xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision d4582d30885673987240cf01fd4f5d2e6780e84c)
1 /*
2  * Copyright (c) 2013-2021, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/spe.h>
24 #include <lib/extensions/sve.h>
25 #include <lib/extensions/sys_reg_trace.h>
26 #include <lib/extensions/trbe.h>
27 #include <lib/extensions/twed.h>
28 #include <lib/utils.h>
29 
30 static void enable_extensions_secure(cpu_context_t *ctx);
31 
32 /*******************************************************************************
33  * Context management library initialisation routine. This library is used by
34  * runtime services to share pointers to 'cpu_context' structures for the secure
35  * and non-secure states. Management of the structures and their associated
36  * memory is not done by the context management library e.g. the PSCI service
37  * manages the cpu context used for entry from and exit to the non-secure state.
38  * The Secure payload dispatcher service manages the context(s) corresponding to
39  * the secure state. It also uses this library to get access to the non-secure
40  * state cpu context pointers.
41  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
42  * which will used for programming an entry into a lower EL. The same context
43  * will used to save state upon exception entry from that EL.
44  ******************************************************************************/
45 void __init cm_init(void)
46 {
47 	/*
48 	 * The context management library has only global data to intialize, but
49 	 * that will be done when the BSS is zeroed out
50 	 */
51 }
52 
53 /*******************************************************************************
54  * The following function initializes the cpu_context 'ctx' for
55  * first use, and sets the initial entrypoint state as specified by the
56  * entry_point_info structure.
57  *
58  * The security state to initialize is determined by the SECURE attribute
59  * of the entry_point_info.
60  *
61  * The EE and ST attributes are used to configure the endianness and secure
62  * timer availability for the new execution context.
63  *
64  * To prepare the register state for entry call cm_prepare_el3_exit() and
65  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
66  * cm_el1_sysregs_context_restore().
67  ******************************************************************************/
68 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
69 {
70 	unsigned int security_state;
71 	u_register_t scr_el3;
72 	el3_state_t *state;
73 	gp_regs_t *gp_regs;
74 	u_register_t sctlr_elx, actlr_elx;
75 
76 	assert(ctx != NULL);
77 
78 	security_state = GET_SECURITY_STATE(ep->h.attr);
79 
80 	/* Clear any residual register values from the context */
81 	zeromem(ctx, sizeof(*ctx));
82 
83 	/*
84 	 * SCR_EL3 was initialised during reset sequence in macro
85 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
86 	 * affect the next EL.
87 	 *
88 	 * The following fields are initially set to zero and then updated to
89 	 * the required value depending on the state of the SPSR_EL3 and the
90 	 * Security state and entrypoint attributes of the next EL.
91 	 */
92 	scr_el3 = read_scr();
93 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
94 			SCR_ST_BIT | SCR_HCE_BIT);
95 	/*
96 	 * SCR_NS: Set the security state of the next EL.
97 	 */
98 	if (security_state != SECURE)
99 		scr_el3 |= SCR_NS_BIT;
100 	/*
101 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
102 	 *  Exception level as specified by SPSR.
103 	 */
104 	if (GET_RW(ep->spsr) == MODE_RW_64)
105 		scr_el3 |= SCR_RW_BIT;
106 	/*
107 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
108 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
109 	 *  by the entrypoint attributes.
110 	 */
111 	if (EP_GET_ST(ep->h.attr) != 0U)
112 		scr_el3 |= SCR_ST_BIT;
113 
114 #if RAS_TRAP_LOWER_EL_ERR_ACCESS
115 	/*
116 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
117 	 * and RAS ERX registers from EL1 and EL2 are trapped to EL3.
118 	 */
119 	scr_el3 |= SCR_TERR_BIT;
120 #endif
121 
122 #if !HANDLE_EA_EL3_FIRST
123 	/*
124 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
125 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
126 	 *  Aborts are taken to EL3.
127 	 */
128 	scr_el3 &= ~SCR_EA_BIT;
129 #endif
130 
131 #if FAULT_INJECTION_SUPPORT
132 	/* Enable fault injection from lower ELs */
133 	scr_el3 |= SCR_FIEN_BIT;
134 #endif
135 
136 #if !CTX_INCLUDE_PAUTH_REGS
137 	/*
138 	 * If the pointer authentication registers aren't saved during world
139 	 * switches the value of the registers can be leaked from the Secure to
140 	 * the Non-secure world. To prevent this, rather than enabling pointer
141 	 * authentication everywhere, we only enable it in the Non-secure world.
142 	 *
143 	 * If the Secure world wants to use pointer authentication,
144 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
145 	 */
146 	if (security_state == NON_SECURE)
147 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
148 #endif /* !CTX_INCLUDE_PAUTH_REGS */
149 
150 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
151 	/* Get Memory Tagging Extension support level */
152 	unsigned int mte = get_armv8_5_mte_support();
153 #endif
154 	/*
155 	 * Enable MTE support. Support is enabled unilaterally for the normal
156 	 * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is
157 	 * set.
158 	 */
159 #if CTX_INCLUDE_MTE_REGS
160 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
161 	scr_el3 |= SCR_ATA_BIT;
162 #else
163 	/*
164 	 * When MTE is only implemented at EL0, it can be enabled
165 	 * across both worlds as no MTE registers are used.
166 	 */
167 	if ((mte == MTE_IMPLEMENTED_EL0) ||
168 	/*
169 	 * When MTE is implemented at all ELs, it can be only enabled
170 	 * in Non-Secure world without register saving.
171 	 */
172 	  (((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)) &&
173 	    (security_state == NON_SECURE))) {
174 		scr_el3 |= SCR_ATA_BIT;
175 	}
176 #endif	/* CTX_INCLUDE_MTE_REGS */
177 
178 #ifdef IMAGE_BL31
179 	/*
180 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
181 	 *  indicated by the interrupt routing model for BL31.
182 	 */
183 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
184 #endif
185 
186 	/* Save the initialized value of CPTR_EL3 register */
187 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
188 	if (security_state == SECURE) {
189 		enable_extensions_secure(ctx);
190 	}
191 
192 	/*
193 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
194 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
195 	 * next mode is Hyp.
196 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
197 	 * same conditions as HVC instructions and when the processor supports
198 	 * ARMv8.6-FGT.
199 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
200 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
201 	 * and when the processor supports ECV.
202 	 */
203 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
204 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
205 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
206 		scr_el3 |= SCR_HCE_BIT;
207 
208 		if (is_armv8_6_fgt_present()) {
209 			scr_el3 |= SCR_FGTEN_BIT;
210 		}
211 
212 		if (get_armv8_6_ecv_support()
213 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
214 			scr_el3 |= SCR_ECVEN_BIT;
215 		}
216 	}
217 
218 	/* Enable S-EL2 if the next EL is EL2 and security state is secure */
219 	if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) {
220 		if (GET_RW(ep->spsr) != MODE_RW_64) {
221 			ERROR("S-EL2 can not be used in AArch32.");
222 			panic();
223 		}
224 
225 		scr_el3 |= SCR_EEL2_BIT;
226 	}
227 
228 	/*
229 	 * FEAT_AMUv1p1 virtual offset registers are only accessible from EL3
230 	 * and EL2, when clear, this bit traps accesses from EL2 so we set it
231 	 * to 1 when EL2 is present.
232 	 */
233 	if (is_armv8_6_feat_amuv1p1_present() &&
234 		(el_implemented(2) != EL_IMPL_NONE)) {
235 		scr_el3 |= SCR_AMVOFFEN_BIT;
236 	}
237 
238 	/*
239 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
240 	 * execution state setting all fields rather than relying of the hw.
241 	 * Some fields have architecturally UNKNOWN reset values and these are
242 	 * set to zero.
243 	 *
244 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
245 	 *
246 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
247 	 *  required by PSCI specification)
248 	 */
249 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
250 	if (GET_RW(ep->spsr) == MODE_RW_64)
251 		sctlr_elx |= SCTLR_EL1_RES1;
252 	else {
253 		/*
254 		 * If the target execution state is AArch32 then the following
255 		 * fields need to be set.
256 		 *
257 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
258 		 *  instructions are not trapped to EL1.
259 		 *
260 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
261 		 *  instructions are not trapped to EL1.
262 		 *
263 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
264 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
265 		 */
266 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
267 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
268 	}
269 
270 #if ERRATA_A75_764081
271 	/*
272 	 * If workaround of errata 764081 for Cortex-A75 is used then set
273 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
274 	 */
275 	sctlr_elx |= SCTLR_IESB_BIT;
276 #endif
277 
278 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
279 	if (is_armv8_6_twed_present()) {
280 		uint32_t delay = plat_arm_set_twedel_scr_el3();
281 
282 		if (delay != TWED_DISABLED) {
283 			/* Make sure delay value fits */
284 			assert((delay & ~SCR_TWEDEL_MASK) == 0U);
285 
286 			/* Set delay in SCR_EL3 */
287 			scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
288 			scr_el3 |= ((delay & SCR_TWEDEL_MASK)
289 					<< SCR_TWEDEL_SHIFT);
290 
291 			/* Enable WFE delay */
292 			scr_el3 |= SCR_TWEDEn_BIT;
293 		}
294 	}
295 
296 	/*
297 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
298 	 * and other EL2 registers are set up by cm_prepare_el3_exit() as they
299 	 * are not part of the stored cpu_context.
300 	 */
301 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
302 
303 	/*
304 	 * Base the context ACTLR_EL1 on the current value, as it is
305 	 * implementation defined. The context restore process will write
306 	 * the value from the context to the actual register and can cause
307 	 * problems for processor cores that don't expect certain bits to
308 	 * be zero.
309 	 */
310 	actlr_elx = read_actlr_el1();
311 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
312 
313 	/*
314 	 * Populate EL3 state so that we've the right context
315 	 * before doing ERET
316 	 */
317 	state = get_el3state_ctx(ctx);
318 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
319 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
320 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
321 
322 	/*
323 	 * Store the X0-X7 value from the entrypoint into the context
324 	 * Use memcpy as we are in control of the layout of the structures
325 	 */
326 	gp_regs = get_gpregs_ctx(ctx);
327 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
328 }
329 
330 /*******************************************************************************
331  * Enable architecture extensions on first entry to Non-secure world.
332  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
333  * it is zero.
334  ******************************************************************************/
335 static void enable_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
336 {
337 #if IMAGE_BL31
338 #if ENABLE_SPE_FOR_LOWER_ELS
339 	spe_enable(el2_unused);
340 #endif
341 
342 #if ENABLE_AMU
343 	amu_enable(el2_unused, ctx);
344 #endif
345 
346 #if ENABLE_SVE_FOR_NS
347 	sve_enable(ctx);
348 #endif
349 
350 #if ENABLE_MPAM_FOR_LOWER_ELS
351 	mpam_enable(el2_unused);
352 #endif
353 
354 #if ENABLE_TRBE_FOR_NS
355 	trbe_enable();
356 #endif /* ENABLE_TRBE_FOR_NS */
357 
358 #if ENABLE_SYS_REG_TRACE_FOR_NS
359 	sys_reg_trace_enable(ctx);
360 #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */
361 
362 #endif
363 }
364 
365 /*******************************************************************************
366  * Enable architecture extensions on first entry to Secure world.
367  ******************************************************************************/
368 static void enable_extensions_secure(cpu_context_t *ctx)
369 {
370 #if IMAGE_BL31
371 #if ENABLE_SVE_FOR_SWD
372 	sve_enable(ctx);
373 #endif
374 #endif
375 }
376 
377 /*******************************************************************************
378  * The following function initializes the cpu_context for a CPU specified by
379  * its `cpu_idx` for first use, and sets the initial entrypoint state as
380  * specified by the entry_point_info structure.
381  ******************************************************************************/
382 void cm_init_context_by_index(unsigned int cpu_idx,
383 			      const entry_point_info_t *ep)
384 {
385 	cpu_context_t *ctx;
386 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
387 	cm_setup_context(ctx, ep);
388 }
389 
390 /*******************************************************************************
391  * The following function initializes the cpu_context for the current CPU
392  * for first use, and sets the initial entrypoint state as specified by the
393  * entry_point_info structure.
394  ******************************************************************************/
395 void cm_init_my_context(const entry_point_info_t *ep)
396 {
397 	cpu_context_t *ctx;
398 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
399 	cm_setup_context(ctx, ep);
400 }
401 
402 /*******************************************************************************
403  * Prepare the CPU system registers for first entry into secure or normal world
404  *
405  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
406  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
407  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
408  * For all entries, the EL1 registers are initialized from the cpu_context
409  ******************************************************************************/
410 void cm_prepare_el3_exit(uint32_t security_state)
411 {
412 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
413 	cpu_context_t *ctx = cm_get_context(security_state);
414 	bool el2_unused = false;
415 	uint64_t hcr_el2 = 0U;
416 
417 	assert(ctx != NULL);
418 
419 	if (security_state == NON_SECURE) {
420 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
421 						 CTX_SCR_EL3);
422 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
423 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
424 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
425 							   CTX_SCTLR_EL1);
426 			sctlr_elx &= SCTLR_EE_BIT;
427 			sctlr_elx |= SCTLR_EL2_RES1;
428 #if ERRATA_A75_764081
429 			/*
430 			 * If workaround of errata 764081 for Cortex-A75 is used
431 			 * then set SCTLR_EL2.IESB to enable Implicit Error
432 			 * Synchronization Barrier.
433 			 */
434 			sctlr_elx |= SCTLR_IESB_BIT;
435 #endif
436 			write_sctlr_el2(sctlr_elx);
437 		} else if (el_implemented(2) != EL_IMPL_NONE) {
438 			el2_unused = true;
439 
440 			/*
441 			 * EL2 present but unused, need to disable safely.
442 			 * SCTLR_EL2 can be ignored in this case.
443 			 *
444 			 * Set EL2 register width appropriately: Set HCR_EL2
445 			 * field to match SCR_EL3.RW.
446 			 */
447 			if ((scr_el3 & SCR_RW_BIT) != 0U)
448 				hcr_el2 |= HCR_RW_BIT;
449 
450 			/*
451 			 * For Armv8.3 pointer authentication feature, disable
452 			 * traps to EL2 when accessing key registers or using
453 			 * pointer authentication instructions from lower ELs.
454 			 */
455 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
456 
457 			write_hcr_el2(hcr_el2);
458 
459 			/*
460 			 * Initialise CPTR_EL2 setting all fields rather than
461 			 * relying on the hw. All fields have architecturally
462 			 * UNKNOWN reset values.
463 			 *
464 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
465 			 *  accesses to the CPACR_EL1 or CPACR from both
466 			 *  Execution states do not trap to EL2.
467 			 *
468 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
469 			 *  register accesses to the trace registers from both
470 			 *  Execution states do not trap to EL2.
471 			 *  If PE trace unit System registers are not implemented
472 			 *  then this bit is reserved, and must be set to zero.
473 			 *
474 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
475 			 *  to SIMD and floating-point functionality from both
476 			 *  Execution states do not trap to EL2.
477 			 */
478 			write_cptr_el2(CPTR_EL2_RESET_VAL &
479 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
480 					| CPTR_EL2_TFP_BIT));
481 
482 			/*
483 			 * Initialise CNTHCTL_EL2. All fields are
484 			 * architecturally UNKNOWN on reset and are set to zero
485 			 * except for field(s) listed below.
486 			 *
487 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
488 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
489 			 *  physical timer registers.
490 			 *
491 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
492 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
493 			 *  physical counter registers.
494 			 */
495 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
496 						EL1PCEN_BIT | EL1PCTEN_BIT);
497 
498 			/*
499 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
500 			 * architecturally UNKNOWN value.
501 			 */
502 			write_cntvoff_el2(0);
503 
504 			/*
505 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
506 			 * MPIDR_EL1 respectively.
507 			 */
508 			write_vpidr_el2(read_midr_el1());
509 			write_vmpidr_el2(read_mpidr_el1());
510 
511 			/*
512 			 * Initialise VTTBR_EL2. All fields are architecturally
513 			 * UNKNOWN on reset.
514 			 *
515 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
516 			 *  2 address translation is disabled, cache maintenance
517 			 *  operations depend on the VMID.
518 			 *
519 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
520 			 *  translation is disabled.
521 			 */
522 			write_vttbr_el2(VTTBR_RESET_VAL &
523 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
524 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
525 
526 			/*
527 			 * Initialise MDCR_EL2, setting all fields rather than
528 			 * relying on hw. Some fields are architecturally
529 			 * UNKNOWN on reset.
530 			 *
531 			 * MDCR_EL2.HLP: Set to one so that event counter
532 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
533 			 *  occurs on the increment that changes
534 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
535 			 *  implemented. This bit is RES0 in versions of the
536 			 *  architecture earlier than ARMv8.5, setting it to 1
537 			 *  doesn't have any effect on them.
538 			 *
539 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
540 			 *  Filter Control register TRFCR_EL1 at EL1 is not
541 			 *  trapped to EL2. This bit is RES0 in versions of
542 			 *  the architecture earlier than ARMv8.4.
543 			 *
544 			 * MDCR_EL2.HPMD: Set to one so that event counting is
545 			 *  prohibited at EL2. This bit is RES0 in versions of
546 			 *  the architecture earlier than ARMv8.1, setting it
547 			 *  to 1 doesn't have any effect on them.
548 			 *
549 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
550 			 *  Statistical Profiling control registers from EL1
551 			 *  do not trap to EL2. This bit is RES0 when SPE is
552 			 *  not implemented.
553 			 *
554 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
555 			 *  EL1 System register accesses to the Debug ROM
556 			 *  registers are not trapped to EL2.
557 			 *
558 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
559 			 *  System register accesses to the powerdown debug
560 			 *  registers are not trapped to EL2.
561 			 *
562 			 * MDCR_EL2.TDA: Set to zero so that System register
563 			 *  accesses to the debug registers do not trap to EL2.
564 			 *
565 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
566 			 *  are not routed to EL2.
567 			 *
568 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
569 			 *  Monitors.
570 			 *
571 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
572 			 *  EL1 accesses to all Performance Monitors registers
573 			 *  are not trapped to EL2.
574 			 *
575 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
576 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
577 			 *  trapped to EL2.
578 			 *
579 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
580 			 *  architecturally-defined reset value.
581 			 *
582 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
583 			 *  owning exception level is NS-EL1 and, tracing is
584 			 *  prohibited at NS-EL2. These bits are RES0 when
585 			 *  FEAT_TRBE is not implemented.
586 			 */
587 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
588 				     MDCR_EL2_HPMD) |
589 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
590 				   >> PMCR_EL0_N_SHIFT)) &
591 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
592 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
593 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
594 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
595 				     MDCR_EL2_TPMCR_BIT |
596 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
597 
598 			write_mdcr_el2(mdcr_el2);
599 
600 			/*
601 			 * Initialise HSTR_EL2. All fields are architecturally
602 			 * UNKNOWN on reset.
603 			 *
604 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
605 			 *  Non-secure EL0 or EL1 accesses to System registers
606 			 *  do not trap to EL2.
607 			 */
608 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
609 			/*
610 			 * Initialise CNTHP_CTL_EL2. All fields are
611 			 * architecturally UNKNOWN on reset.
612 			 *
613 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
614 			 *  physical timer and prevent timer interrupts.
615 			 */
616 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
617 						~(CNTHP_CTL_ENABLE_BIT));
618 		}
619 		enable_extensions_nonsecure(el2_unused, ctx);
620 	}
621 
622 	cm_el1_sysregs_context_restore(security_state);
623 	cm_set_next_eret_context(security_state);
624 }
625 
626 #if CTX_INCLUDE_EL2_REGS
627 /*******************************************************************************
628  * Save EL2 sysreg context
629  ******************************************************************************/
630 void cm_el2_sysregs_context_save(uint32_t security_state)
631 {
632 	u_register_t scr_el3 = read_scr();
633 
634 	/*
635 	 * Always save the non-secure EL2 context, only save the
636 	 * S-EL2 context if S-EL2 is enabled.
637 	 */
638 	if ((security_state == NON_SECURE) ||
639 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
640 		cpu_context_t *ctx;
641 
642 		ctx = cm_get_context(security_state);
643 		assert(ctx != NULL);
644 
645 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
646 	}
647 }
648 
649 /*******************************************************************************
650  * Restore EL2 sysreg context
651  ******************************************************************************/
652 void cm_el2_sysregs_context_restore(uint32_t security_state)
653 {
654 	u_register_t scr_el3 = read_scr();
655 
656 	/*
657 	 * Always restore the non-secure EL2 context, only restore the
658 	 * S-EL2 context if S-EL2 is enabled.
659 	 */
660 	if ((security_state == NON_SECURE) ||
661 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
662 		cpu_context_t *ctx;
663 
664 		ctx = cm_get_context(security_state);
665 		assert(ctx != NULL);
666 
667 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
668 	}
669 }
670 #endif /* CTX_INCLUDE_EL2_REGS */
671 
672 /*******************************************************************************
673  * The next four functions are used by runtime services to save and restore
674  * EL1 context on the 'cpu_context' structure for the specified security
675  * state.
676  ******************************************************************************/
677 void cm_el1_sysregs_context_save(uint32_t security_state)
678 {
679 	cpu_context_t *ctx;
680 
681 	ctx = cm_get_context(security_state);
682 	assert(ctx != NULL);
683 
684 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
685 
686 #if IMAGE_BL31
687 	if (security_state == SECURE)
688 		PUBLISH_EVENT(cm_exited_secure_world);
689 	else
690 		PUBLISH_EVENT(cm_exited_normal_world);
691 #endif
692 }
693 
694 void cm_el1_sysregs_context_restore(uint32_t security_state)
695 {
696 	cpu_context_t *ctx;
697 
698 	ctx = cm_get_context(security_state);
699 	assert(ctx != NULL);
700 
701 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
702 
703 #if IMAGE_BL31
704 	if (security_state == SECURE)
705 		PUBLISH_EVENT(cm_entering_secure_world);
706 	else
707 		PUBLISH_EVENT(cm_entering_normal_world);
708 #endif
709 }
710 
711 /*******************************************************************************
712  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
713  * given security state with the given entrypoint
714  ******************************************************************************/
715 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
716 {
717 	cpu_context_t *ctx;
718 	el3_state_t *state;
719 
720 	ctx = cm_get_context(security_state);
721 	assert(ctx != NULL);
722 
723 	/* Populate EL3 state so that ERET jumps to the correct entry */
724 	state = get_el3state_ctx(ctx);
725 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
726 }
727 
728 /*******************************************************************************
729  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
730  * pertaining to the given security state
731  ******************************************************************************/
732 void cm_set_elr_spsr_el3(uint32_t security_state,
733 			uintptr_t entrypoint, uint32_t spsr)
734 {
735 	cpu_context_t *ctx;
736 	el3_state_t *state;
737 
738 	ctx = cm_get_context(security_state);
739 	assert(ctx != NULL);
740 
741 	/* Populate EL3 state so that ERET jumps to the correct entry */
742 	state = get_el3state_ctx(ctx);
743 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
744 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
745 }
746 
747 /*******************************************************************************
748  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
749  * pertaining to the given security state using the value and bit position
750  * specified in the parameters. It preserves all other bits.
751  ******************************************************************************/
752 void cm_write_scr_el3_bit(uint32_t security_state,
753 			  uint32_t bit_pos,
754 			  uint32_t value)
755 {
756 	cpu_context_t *ctx;
757 	el3_state_t *state;
758 	u_register_t scr_el3;
759 
760 	ctx = cm_get_context(security_state);
761 	assert(ctx != NULL);
762 
763 	/* Ensure that the bit position is a valid one */
764 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
765 
766 	/* Ensure that the 'value' is only a bit wide */
767 	assert(value <= 1U);
768 
769 	/*
770 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
771 	 * and set it to its new value.
772 	 */
773 	state = get_el3state_ctx(ctx);
774 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
775 	scr_el3 &= ~(1UL << bit_pos);
776 	scr_el3 |= (u_register_t)value << bit_pos;
777 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
778 }
779 
780 /*******************************************************************************
781  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
782  * given security state.
783  ******************************************************************************/
784 u_register_t cm_get_scr_el3(uint32_t security_state)
785 {
786 	cpu_context_t *ctx;
787 	el3_state_t *state;
788 
789 	ctx = cm_get_context(security_state);
790 	assert(ctx != NULL);
791 
792 	/* Populate EL3 state so that ERET jumps to the correct entry */
793 	state = get_el3state_ctx(ctx);
794 	return read_ctx_reg(state, CTX_SCR_EL3);
795 }
796 
797 /*******************************************************************************
798  * This function is used to program the context that's used for exception
799  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
800  * the required security state
801  ******************************************************************************/
802 void cm_set_next_eret_context(uint32_t security_state)
803 {
804 	cpu_context_t *ctx;
805 
806 	ctx = cm_get_context(security_state);
807 	assert(ctx != NULL);
808 
809 	cm_set_next_context(ctx);
810 }
811