
516 	if (is_feat_trf_supported()) {
517 		trf_enable();
518 	}
519 #endif
520 }
521 
522 /*******************************************************************************
523  * Enable architecture extensions on first entry to Secure world.
524  ******************************************************************************/
525 static void manage_extensions_secure(cpu_context_t *ctx)
526 {
527 #if IMAGE_BL31
528  #if ENABLE_SME_FOR_NS
529   #if ENABLE_SME_FOR_SWD
530 	/*
531 	 * Enable SME, SVE, FPU/SIMD in secure context, secure manager must
532 	 * ensure SME, SVE, and FPU/SIMD context properly managed.
533 	 */
534 	sme_enable(ctx);
535   #else /* ENABLE_SME_FOR_SWD */
536 	/*
537 	 * Disable SME, SVE, FPU/SIMD in secure context so non-secure world can
538 	 * safely use the associated registers.
539 	 */
540 	sme_disable(ctx);
541   #endif /* ENABLE_SME_FOR_SWD */
542  #elif ENABLE_SVE_FOR_NS
543   #if ENABLE_SVE_FOR_SWD
544 	/*
545 	 * Enable SVE and FPU in secure context, secure manager must ensure that
546 	 * the SVE and FPU register contexts are properly managed.
547 	 */
548 	sve_enable(ctx);
549  #else /* ENABLE_SVE_FOR_SWD */
550 	/*
551 	 * Disable SVE and FPU in secure context so non-secure world can safely
552 	 * use them.
553 	 */
554 	sve_disable(ctx);
555   #endif /* ENABLE_SVE_FOR_SWD */
556  #endif /* ENABLE_SVE_FOR_NS */
557 #endif /* IMAGE_BL31 */
558 }
559 
560 /*******************************************************************************
561  * The following function initializes the cpu_context for a CPU specified by
562  * its `cpu_idx` for first use, and sets the initial entrypoint state as
563  * specified by the entry_point_info structure.
564  ******************************************************************************/
565 void cm_init_context_by_index(unsigned int cpu_idx,
566 			      const entry_point_info_t *ep)
567 {
568 	cpu_context_t *ctx;
569 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
570 	cm_setup_context(ctx, ep);
571 }
572 
573 /*******************************************************************************
574  * The following function initializes the cpu_context for the current CPU
575  * for first use, and sets the initial entrypoint state as specified by the
576  * entry_point_info structure.
577  ******************************************************************************/
578 void cm_init_my_context(const entry_point_info_t *ep)
579 {
580 	cpu_context_t *ctx;
581 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
582 	cm_setup_context(ctx, ep);
583 }
584 
585 /*******************************************************************************
586  * Prepare the CPU system registers for first entry into realm, secure, or
587  * normal world.
588  *
589  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
590  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
591  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
592  * For all entries, the EL1 registers are initialized from the cpu_context
593  ******************************************************************************/
594 void cm_prepare_el3_exit(uint32_t security_state)
595 {
596 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
597 	cpu_context_t *ctx = cm_get_context(security_state);
598 	bool el2_unused = false;
599 	uint64_t hcr_el2 = 0U;
600 
601 	assert(ctx != NULL);
602 
603 	if (security_state == NON_SECURE) {
604 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
605 						 CTX_SCR_EL3);
606 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
607 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
608 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
609 							   CTX_SCTLR_EL1);
610 			sctlr_elx &= SCTLR_EE_BIT;
611 			sctlr_elx |= SCTLR_EL2_RES1;
612 #if ERRATA_A75_764081
613 			/*
614 			 * If workaround of errata 764081 for Cortex-A75 is used
615 			 * then set SCTLR_EL2.IESB to enable Implicit Error
616 			 * Synchronization Barrier.
617 			 */
618 			sctlr_elx |= SCTLR_IESB_BIT;
619 #endif
620 			write_sctlr_el2(sctlr_elx);
621 		} else if (el_implemented(2) != EL_IMPL_NONE) {
622 			el2_unused = true;
623 
624 			/*
625 			 * EL2 present but unused, need to disable safely.
626 			 * SCTLR_EL2 can be ignored in this case.
627 			 *
628 			 * Set EL2 register width appropriately: Set HCR_EL2
629 			 * field to match SCR_EL3.RW.
630 			 */
631 			if ((scr_el3 & SCR_RW_BIT) != 0U)
632 				hcr_el2 |= HCR_RW_BIT;
633 
634 			/*
635 			 * For Armv8.3 pointer authentication feature, disable
636 			 * traps to EL2 when accessing key registers or using
637 			 * pointer authentication instructions from lower ELs.
638 			 */
639 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
640 
641 			write_hcr_el2(hcr_el2);
642 
643 			/*
644 			 * Initialise CPTR_EL2 setting all fields rather than
645 			 * relying on the hw. All fields have architecturally
646 			 * UNKNOWN reset values.
647 			 *
648 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
649 			 *  accesses to the CPACR_EL1 or CPACR from both
650 			 *  Execution states do not trap to EL2.
651 			 *
652 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
653 			 *  register accesses to the trace registers from both
654 			 *  Execution states do not trap to EL2.
655 			 *  If PE trace unit System registers are not implemented
656 			 *  then this bit is reserved, and must be set to zero.
657 			 *
658 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
659 			 *  to SIMD and floating-point functionality from both
660 			 *  Execution states do not trap to EL2.
661 			 */
662 			write_cptr_el2(CPTR_EL2_RESET_VAL &
663 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
664 					| CPTR_EL2_TFP_BIT));
665 
666 			/*
667 			 * Initialise CNTHCTL_EL2. All fields are
668 			 * architecturally UNKNOWN on reset and are set to zero
669 			 * except for field(s) listed below.
670 			 *
671 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
672 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
673 			 *  physical timer registers.
674 			 *
675 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
676 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
677 			 *  physical counter registers.
678 			 */
679 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
680 						EL1PCEN_BIT | EL1PCTEN_BIT);
681 
682 			/*
683 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
684 			 * architecturally UNKNOWN value.
685 			 */
686 			write_cntvoff_el2(0);
687 
688 			/*
689 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
690 			 * MPIDR_EL1 respectively.
691 			 */
692 			write_vpidr_el2(read_midr_el1());
693 			write_vmpidr_el2(read_mpidr_el1());
694 
695 			/*
696 			 * Initialise VTTBR_EL2. All fields are architecturally
697 			 * UNKNOWN on reset.
698 			 *
699 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
700 			 *  2 address translation is disabled, cache maintenance
701 			 *  operations depend on the VMID.
702 			 *
703 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
704 			 *  translation is disabled.
705 			 */
706 			write_vttbr_el2(VTTBR_RESET_VAL &
707 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
708 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
709 
710 			/*
711 			 * Initialise MDCR_EL2, setting all fields rather than
712 			 * relying on hw. Some fields are architecturally
713 			 * UNKNOWN on reset.
714 			 *
715 			 * MDCR_EL2.HLP: Set to one so that event counter
716 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
717 			 *  occurs on the increment that changes
718 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
719 			 *  implemented. This bit is RES0 in versions of the
720 			 *  architecture earlier than ARMv8.5, setting it to 1
721 			 *  doesn't have any effect on them.
722 			 *
723 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
724 			 *  Filter Control register TRFCR_EL1 at EL1 is not
725 			 *  trapped to EL2. This bit is RES0 in versions of
726 			 *  the architecture earlier than ARMv8.4.
727 			 *
728 			 * MDCR_EL2.HPMD: Set to one so that event counting is
729 			 *  prohibited at EL2. This bit is RES0 in versions of
730 			 *  the architecture earlier than ARMv8.1, setting it
731 			 *  to 1 doesn't have any effect on them.
732 			 *
733 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
734 			 *  Statistical Profiling control registers from EL1
735 			 *  do not trap to EL2. This bit is RES0 when SPE is
736 			 *  not implemented.
737 			 *
738 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
739 			 *  EL1 System register accesses to the Debug ROM
740 			 *  registers are not trapped to EL2.
741 			 *
742 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
743 			 *  System register accesses to the powerdown debug
744 			 *  registers are not trapped to EL2.
745 			 *
746 			 * MDCR_EL2.TDA: Set to zero so that System register
747 			 *  accesses to the debug registers do not trap to EL2.
748 			 *
749 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
750 			 *  are not routed to EL2.
751 			 *
752 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
753 			 *  Monitors.
754 			 *
755 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
756 			 *  EL1 accesses to all Performance Monitors registers
757 			 *  are not trapped to EL2.
758 			 *
759 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
760 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
761 			 *  trapped to EL2.
762 			 *
763 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
764 			 *  architecturally-defined reset value.
765 			 *
766 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
767 			 *  owning exception level is NS-EL1 and, tracing is
768 			 *  prohibited at NS-EL2. These bits are RES0 when
769 			 *  FEAT_TRBE is not implemented.
770 			 */
771 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
772 				     MDCR_EL2_HPMD) |
773 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
774 				   >> PMCR_EL0_N_SHIFT)) &
775 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
776 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
777 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
778 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
779 				     MDCR_EL2_TPMCR_BIT |
780 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
781 
782 			write_mdcr_el2(mdcr_el2);
783 
784 			/*
785 			 * Initialise HSTR_EL2. All fields are architecturally
786 			 * UNKNOWN on reset.
787 			 *
788 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
789 			 *  Non-secure EL0 or EL1 accesses to System registers
790 			 *  do not trap to EL2.
791 			 */
792 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
793 			/*
794 			 * Initialise CNTHP_CTL_EL2. All fields are
795 			 * architecturally UNKNOWN on reset.
796 			 *
797 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
798 			 *  physical timer and prevent timer interrupts.
799 			 */
800 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
801 						~(CNTHP_CTL_ENABLE_BIT));
802 		}
803 		manage_extensions_nonsecure(el2_unused, ctx);
804 	}
805 
806 	cm_el1_sysregs_context_restore(security_state);
807 	cm_set_next_eret_context(security_state);
808 }
809 
810 #if CTX_INCLUDE_EL2_REGS
811 
812 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
813 {
814 	write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2());
815 	if (is_feat_amu_supported()) {
816 		write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2());
817 	}
818 	write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2());
819 	write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2());
820 	write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2());
821 	write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2());
822 }
823 
824 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
825 {
826 	write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2));
827 	if (is_feat_amu_supported()) {
828 		write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2));
829 	}
830 	write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2));
831 	write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2));
832 	write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2));
833 	write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2));
834 }
835 
836 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
837 {
838 	u_register_t mpam_idr = read_mpamidr_el1();
839 
840 	write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
841 
842 	/*
843 	 * The context registers that we intend to save would be part of the
844 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
845 	 */
846 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
847 		return;
848 	}
849 
850 	/*
851 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
852 	 * MPAMIDR_HAS_HCR_BIT == 1.
853 	 */
854 	write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
855 	write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
856 	write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
857 
858 	/*
859 	 * The number of MPAMVPM registers is implementation defined, their
860 	 * number is stored in the MPAMIDR_EL1 register.
861 	 */
862 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
863 	case 7:
864 		write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
865 		__fallthrough;
866 	case 6:
867 		write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
868 		__fallthrough;
869 	case 5:
870 		write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
871 		__fallthrough;
872 	case 4:
873 		write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
874 		__fallthrough;
875 	case 3:
876 		write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
877 		__fallthrough;
878 	case 2:
879 		write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
880 		__fallthrough;
881 	case 1:
882 		write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
883 		break;
884 	}
885 }
886 
887 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
888 {
889 	u_register_t mpam_idr = read_mpamidr_el1();
890 
891 	write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
892 
893 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
894 		return;
895 	}
896 
897 	write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
898 	write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
899 	write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
900 
901 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
902 	case 7:
903 		write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
904 		__fallthrough;
905 	case 6:
906 		write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
907 		__fallthrough;
908 	case 5:
909 		write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
910 		__fallthrough;
911 	case 4:
912 		write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
913 		__fallthrough;
914 	case 3:
915 		write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
916 		__fallthrough;
917 	case 2:
918 		write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
919 		__fallthrough;
920 	case 1:
921 		write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
922 		break;
923 	}
924 }
925 
926 /*******************************************************************************
927  * Save EL2 sysreg context
928  ******************************************************************************/
929 void cm_el2_sysregs_context_save(uint32_t security_state)
930 {
931 	u_register_t scr_el3 = read_scr();
932 
933 	/*
934 	 * Always save the non-secure and realm EL2 context, only save the
935 	 * S-EL2 context if S-EL2 is enabled.
936 	 */
937 	if ((security_state != SECURE) ||
938 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
939 		cpu_context_t *ctx;
940 		el2_sysregs_t *el2_sysregs_ctx;
941 
942 		ctx = cm_get_context(security_state);
943 		assert(ctx != NULL);
944 
945 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
946 
947 		el2_sysregs_context_save_common(el2_sysregs_ctx);
948 #if CTX_INCLUDE_MTE_REGS
949 		el2_sysregs_context_save_mte(el2_sysregs_ctx);
950 #endif
951 		if (is_feat_mpam_supported()) {
952 			el2_sysregs_context_save_mpam(el2_sysregs_ctx);
953 		}
954 
955 		if (is_feat_fgt_supported()) {
956 			el2_sysregs_context_save_fgt(el2_sysregs_ctx);
957 		}
958 
959 		if (is_feat_ecv_v2_supported()) {
960 			write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2,
961 				      read_cntpoff_el2());
962 		}
963 
964 		if (is_feat_vhe_supported()) {
965 			write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2,
966 				      read_contextidr_el2());
967 			write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2,
968 				      read_ttbr1_el2());
969 		}
970 #if RAS_EXTENSION
971 		el2_sysregs_context_save_ras(el2_sysregs_ctx);
972 #endif
973 
974 		if (is_feat_nv2_supported()) {
975 			write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2,
976 				      read_vncr_el2());
977 		}
978 
979 		if (is_feat_trf_supported()) {
980 			write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2());
981 		}
982 
983 		if (is_feat_csv2_2_supported()) {
984 			write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2,
985 				      read_scxtnum_el2());
986 		}
987 
988 		if (is_feat_hcx_supported()) {
989 			write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2());
990 		}
991 		if (is_feat_tcr2_supported()) {
992 			write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2());
993 		}
994 	}
995 }
996 
997 /*******************************************************************************
998  * Restore EL2 sysreg context
999  ******************************************************************************/
1000 void cm_el2_sysregs_context_restore(uint32_t security_state)
1001 {
1002 	u_register_t scr_el3 = read_scr();
1003 
1004 	/*
1005 	 * Always restore the non-secure and realm EL2 context, only restore the
1006 	 * S-EL2 context if S-EL2 is enabled.
1007 	 */
1008 	if ((security_state != SECURE) ||
1009 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
1010 		cpu_context_t *ctx;
1011 		el2_sysregs_t *el2_sysregs_ctx;
1012 
1013 		ctx = cm_get_context(security_state);
1014 		assert(ctx != NULL);
1015 
1016 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1017 
1018 		el2_sysregs_context_restore_common(el2_sysregs_ctx);
1019 #if CTX_INCLUDE_MTE_REGS
1020 		el2_sysregs_context_restore_mte(el2_sysregs_ctx);
1021 #endif
1022 		if (is_feat_mpam_supported()) {
1023 			el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1024 		}
1025 
1026 		if (is_feat_fgt_supported()) {
1027 			el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1028 		}
1029 
1030 		if (is_feat_ecv_v2_supported()) {
1031 			write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx,
1032 						       CTX_CNTPOFF_EL2));
1033 		}
1034 
1035 		if (is_feat_vhe_supported()) {
1036 			write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2));
1037 			write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2));
1038 		}
1039 #if RAS_EXTENSION
1040 		el2_sysregs_context_restore_ras(el2_sysregs_ctx);
1041 #endif
1042 
1043 		if (is_feat_nv2_supported()) {
1044 			write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2));
1045 		}
1046 		if (is_feat_trf_supported()) {
1047 			write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2));
1048 		}
1049 
1050 		if (is_feat_csv2_2_supported()) {
1051 			write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx,
1052 						       CTX_SCXTNUM_EL2));
1053 		}
1054 
1055 		if (is_feat_hcx_supported()) {
1056 			write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2));
1057 		}
1058 		if (is_feat_tcr2_supported()) {
1059 			write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2));
1060 		}
1061 	}
1062 }
1063 #endif /* CTX_INCLUDE_EL2_REGS */
1064 
1065 /*******************************************************************************
1066  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1067  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1068  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1069  * cm_prepare_el3_exit function.
1070  ******************************************************************************/
1071 void cm_prepare_el3_exit_ns(void)
1072 {
1073 #if CTX_INCLUDE_EL2_REGS
1074 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1075 	assert(ctx != NULL);
1076 
1077 	/* Assert that EL2 is used. */
1078 #if ENABLE_ASSERTIONS
1079 	el3_state_t *state = get_el3state_ctx(ctx);
1080 	u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1081 #endif
1082 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1083 			(el_implemented(2U) != EL_IMPL_NONE));
1084 
1085 	/*
1086 	 * Currently some extensions are configured using
1087 	 * direct register updates. Therefore, do this here
1088 	 * instead of when setting up context.
1089 	 */
1090 	manage_extensions_nonsecure(0, ctx);
1091 
1092 	/*
1093 	 * Set the NS bit to be able to access the ICC_SRE_EL2
1094 	 * register when restoring context.
1095 	 */
1096 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
1097 
1098 	/*
1099 	 * Ensure the NS bit change is committed before the EL2/EL1
1100 	 * state restoration.
1101 	 */
1102 	isb();
1103 
1104 	/* Restore EL2 and EL1 sysreg contexts */
1105 	cm_el2_sysregs_context_restore(NON_SECURE);
1106 	cm_el1_sysregs_context_restore(NON_SECURE);
1107 	cm_set_next_eret_context(NON_SECURE);
1108 #else
1109 	cm_prepare_el3_exit(NON_SECURE);
1110 #endif /* CTX_INCLUDE_EL2_REGS */
1111 }
1112 
1113 /*******************************************************************************
1114  * The next four functions are used by runtime services to save and restore
1115  * EL1 context on the 'cpu_context' structure for the specified security
1116  * state.
1117  ******************************************************************************/
1118 void cm_el1_sysregs_context_save(uint32_t security_state)
1119 {
1120 	cpu_context_t *ctx;
1121 
1122 	ctx = cm_get_context(security_state);
1123 	assert(ctx != NULL);
1124 
1125 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1126 
1127 #if IMAGE_BL31
1128 	if (security_state == SECURE)
1129 		PUBLISH_EVENT(cm_exited_secure_world);
1130 	else
1131 		PUBLISH_EVENT(cm_exited_normal_world);
1132 #endif
1133 }
1134 
1135 void cm_el1_sysregs_context_restore(uint32_t security_state)
1136 {
1137 	cpu_context_t *ctx;
1138 
1139 	ctx = cm_get_context(security_state);
1140 	assert(ctx != NULL);
1141 
1142 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1143 
1144 #if IMAGE_BL31
1145 	if (security_state == SECURE)
1146 		PUBLISH_EVENT(cm_entering_secure_world);
1147 	else
1148 		PUBLISH_EVENT(cm_entering_normal_world);
1149 #endif
1150 }
1151 
1152 /*******************************************************************************
1153  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1154  * given security state with the given entrypoint
1155  ******************************************************************************/
1156 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1157 {
1158 	cpu_context_t *ctx;
1159 	el3_state_t *state;
1160 
1161 	ctx = cm_get_context(security_state);
1162 	assert(ctx != NULL);
1163 
1164 	/* Populate EL3 state so that ERET jumps to the correct entry */
1165 	state = get_el3state_ctx(ctx);
1166 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1167 }
1168 
1169 /*******************************************************************************
1170  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1171  * pertaining to the given security state
1172  ******************************************************************************/
1173 void cm_set_elr_spsr_el3(uint32_t security_state,
1174 			uintptr_t entrypoint, uint32_t spsr)
1175 {
1176 	cpu_context_t *ctx;
1177 	el3_state_t *state;
1178 
1179 	ctx = cm_get_context(security_state);
1180 	assert(ctx != NULL);
1181 
1182 	/* Populate EL3 state so that ERET jumps to the correct entry */
1183 	state = get_el3state_ctx(ctx);
1184 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1185 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1186 }
1187 
1188 /*******************************************************************************
1189  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1190  * pertaining to the given security state using the value and bit position
1191  * specified in the parameters. It preserves all other bits.
1192  ******************************************************************************/
1193 void cm_write_scr_el3_bit(uint32_t security_state,
1194 			  uint32_t bit_pos,
1195 			  uint32_t value)
1196 {
1197 	cpu_context_t *ctx;
1198 	el3_state_t *state;
1199 	u_register_t scr_el3;
1200 
1201 	ctx = cm_get_context(security_state);
1202 	assert(ctx != NULL);
1203 
1204 	/* Ensure that the bit position is a valid one */
1205 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1206 
1207 	/* Ensure that the 'value' is only a bit wide */
1208 	assert(value <= 1U);
1209 
1210 	/*
1211 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1212 	 * and set it to its new value.
1213 	 */
1214 	state = get_el3state_ctx(ctx);
1215 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1216 	scr_el3 &= ~(1UL << bit_pos);
1217 	scr_el3 |= (u_register_t)value << bit_pos;
1218 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1219 }
1220 
1221 /*******************************************************************************
1222  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1223  * given security state.
1224  ******************************************************************************/
1225 u_register_t cm_get_scr_el3(uint32_t security_state)
1226 {
1227 	cpu_context_t *ctx;
1228 	el3_state_t *state;
1229 
1230 	ctx = cm_get_context(security_state);
1231 	assert(ctx != NULL);
1232 
1233 	/* Populate EL3 state so that ERET jumps to the correct entry */
1234 	state = get_el3state_ctx(ctx);
1235 	return read_ctx_reg(state, CTX_SCR_EL3);
1236 }
1237 
1238 /*******************************************************************************
1239  * This function is used to program the context that's used for exception
1240  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1241  * the required security state
1242  ******************************************************************************/
1243 void cm_set_next_eret_context(uint32_t security_state)
1244 {
1245 	cpu_context_t *ctx;
1246 
1247 	ctx = cm_get_context(security_state);
1248 	assert(ctx != NULL);
1249 
1250 	cm_set_next_context(ctx);
1251 }
1252