xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision d335bbb1e20d4a8f0a6a26b97ba2a710015bf727)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/fpmr.h>
32 #include <lib/extensions/mpam.h>
33 #include <lib/extensions/pauth.h>
34 #include <lib/extensions/pmuv3.h>
35 #include <lib/extensions/sme.h>
36 #include <lib/extensions/spe.h>
37 #include <lib/extensions/sve.h>
38 #include <lib/extensions/sysreg128.h>
39 #include <lib/extensions/sys_reg_trace.h>
40 #include <lib/extensions/tcr2.h>
41 #include <lib/extensions/trbe.h>
42 #include <lib/extensions/trf.h>
43 #include <lib/utils.h>
44 
45 #if ENABLE_FEAT_TWED
46 /* Make sure delay value fits within the range(0-15) */
47 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
48 #endif /* ENABLE_FEAT_TWED */
49 
50 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
51 
52 static void manage_extensions_nonsecure(cpu_context_t *ctx);
53 static void manage_extensions_secure(cpu_context_t *ctx);
54 
55 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
56 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
57 {
58 	u_register_t sctlr_elx, actlr_elx;
59 
60 	/*
61 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
62 	 * execution state setting all fields rather than relying on the hw.
63 	 * Some fields have architecturally UNKNOWN reset values and these are
64 	 * set to zero.
65 	 *
66 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
67 	 *
68 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
69 	 * required by PSCI specification)
70 	 */
71 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
72 	if (GET_RW(ep->spsr) == MODE_RW_64) {
73 		sctlr_elx |= SCTLR_EL1_RES1;
74 	} else {
75 		/*
76 		 * If the target execution state is AArch32 then the following
77 		 * fields need to be set.
78 		 *
79 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
80 		 *  instructions are not trapped to EL1.
81 		 *
82 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
83 		 *  instructions are not trapped to EL1.
84 		 *
85 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
86 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
87 		 */
88 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
89 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
90 	}
91 
92 	/*
93 	 * If workaround of errata 764081 for Cortex-A75 is used then set
94 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
95 	 */
96 	if (errata_a75_764081_applies()) {
97 		sctlr_elx |= SCTLR_IESB_BIT;
98 	}
99 
100 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
101 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
102 
103 	/*
104 	 * Base the context ACTLR_EL1 on the current value, as it is
105 	 * implementation defined. The context restore process will write
106 	 * the value from the context to the actual register and can cause
107 	 * problems for processor cores that don't expect certain bits to
108 	 * be zero.
109 	 */
110 	actlr_elx = read_actlr_el1();
111 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
112 }
113 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
114 
115 /******************************************************************************
116  * This function performs initializations that are specific to SECURE state
117  * and updates the cpu context specified by 'ctx'.
118  *****************************************************************************/
119 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
120 {
121 	u_register_t scr_el3;
122 	el3_state_t *state;
123 
124 	state = get_el3state_ctx(ctx);
125 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
126 
127 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
128 	/*
129 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
130 	 * indicated by the interrupt routing model for BL31.
131 	 */
132 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
133 #endif
134 
135 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
136 	if (is_feat_mte2_supported()) {
137 		scr_el3 |= SCR_ATA_BIT;
138 	}
139 
140 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
141 
142 	/*
143 	 * Initialize EL1 context registers unless SPMC is running
144 	 * at S-EL2.
145 	 */
146 #if (!SPMD_SPM_AT_SEL2)
147 	setup_el1_context(ctx, ep);
148 #endif
149 
150 	manage_extensions_secure(ctx);
151 }
152 
153 #if ENABLE_RME && IMAGE_BL31
154 /******************************************************************************
155  * This function performs initializations that are specific to REALM state
156  * and updates the cpu context specified by 'ctx'.
157  *
158  * NOTE: any changes to this function must be verified by an RMMD maintainer.
159  *****************************************************************************/
160 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
161 {
162 	u_register_t scr_el3;
163 	el3_state_t *state;
164 	el2_sysregs_t *el2_ctx;
165 
166 	state = get_el3state_ctx(ctx);
167 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
168 	el2_ctx = get_el2_sysregs_ctx(ctx);
169 
170 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
171 
172 	write_el2_ctx_common(el2_ctx, spsr_el2, SPSR_EL2_REALM);
173 
174 	/* CSV2 version 2 and above */
175 	if (is_feat_csv2_2_supported()) {
176 		/* Enable access to the SCXTNUM_ELx registers. */
177 		scr_el3 |= SCR_EnSCXT_BIT;
178 	}
179 
180 	if (is_feat_sctlr2_supported()) {
181 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
182 		 * SCTLR2_ELx registers.
183 		 */
184 		scr_el3 |= SCR_SCTLR2En_BIT;
185 	}
186 
187 	if (is_feat_d128_supported()) {
188 		/*
189 		 * Set the D128En bit in SCR_EL3 to enable access to 128-bit
190 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
191 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
192 		 */
193 		scr_el3 |= SCR_D128En_BIT;
194 	}
195 
196 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
197 
198 	if (is_feat_fgt2_supported()) {
199 		fgt2_enable(ctx);
200 	}
201 
202 	if (is_feat_debugv8p9_supported()) {
203 		debugv8p9_extended_bp_wp_enable(ctx);
204 	}
205 
206 	if (is_feat_brbe_supported()) {
207 		brbe_enable(ctx);
208 	}
209 
210 	/*
211 	 * Enable access to TPIDR2_EL0 if SME/SME2 is enabled for Non Secure world.
212 	 */
213 	if (is_feat_sme_supported()) {
214 		sme_enable(ctx);
215 	}
216 
217 	if (is_feat_spe_supported()) {
218 		spe_disable_realm(ctx);
219 	}
220 
221 	if (is_feat_trbe_supported()) {
222 		trbe_disable_realm(ctx);
223 	}
224 }
225 #endif /* ENABLE_RME && IMAGE_BL31 */
226 
227 /******************************************************************************
228  * This function performs initializations that are specific to NON-SECURE state
229  * and updates the cpu context specified by 'ctx'.
230  *****************************************************************************/
231 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
232 {
233 	u_register_t scr_el3;
234 	el3_state_t *state;
235 
236 	state = get_el3state_ctx(ctx);
237 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
238 
239 	/* SCR_NS: Set the NS bit */
240 	scr_el3 |= SCR_NS_BIT;
241 
242 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
243 	if (is_feat_mte2_supported()) {
244 		scr_el3 |= SCR_ATA_BIT;
245 	}
246 
247 	/*
248 	 * Pointer Authentication feature, if present, is always enabled by
249 	 * default for Non secure lower exception levels. We do not have an
250 	 * explicit flag to set it. To prevent the leakage between the worlds
251 	 * during world switch, we enable it only for the non-secure world.
252 	 *
253 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
254 	 * exception levels of secure and realm worlds.
255 	 *
256 	 * If the Secure/realm world wants to use pointer authentication,
257 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
258 	 * it will be enabled globally for all the contexts.
259 	 *
260 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
261 	 *  other than EL3
262 	 *
263 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
264 	 *  than EL3
265 	 */
266 	if (!is_ctx_pauth_supported()) {
267 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
268 	}
269 
270 #if HANDLE_EA_EL3_FIRST_NS
271 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
272 	scr_el3 |= SCR_EA_BIT;
273 #endif
274 
275 #if RAS_TRAP_NS_ERR_REC_ACCESS
276 	/*
277 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
278 	 * and RAS ERX registers from EL1 and EL2(from any security state)
279 	 * are trapped to EL3.
280 	 * Set here to trap only for NS EL1/EL2
281 	 */
282 	scr_el3 |= SCR_TERR_BIT;
283 #endif
284 
285 	/* CSV2 version 2 and above */
286 	if (is_feat_csv2_2_supported()) {
287 		/* Enable access to the SCXTNUM_ELx registers. */
288 		scr_el3 |= SCR_EnSCXT_BIT;
289 	}
290 
291 #ifdef IMAGE_BL31
292 	/*
293 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
294 	 *  indicated by the interrupt routing model for BL31.
295 	 */
296 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
297 #endif
298 
299 	if (is_feat_the_supported()) {
300 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
301 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
302 		 */
303 		scr_el3 |= SCR_RCWMASKEn_BIT;
304 	}
305 
306 	if (is_feat_sctlr2_supported()) {
307 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
308 		 * SCTLR2_ELx registers.
309 		 */
310 		scr_el3 |= SCR_SCTLR2En_BIT;
311 	}
312 
313 	if (is_feat_d128_supported()) {
314 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
315 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
316 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
317 		 */
318 		scr_el3 |= SCR_D128En_BIT;
319 	}
320 
321 	if (is_feat_fpmr_supported()) {
322 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
323 		 * register.
324 		 */
325 		scr_el3 |= SCR_EnFPM_BIT;
326 	}
327 
328 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
329 
330 	/* Initialize EL2 context registers */
331 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
332 	if (is_feat_hcx_supported()) {
333 		/*
334 		 * Initialize register HCRX_EL2 with its init value.
335 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
336 		 * chance that this can lead to unexpected behavior in lower
337 		 * ELs that have not been updated since the introduction of
338 		 * this feature if not properly initialized, especially when
339 		 * it comes to those bits that enable/disable traps.
340 		 */
341 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
342 			HCRX_EL2_INIT_VAL);
343 	}
344 
345 	if (is_feat_fgt_supported()) {
346 		/*
347 		 * Initialize HFG*_EL2 registers with a default value so legacy
348 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
349 		 * of initialization for this feature.
350 		 */
351 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
352 			HFGITR_EL2_INIT_VAL);
353 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
354 			HFGRTR_EL2_INIT_VAL);
355 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
356 			HFGWTR_EL2_INIT_VAL);
357 	}
358 #else
359 	/* Initialize EL1 context registers */
360 	setup_el1_context(ctx, ep);
361 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
362 
363 	manage_extensions_nonsecure(ctx);
364 }
365 
366 /*******************************************************************************
367  * The following function performs initialization of the cpu_context 'ctx'
368  * for first use that is common to all security states, and sets the
369  * initial entrypoint state as specified by the entry_point_info structure.
370  *
371  * The EE and ST attributes are used to configure the endianness and secure
372  * timer availability for the new execution context.
373  ******************************************************************************/
374 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
375 {
376 	u_register_t scr_el3;
377 	u_register_t mdcr_el3;
378 	el3_state_t *state;
379 	gp_regs_t *gp_regs;
380 
381 	state = get_el3state_ctx(ctx);
382 
383 	/* Clear any residual register values from the context */
384 	zeromem(ctx, sizeof(*ctx));
385 
386 	/*
387 	 * The lower-EL context is zeroed so that no stale values leak to a world.
388 	 * It is assumed that an all-zero lower-EL context is good enough for it
389 	 * to boot correctly. However, there are very few registers where this
390 	 * is not true and some values need to be recreated.
391 	 */
392 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
393 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
394 
395 	/*
396 	 * These bits are set in the gicv3 driver. Losing them (especially the
397 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
398 	 */
399 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
400 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
401 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
402 
403 	/*
404 	 * The actlr_el2 register can be initialized in platform's reset handler
405 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
406 	 */
407 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
408 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
409 
410 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
411 	scr_el3 = SCR_RESET_VAL;
412 
413 	/*
414 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
415 	 *  EL2, EL1 and EL0 are not trapped to EL3.
416 	 *
417 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
418 	 *  EL2, EL1 and EL0 are not trapped to EL3.
419 	 *
420 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
421 	 *  both Security states and both Execution states.
422 	 *
423 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
424 	 *  Non-secure memory.
425 	 */
426 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
427 
428 	scr_el3 |= SCR_SIF_BIT;
429 
430 	/*
431 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
432 	 *  Exception level as specified by SPSR.
433 	 */
434 	if (GET_RW(ep->spsr) == MODE_RW_64) {
435 		scr_el3 |= SCR_RW_BIT;
436 	}
437 
438 	/*
439 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
440 	 * Secure timer registers to EL3, from AArch64 state only, if specified
441 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
442 	 * bit always behaves as 1 (i.e. secure physical timer register access
443 	 * is not trapped)
444 	 */
445 	if (EP_GET_ST(ep->h.attr) != 0U) {
446 		scr_el3 |= SCR_ST_BIT;
447 	}
448 
449 	/*
450 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
451 	 * SCR_EL3.HXEn.
452 	 */
453 	if (is_feat_hcx_supported()) {
454 		scr_el3 |= SCR_HXEn_BIT;
455 	}
456 
457 	/*
458 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
459 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
460 	 * SCR_EL3.EnAS0.
461 	 */
462 	if (is_feat_ls64_accdata_supported()) {
463 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
464 	}
465 
466 	/*
467 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
468 	 * registers are trapped to EL3.
469 	 */
470 	if (is_feat_rng_trap_supported()) {
471 		scr_el3 |= SCR_TRNDR_BIT;
472 	}
473 
474 #if FAULT_INJECTION_SUPPORT
475 	/* Enable fault injection from lower ELs */
476 	scr_el3 |= SCR_FIEN_BIT;
477 #endif
478 
479 	/*
480 	 * Enable Pointer Authentication globally for all the worlds.
481 	 *
482 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
483 	 *  other than EL3
484 	 *
485 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
486 	 *  than EL3
487 	 */
488 	if (is_ctx_pauth_supported()) {
489 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
490 	}
491 
492 	/*
493 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
494 	 * registers for AArch64 if present.
495 	 */
496 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
497 		scr_el3 |= SCR_PIEN_BIT;
498 	}
499 
500 	/*
501 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
502 	 */
503 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
504 		scr_el3 |= SCR_GCSEn_BIT;
505 	}
506 
507 	/*
508 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
509 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
510 	 * next mode is Hyp.
511 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
512 	 * same conditions as HVC instructions and when the processor supports
513 	 * ARMv8.6-FGT.
514 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
515 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
516 	 * and when the processor supports ECV.
517 	 */
518 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
519 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
520 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
521 		scr_el3 |= SCR_HCE_BIT;
522 
523 		if (is_feat_fgt_supported()) {
524 			scr_el3 |= SCR_FGTEN_BIT;
525 		}
526 
527 		if (is_feat_ecv_supported()) {
528 			scr_el3 |= SCR_ECVEN_BIT;
529 		}
530 	}
531 
532 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
533 	if (is_feat_twed_supported()) {
534 		/* Set delay in SCR_EL3 */
535 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
536 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
537 				<< SCR_TWEDEL_SHIFT);
538 
539 		/* Enable WFE delay */
540 		scr_el3 |= SCR_TWEDEn_BIT;
541 	}
542 
543 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
544 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
545 	if (is_feat_sel2_supported()) {
546 		scr_el3 |= SCR_EEL2_BIT;
547 	}
548 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
549 
550 	if (is_feat_mec_supported()) {
551 		scr_el3 |= SCR_MECEn_BIT;
552 	}
553 
554 	/*
555 	 * Populate EL3 state so that we've the right context
556 	 * before doing ERET
557 	 */
558 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
559 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
560 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
561 
562 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
563 	mdcr_el3 = MDCR_EL3_RESET_VAL;
564 
565 	/* ---------------------------------------------------------------------
566 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
567 	 * Some fields are architecturally UNKNOWN on reset.
568 	 *
569 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
570 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
571 	 *  disabled from all ELs in Secure state.
572 	 *
573 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
574 	 *  privileged debug from S-EL1.
575 	 *
576 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
577 	 *  access to the powerdown debug registers do not trap to EL3.
578 	 *
579 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
580 	 *  debug registers, other than those registers that are controlled by
581 	 *  MDCR_EL3.TDOSA.
582 	 */
583 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
584 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
585 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
586 
587 #if IMAGE_BL31
588 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
589 	if (is_feat_trf_supported()) {
590 		trf_enable(ctx);
591 	}
592 
593 	if (is_feat_tcr2_supported()) {
594 		tcr2_enable(ctx);
595 	}
596 
597 	pmuv3_enable(ctx);
598 
599 #if CTX_INCLUDE_EL2_REGS
600 	/*
601 	 * Initialize SCTLR_EL2 context register with reset value.
602 	 */
603 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
604 #endif /* CTX_INCLUDE_EL2_REGS */
605 #endif /* IMAGE_BL31 */
606 
607 	/*
608 	 * Store the X0-X7 value from the entrypoint into the context
609 	 * Use memcpy as we are in control of the layout of the structures
610 	 */
611 	gp_regs = get_gpregs_ctx(ctx);
612 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
613 }
614 
615 /*******************************************************************************
616  * Context management library initialization routine. This library is used by
617  * runtime services to share pointers to 'cpu_context' structures for secure
618  * non-secure and realm states. Management of the structures and their associated
619  * memory is not done by the context management library e.g. the PSCI service
620  * manages the cpu context used for entry from and exit to the non-secure state.
621  * The Secure payload dispatcher service manages the context(s) corresponding to
622  * the secure state. It also uses this library to get access to the non-secure
623  * state cpu context pointers.
624  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
625  * which will be used for programming an entry into a lower EL. The same context
626  * will be used to save state upon exception entry from that EL.
627  ******************************************************************************/
628 void __init cm_init(void)
629 {
630 	/*
631 	 * The context management library has only global data to initialize, but
632 	 * that will be done when the BSS is zeroed out.
633 	 */
634 }
635 
636 /*******************************************************************************
637  * This is the high-level function used to initialize the cpu_context 'ctx' for
638  * first use. It performs initializations that are common to all security states
639  * and initializations specific to the security state specified in 'ep'
640  ******************************************************************************/
641 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
642 {
643 	size_t security_state;
644 
645 	assert(ctx != NULL);
646 
647 	/*
648 	 * Perform initializations that are common
649 	 * to all security states
650 	 */
651 	setup_context_common(ctx, ep);
652 
653 	security_state = GET_SECURITY_STATE(ep->h.attr);
654 
655 	/* Perform security state specific initializations */
656 	switch (security_state) {
657 	case SECURE:
658 		setup_secure_context(ctx, ep);
659 		break;
660 #if ENABLE_RME && IMAGE_BL31
661 	case REALM:
662 		setup_realm_context(ctx, ep);
663 		break;
664 #endif
665 	case NON_SECURE:
666 		setup_ns_context(ctx, ep);
667 		break;
668 	default:
669 		ERROR("Invalid security state\n");
670 		panic();
671 		break;
672 	}
673 }
674 
675 /*******************************************************************************
676  * Enable architecture extensions for EL3 execution. This function only updates
677  * registers in-place which are expected to either never change or be
678  * overwritten by el3_exit. Expects the core_pos of the current core as argument.
679  ******************************************************************************/
680 #if IMAGE_BL31
681 void cm_manage_extensions_el3(unsigned int my_idx)
682 {
683 	if (is_feat_sve_supported()) {
684 		sve_init_el3();
685 	}
686 
687 	if (is_feat_amu_supported()) {
688 		amu_init_el3(my_idx);
689 	}
690 
691 	if (is_feat_sme_supported()) {
692 		sme_init_el3();
693 	}
694 
695 	if (is_feat_fgwte3_supported()) {
696 		write_fgwte3_el3(FGWTE3_EL3_EARLY_INIT_VAL);
697 	}
698 	pmuv3_init_el3();
699 }
700 
701 /******************************************************************************
702  * Function to initialise the registers with the RESET values in the context
703  * memory, which are maintained per world.
704  ******************************************************************************/
705 static void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
706 {
707 	/*
708 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
709 	 *
710 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
711 	 *  by Advanced SIMD, floating-point or SVE instructions (if
712 	 *  implemented) do not trap to EL3.
713 	 *
714 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
715 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
716 	 */
717 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
718 
719 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
720 
721 	/*
722 	 * Initialize MPAM3_EL3 to its default reset value
723 	 *
724 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
725 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
726 	 */
727 
728 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
729 }
730 
731 /*******************************************************************************
732  * Initialise per_world_context for Non-Secure world.
733  * This function enables the architecture extensions, which have same value
734  * across the cores for the non-secure world.
735  ******************************************************************************/
736 static void manage_extensions_nonsecure_per_world(void)
737 {
738 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
739 
740 	if (is_feat_sme_supported()) {
741 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
742 	}
743 
744 	if (is_feat_sve_supported()) {
745 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
746 	}
747 
748 	if (is_feat_amu_supported()) {
749 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
750 	}
751 
752 	if (is_feat_sys_reg_trace_supported()) {
753 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
754 	}
755 
756 	if (is_feat_mpam_supported()) {
757 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
758 	}
759 
760 	if (is_feat_fpmr_supported()) {
761 		fpmr_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
762 	}
763 }
764 
765 /*******************************************************************************
766  * Initialise per_world_context for Secure world.
767  * This function enables the architecture extensions, which have same value
768  * across the cores for the secure world.
769  ******************************************************************************/
770 static void manage_extensions_secure_per_world(void)
771 {
772 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
773 
774 	if (is_feat_sme_supported()) {
775 
776 		if (ENABLE_SME_FOR_SWD) {
777 		/*
778 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
779 		 * SME, SVE, and FPU/SIMD context properly managed.
780 		 */
781 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
782 		} else {
783 		/*
784 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
785 		 * world can safely use the associated registers.
786 		 */
787 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
788 		}
789 	}
790 	if (is_feat_sve_supported()) {
791 		if (ENABLE_SVE_FOR_SWD) {
792 		/*
793 		 * Enable SVE and FPU in secure context, SPM must ensure
794 		 * that the SVE and FPU register contexts are properly managed.
795 		 */
796 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
797 		} else {
798 		/*
799 		 * Disable SVE and FPU in secure context so non-secure world
800 		 * can safely use them.
801 		 */
802 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
803 		}
804 	}
805 
806 	/* NS can access this but Secure shouldn't */
807 	if (is_feat_sys_reg_trace_supported()) {
808 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
809 	}
810 }
811 
812 static void manage_extensions_realm_per_world(void)
813 {
814 #if ENABLE_RME
815 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_REALM]);
816 
817 	if (is_feat_sve_supported()) {
818 	/*
819 	 * Enable SVE and FPU in realm context when it is enabled for NS.
820 	 * Realm manager must ensure that the SVE and FPU register
821 	 * contexts are properly managed.
822 	 */
823 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
824 	}
825 
826 	/* NS can access this but Realm shouldn't */
827 	if (is_feat_sys_reg_trace_supported()) {
828 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
829 	}
830 
831 	/*
832 	 * If SME/SME2 is supported and enabled for NS world, then disable trapping
833 	 * of SME instructions for Realm world. RMM will save/restore required
834 	 * registers that are shared with SVE/FPU so that Realm can use FPU or SVE.
835 	 */
836 	if (is_feat_sme_supported()) {
837 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
838 	}
839 
840 	/*
841 	 * If FEAT_MPAM is supported and enabled, then disable trapping access
842 	 * to the MPAM registers for Realm world. Instead, RMM will configure
843 	 * the access to be trapped by itself so it can inject undefined aborts
844 	 * back to the Realm.
845 	 */
846 	if (is_feat_mpam_supported()) {
847 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
848 	}
849 #endif /* ENABLE_RME */
850 }
851 
852 void cm_manage_extensions_per_world(void)
853 {
854 	manage_extensions_nonsecure_per_world();
855 	manage_extensions_secure_per_world();
856 	manage_extensions_realm_per_world();
857 }
858 #endif /* IMAGE_BL31 */
859 
860 /*******************************************************************************
861  * Enable architecture extensions on first entry to Non-secure world.
862  ******************************************************************************/
863 static void manage_extensions_nonsecure(cpu_context_t *ctx)
864 {
865 #if IMAGE_BL31
866 	/* NOTE: registers are not context switched */
867 	if (is_feat_amu_supported()) {
868 		amu_enable(ctx);
869 	}
870 
871 	if (is_feat_sme_supported()) {
872 		sme_enable(ctx);
873 	}
874 
875 	if (is_feat_fgt2_supported()) {
876 		fgt2_enable(ctx);
877 	}
878 
879 	if (is_feat_debugv8p9_supported()) {
880 		debugv8p9_extended_bp_wp_enable(ctx);
881 	}
882 
883 	if (is_feat_spe_supported()) {
884 		spe_enable_ns(ctx);
885 	}
886 
887 	if (is_feat_trbe_supported()) {
888 		if (check_if_trbe_disable_affected_core()) {
889 			trbe_disable_ns(ctx);
890 		} else {
891 			trbe_enable_ns(ctx);
892 		}
893 	}
894 
895 	if (is_feat_brbe_supported()) {
896 		brbe_enable(ctx);
897 	}
898 #endif /* IMAGE_BL31 */
899 }
900 
901 #if INIT_UNUSED_NS_EL2
902 /*******************************************************************************
903  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
904  * world when EL2 is empty and unused.
905  ******************************************************************************/
906 static void manage_extensions_nonsecure_el2_unused(void)
907 {
908 #if IMAGE_BL31
909 	if (is_feat_spe_supported()) {
910 		spe_init_el2_unused();
911 	}
912 
913 	if (is_feat_amu_supported()) {
914 		amu_init_el2_unused();
915 	}
916 
917 	if (is_feat_mpam_supported()) {
918 		mpam_init_el2_unused();
919 	}
920 
921 	if (is_feat_trbe_supported()) {
922 		trbe_init_el2_unused();
923 	}
924 
925 	if (is_feat_sys_reg_trace_supported()) {
926 		sys_reg_trace_init_el2_unused();
927 	}
928 
929 	if (is_feat_trf_supported()) {
930 		trf_init_el2_unused();
931 	}
932 
933 	pmuv3_init_el2_unused();
934 
935 	if (is_feat_sve_supported()) {
936 		sve_init_el2_unused();
937 	}
938 
939 	if (is_feat_sme_supported()) {
940 		sme_init_el2_unused();
941 	}
942 
943 	if (is_feat_mops_supported() && is_feat_hcx_supported()) {
944 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
945 	}
946 
947 	if (is_feat_pauth_supported()) {
948 		pauth_enable_el2();
949 	}
950 #endif /* IMAGE_BL31 */
951 }
952 #endif /* INIT_UNUSED_NS_EL2 */
953 
954 /*******************************************************************************
955  * Enable architecture extensions on first entry to Secure world.
956  ******************************************************************************/
957 static void manage_extensions_secure(cpu_context_t *ctx)
958 {
959 #if IMAGE_BL31
960 	if (is_feat_sme_supported()) {
961 		if (ENABLE_SME_FOR_SWD) {
962 		/*
963 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
964 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
965 		 */
966 			sme_init_el3();
967 			sme_enable(ctx);
968 		} else {
969 		/*
970 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
971 		 * world can safely use the associated registers.
972 		 */
973 			sme_disable(ctx);
974 		}
975 	}
976 
977 	if (is_feat_spe_supported()) {
978 		spe_disable_secure(ctx);
979 	}
980 
981 	if (is_feat_trbe_supported()) {
982 		trbe_disable_secure(ctx);
983 	}
984 #endif /* IMAGE_BL31 */
985 }
986 
987 /*******************************************************************************
988  * The following function initializes the cpu_context for the current CPU
989  * for first use, and sets the initial entrypoint state as specified by the
990  * entry_point_info structure.
991  ******************************************************************************/
992 void cm_init_my_context(const entry_point_info_t *ep)
993 {
994 	cpu_context_t *ctx;
995 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
996 	cm_setup_context(ctx, ep);
997 }
998 
999 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
1000 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
1001 {
1002 #if INIT_UNUSED_NS_EL2
1003 	u_register_t hcr_el2 = HCR_RESET_VAL;
1004 	u_register_t mdcr_el2;
1005 	u_register_t scr_el3;
1006 
1007 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1008 
1009 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
1010 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
1011 		hcr_el2 |= HCR_RW_BIT;
1012 	}
1013 
1014 	write_hcr_el2(hcr_el2);
1015 
1016 	/*
1017 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
1018 	 * All fields have architecturally UNKNOWN reset values.
1019 	 */
1020 	write_cptr_el2(CPTR_EL2_RESET_VAL);
1021 
1022 	/*
1023 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
1024 	 * reset and are set to zero except for field(s) listed below.
1025 	 *
1026 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
1027 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
1028 	 *
1029 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
1030 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
1031 	 */
1032 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
1033 
1034 	/*
1035 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
1036 	 * UNKNOWN value.
1037 	 */
1038 	write_cntvoff_el2(0);
1039 
1040 	/*
1041 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1042 	 * respectively.
1043 	 */
1044 	write_vpidr_el2(read_midr_el1());
1045 	write_vmpidr_el2(read_mpidr_el1());
1046 
1047 	/*
1048 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1049 	 *
1050 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1051 	 * translation is disabled, cache maintenance operations depend on the
1052 	 * VMID.
1053 	 *
1054 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1055 	 * disabled.
1056 	 */
1057 	write_vttbr_el2(VTTBR_RESET_VAL &
1058 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1059 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1060 
1061 	/*
1062 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1063 	 * Some fields are architecturally UNKNOWN on reset.
1064 	 *
1065 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1066 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1067 	 *
1068 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1069 	 * accesses to the powerdown debug registers are not trapped to EL2.
1070 	 *
1071 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1072 	 * debug registers do not trap to EL2.
1073 	 *
1074 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1075 	 * EL2.
1076 	 */
1077 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1078 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1079 		   MDCR_EL2_TDE_BIT);
1080 
1081 	write_mdcr_el2(mdcr_el2);
1082 
1083 	/*
1084 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1085 	 *
1086 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1087 	 * EL1 accesses to System registers do not trap to EL2.
1088 	 */
1089 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1090 
1091 	/*
1092 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1093 	 * reset.
1094 	 *
1095 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1096 	 * and prevent timer interrupts.
1097 	 */
1098 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1099 
1100 	manage_extensions_nonsecure_el2_unused();
1101 #endif /* INIT_UNUSED_NS_EL2 */
1102 }
1103 
1104 /*******************************************************************************
1105  * Prepare the CPU system registers for first entry into realm, secure, or
1106  * normal world.
1107  *
1108  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1109  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1110  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1111  * For all entries, the EL1 registers are initialized from the cpu_context
1112  ******************************************************************************/
1113 void cm_prepare_el3_exit(size_t security_state)
1114 {
1115 	u_register_t sctlr_el2, scr_el3;
1116 	cpu_context_t *ctx = cm_get_context(security_state);
1117 
1118 	assert(ctx != NULL);
1119 
1120 	if (security_state == NON_SECURE) {
1121 		uint64_t el2_implemented = el_implemented(2);
1122 
1123 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1124 						 CTX_SCR_EL3);
1125 
1126 		if (el2_implemented != EL_IMPL_NONE) {
1127 
1128 			/*
1129 			 * If context is not being used for EL2, initialize
1130 			 * HCRX_EL2 with its init value here.
1131 			 */
1132 			if (is_feat_hcx_supported()) {
1133 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1134 			}
1135 
1136 			/*
1137 			 * Initialize Fine-grained trap registers introduced
1138 			 * by FEAT_FGT so all traps are initially disabled when
1139 			 * switching to EL2 or a lower EL, preventing undesired
1140 			 * behavior.
1141 			 */
1142 			if (is_feat_fgt_supported()) {
1143 				/*
1144 				 * Initialize HFG*_EL2 registers with a default
1145 				 * value so legacy systems unaware of FEAT_FGT
1146 				 * do not get trapped due to their lack of
1147 				 * initialization for this feature.
1148 				 */
1149 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1150 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1151 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1152 			}
1153 
1154 			/* Condition to ensure EL2 is being used. */
1155 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1156 				/* Initialize SCTLR_EL2 register with reset value. */
1157 				sctlr_el2 = SCTLR_EL2_RES1;
1158 
1159 				/*
1160 				 * If workaround of errata 764081 for Cortex-A75
1161 				 * is used then set SCTLR_EL2.IESB to enable
1162 				 * Implicit Error Synchronization Barrier.
1163 				 */
1164 				if (errata_a75_764081_applies()) {
1165 					sctlr_el2 |= SCTLR_IESB_BIT;
1166 				}
1167 
1168 				write_sctlr_el2(sctlr_el2);
1169 			} else {
1170 				/*
1171 				 * (scr_el3 & SCR_HCE_BIT==0)
1172 				 * EL2 implemented but unused.
1173 				 */
1174 				init_nonsecure_el2_unused(ctx);
1175 			}
1176 		}
1177 
1178 		if (is_feat_fgwte3_supported()) {
1179 			/*
1180 			 * TCR_EL3 and ACTLR_EL3 could be overwritten
1181 			 * by platforms and hence is locked a bit late.
1182 			 */
1183 			write_fgwte3_el3(FGWTE3_EL3_LATE_INIT_VAL);
1184 		}
1185 	}
1186 #if (!CTX_INCLUDE_EL2_REGS)
1187 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1188 	cm_el1_sysregs_context_restore(security_state);
1189 #endif
1190 	cm_set_next_eret_context(security_state);
1191 }
1192 
1193 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1194 
1195 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1196 {
1197 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1198 	if (is_feat_amu_supported()) {
1199 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1200 	}
1201 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1202 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1203 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1204 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1205 }
1206 
1207 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1208 {
1209 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1210 	if (is_feat_amu_supported()) {
1211 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1212 	}
1213 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1214 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1215 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1216 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1217 }
1218 
1219 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1220 {
1221 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1222 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1223 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1224 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1225 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1226 }
1227 
1228 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1229 {
1230 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1231 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1232 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1233 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1234 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1235 }
1236 
1237 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1238 {
1239 	u_register_t mpam_idr = read_mpamidr_el1();
1240 
1241 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1242 
1243 	/*
1244 	 * The context registers that we intend to save would be part of the
1245 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1246 	 */
1247 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1248 		return;
1249 	}
1250 
1251 	/*
1252 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1253 	 * MPAMIDR_HAS_HCR_BIT == 1.
1254 	 */
1255 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1256 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1257 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1258 
1259 	/*
1260 	 * The number of MPAMVPM registers is implementation defined, their
1261 	 * number is stored in the MPAMIDR_EL1 register.
1262 	 */
1263 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1264 	case 7:
1265 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1266 		__fallthrough;
1267 	case 6:
1268 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1269 		__fallthrough;
1270 	case 5:
1271 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1272 		__fallthrough;
1273 	case 4:
1274 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1275 		__fallthrough;
1276 	case 3:
1277 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1278 		__fallthrough;
1279 	case 2:
1280 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1281 		__fallthrough;
1282 	case 1:
1283 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1284 		break;
1285 	}
1286 }
1287 
1288 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1289 {
1290 	u_register_t mpam_idr = read_mpamidr_el1();
1291 
1292 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1293 
1294 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1295 		return;
1296 	}
1297 
1298 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1299 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1300 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1301 
1302 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1303 	case 7:
1304 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1305 		__fallthrough;
1306 	case 6:
1307 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1308 		__fallthrough;
1309 	case 5:
1310 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1311 		__fallthrough;
1312 	case 4:
1313 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1314 		__fallthrough;
1315 	case 3:
1316 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1317 		__fallthrough;
1318 	case 2:
1319 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1320 		__fallthrough;
1321 	case 1:
1322 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1323 		break;
1324 	}
1325 }
1326 
1327 /* ---------------------------------------------------------------------------
1328  * The following registers are not added:
1329  * ICH_AP0R<n>_EL2
1330  * ICH_AP1R<n>_EL2
1331  * ICH_LR<n>_EL2
1332  *
1333  * NOTE: For a system with S-EL2 present but not enabled, accessing
1334  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1335  * SCR_EL3.NS = 1 before accessing this register.
1336  * ---------------------------------------------------------------------------
1337  */
1338 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1339 {
1340 	u_register_t scr_el3 = read_scr_el3();
1341 
1342 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1343 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1344 #else
1345 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1346 	isb();
1347 
1348 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1349 
1350 	write_scr_el3(scr_el3);
1351 	isb();
1352 #endif
1353 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1354 
1355 	if (errata_ich_vmcr_el2_applies()) {
1356 		if (security_state == SECURE) {
1357 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1358 		} else {
1359 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1360 		}
1361 		isb();
1362 	}
1363 
1364 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1365 
1366 	if (errata_ich_vmcr_el2_applies()) {
1367 		write_scr_el3(scr_el3);
1368 		isb();
1369 	}
1370 }
1371 
1372 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1373 {
1374 	u_register_t scr_el3 = read_scr_el3();
1375 
1376 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1377 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1378 #else
1379 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1380 	isb();
1381 
1382 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1383 
1384 	write_scr_el3(scr_el3);
1385 	isb();
1386 #endif
1387 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1388 
1389 	if (errata_ich_vmcr_el2_applies()) {
1390 		if (security_state == SECURE) {
1391 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1392 		} else {
1393 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1394 		}
1395 		isb();
1396 	}
1397 
1398 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1399 
1400 	if (errata_ich_vmcr_el2_applies()) {
1401 		write_scr_el3(scr_el3);
1402 		isb();
1403 	}
1404 }
1405 
1406 /* -----------------------------------------------------
1407  * The following registers are not added:
1408  * AMEVCNTVOFF0<n>_EL2
1409  * AMEVCNTVOFF1<n>_EL2
1410  * -----------------------------------------------------
1411  */
1412 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1413 {
1414 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1415 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1416 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1417 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1418 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1419 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1420 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1421 	if (CTX_INCLUDE_AARCH32_REGS) {
1422 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1423 	}
1424 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1425 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1426 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1427 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1428 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1429 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1430 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1431 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1432 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1433 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1434 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1435 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1436 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1437 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1438 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1439 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1440 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1441 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1442 
1443 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1444 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1445 }
1446 
1447 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1448 {
1449 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1450 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1451 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1452 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1453 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1454 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1455 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1456 	if (CTX_INCLUDE_AARCH32_REGS) {
1457 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1458 	}
1459 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1460 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1461 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1462 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1463 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1464 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1465 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1466 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1467 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1468 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1469 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1470 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1471 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1472 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1473 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1474 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1475 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1476 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1477 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1478 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1479 }
1480 
1481 /*******************************************************************************
1482  * Save EL2 sysreg context
1483  ******************************************************************************/
1484 void cm_el2_sysregs_context_save(uint32_t security_state)
1485 {
1486 	cpu_context_t *ctx;
1487 	el2_sysregs_t *el2_sysregs_ctx;
1488 
1489 	ctx = cm_get_context(security_state);
1490 	assert(ctx != NULL);
1491 
1492 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1493 
1494 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1495 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1496 
1497 	if (is_feat_mte2_supported()) {
1498 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1499 	}
1500 
1501 	if (is_feat_mpam_supported()) {
1502 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1503 	}
1504 
1505 	if (is_feat_fgt_supported()) {
1506 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1507 	}
1508 
1509 	if (is_feat_fgt2_supported()) {
1510 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1511 	}
1512 
1513 	if (is_feat_ecv_v2_supported()) {
1514 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1515 	}
1516 
1517 	if (is_feat_vhe_supported()) {
1518 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1519 					read_contextidr_el2());
1520 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1521 	}
1522 
1523 	if (is_feat_ras_supported()) {
1524 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1525 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1526 	}
1527 
1528 	if (is_feat_nv2_supported()) {
1529 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1530 	}
1531 
1532 	if (is_feat_trf_supported()) {
1533 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1534 	}
1535 
1536 	if (is_feat_csv2_2_supported()) {
1537 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1538 					read_scxtnum_el2());
1539 	}
1540 
1541 	if (is_feat_hcx_supported()) {
1542 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1543 	}
1544 
1545 	if (is_feat_tcr2_supported()) {
1546 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1547 	}
1548 
1549 	if (is_feat_sxpie_supported()) {
1550 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1551 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1552 	}
1553 
1554 	if (is_feat_sxpoe_supported()) {
1555 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1556 	}
1557 
1558 	if (is_feat_brbe_supported()) {
1559 		write_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2, read_brbcr_el2());
1560 	}
1561 
1562 	if (is_feat_s2pie_supported()) {
1563 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1564 	}
1565 
1566 	if (is_feat_gcs_supported()) {
1567 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1568 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1569 	}
1570 
1571 	if (is_feat_sctlr2_supported()) {
1572 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1573 	}
1574 }
1575 
1576 /*******************************************************************************
1577  * Restore EL2 sysreg context
1578  ******************************************************************************/
1579 void cm_el2_sysregs_context_restore(uint32_t security_state)
1580 {
1581 	cpu_context_t *ctx;
1582 	el2_sysregs_t *el2_sysregs_ctx;
1583 
1584 	ctx = cm_get_context(security_state);
1585 	assert(ctx != NULL);
1586 
1587 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1588 
1589 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1590 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1591 
1592 	if (is_feat_mte2_supported()) {
1593 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1594 	}
1595 
1596 	if (is_feat_mpam_supported()) {
1597 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1598 	}
1599 
1600 	if (is_feat_fgt_supported()) {
1601 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1602 	}
1603 
1604 	if (is_feat_fgt2_supported()) {
1605 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1606 	}
1607 
1608 	if (is_feat_ecv_v2_supported()) {
1609 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1610 	}
1611 
1612 	if (is_feat_vhe_supported()) {
1613 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1614 					contextidr_el2));
1615 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1616 	}
1617 
1618 	if (is_feat_ras_supported()) {
1619 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1620 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1621 	}
1622 
1623 	if (is_feat_nv2_supported()) {
1624 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1625 	}
1626 
1627 	if (is_feat_trf_supported()) {
1628 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1629 	}
1630 
1631 	if (is_feat_csv2_2_supported()) {
1632 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1633 					scxtnum_el2));
1634 	}
1635 
1636 	if (is_feat_hcx_supported()) {
1637 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1638 	}
1639 
1640 	if (is_feat_tcr2_supported()) {
1641 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1642 	}
1643 
1644 	if (is_feat_sxpie_supported()) {
1645 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1646 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1647 	}
1648 
1649 	if (is_feat_sxpoe_supported()) {
1650 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1651 	}
1652 
1653 	if (is_feat_s2pie_supported()) {
1654 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1655 	}
1656 
1657 	if (is_feat_gcs_supported()) {
1658 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1659 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1660 	}
1661 
1662 	if (is_feat_sctlr2_supported()) {
1663 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1664 	}
1665 
1666 	if (is_feat_brbe_supported()) {
1667 		write_brbcr_el2(read_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2));
1668 	}
1669 }
1670 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1671 
1672 /*******************************************************************************
1673  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1674  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1675  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1676  * cm_prepare_el3_exit function.
1677  ******************************************************************************/
1678 void cm_prepare_el3_exit_ns(void)
1679 {
1680 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1681 #if ENABLE_ASSERTIONS
1682 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1683 	assert(ctx != NULL);
1684 
1685 	/* Assert that EL2 is used. */
1686 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1687 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1688 			(el_implemented(2U) != EL_IMPL_NONE));
1689 #endif /* ENABLE_ASSERTIONS */
1690 
1691 	/* Restore EL2 sysreg contexts */
1692 	cm_el2_sysregs_context_restore(NON_SECURE);
1693 	cm_set_next_eret_context(NON_SECURE);
1694 #else
1695 	cm_prepare_el3_exit(NON_SECURE);
1696 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1697 }
1698 
1699 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1700 /*******************************************************************************
1701  * The next set of six functions are used by runtime services to save and restore
1702  * EL1 context on the 'cpu_context' structure for the specified security state.
1703  ******************************************************************************/
1704 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1705 {
1706 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1707 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1708 
1709 #if (!ERRATA_SPECULATIVE_AT)
1710 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1711 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1712 #endif /* (!ERRATA_SPECULATIVE_AT) */
1713 
1714 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1715 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1716 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1717 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1718 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1719 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1720 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1721 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1722 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1723 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1724 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1725 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1726 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1727 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1728 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1729 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1730 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1731 
1732 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1733 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1734 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1735 
1736 	if (CTX_INCLUDE_AARCH32_REGS) {
1737 		/* Save Aarch32 registers */
1738 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1739 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1740 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1741 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1742 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1743 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1744 	}
1745 
1746 	if (NS_TIMER_SWITCH) {
1747 		/* Save NS Timer registers */
1748 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1749 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1750 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1751 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1752 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1753 	}
1754 
1755 	if (is_feat_mte2_supported()) {
1756 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1757 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1758 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1759 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1760 	}
1761 
1762 	if (is_feat_ras_supported()) {
1763 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1764 	}
1765 
1766 	if (is_feat_s1pie_supported()) {
1767 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1768 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1769 	}
1770 
1771 	if (is_feat_s1poe_supported()) {
1772 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1773 	}
1774 
1775 	if (is_feat_s2poe_supported()) {
1776 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1777 	}
1778 
1779 	if (is_feat_tcr2_supported()) {
1780 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1781 	}
1782 
1783 	if (is_feat_trf_supported()) {
1784 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1785 	}
1786 
1787 	if (is_feat_csv2_2_supported()) {
1788 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1789 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1790 	}
1791 
1792 	if (is_feat_gcs_supported()) {
1793 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1794 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1795 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1796 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1797 	}
1798 
1799 	if (is_feat_the_supported()) {
1800 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1801 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1802 	}
1803 
1804 	if (is_feat_sctlr2_supported()) {
1805 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1806 	}
1807 
1808 	if (is_feat_ls64_accdata_supported()) {
1809 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1810 	}
1811 }
1812 
1813 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1814 {
1815 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1816 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1817 
1818 #if (!ERRATA_SPECULATIVE_AT)
1819 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1820 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1821 #endif /* (!ERRATA_SPECULATIVE_AT) */
1822 
1823 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1824 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1825 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1826 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1827 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1828 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1829 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1830 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1831 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1832 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1833 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1834 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1835 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1836 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1837 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1838 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1839 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1840 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1841 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1842 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1843 
1844 	if (CTX_INCLUDE_AARCH32_REGS) {
1845 		/* Restore Aarch32 registers */
1846 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1847 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1848 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1849 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1850 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1851 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1852 	}
1853 
1854 	if (NS_TIMER_SWITCH) {
1855 		/* Restore NS Timer registers */
1856 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1857 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1858 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1859 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1860 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1861 	}
1862 
1863 	if (is_feat_mte2_supported()) {
1864 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1865 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1866 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1867 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1868 	}
1869 
1870 	if (is_feat_ras_supported()) {
1871 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1872 	}
1873 
1874 	if (is_feat_s1pie_supported()) {
1875 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1876 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1877 	}
1878 
1879 	if (is_feat_s1poe_supported()) {
1880 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1881 	}
1882 
1883 	if (is_feat_s2poe_supported()) {
1884 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1885 	}
1886 
1887 	if (is_feat_tcr2_supported()) {
1888 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1889 	}
1890 
1891 	if (is_feat_trf_supported()) {
1892 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1893 	}
1894 
1895 	if (is_feat_csv2_2_supported()) {
1896 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1897 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1898 	}
1899 
1900 	if (is_feat_gcs_supported()) {
1901 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1902 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1903 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1904 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1905 	}
1906 
1907 	if (is_feat_the_supported()) {
1908 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1909 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1910 	}
1911 
1912 	if (is_feat_sctlr2_supported()) {
1913 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1914 	}
1915 
1916 	if (is_feat_ls64_accdata_supported()) {
1917 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1918 	}
1919 }
1920 
1921 /*******************************************************************************
1922  * The next couple of functions are used by runtime services to save and restore
1923  * EL1 context on the 'cpu_context' structure for the specified security state.
1924  ******************************************************************************/
1925 void cm_el1_sysregs_context_save(uint32_t security_state)
1926 {
1927 	cpu_context_t *ctx;
1928 
1929 	ctx = cm_get_context(security_state);
1930 	assert(ctx != NULL);
1931 
1932 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1933 
1934 #if IMAGE_BL31
1935 	if (security_state == SECURE) {
1936 		PUBLISH_EVENT(cm_exited_secure_world);
1937 	} else {
1938 		PUBLISH_EVENT(cm_exited_normal_world);
1939 	}
1940 #endif
1941 }
1942 
1943 void cm_el1_sysregs_context_restore(uint32_t security_state)
1944 {
1945 	cpu_context_t *ctx;
1946 
1947 	ctx = cm_get_context(security_state);
1948 	assert(ctx != NULL);
1949 
1950 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1951 
1952 #if IMAGE_BL31
1953 	if (security_state == SECURE) {
1954 		PUBLISH_EVENT(cm_entering_secure_world);
1955 	} else {
1956 		PUBLISH_EVENT(cm_entering_normal_world);
1957 	}
1958 #endif
1959 }
1960 
1961 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1962 
1963 /*******************************************************************************
1964  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1965  * given security state with the given entrypoint
1966  ******************************************************************************/
1967 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1968 {
1969 	cpu_context_t *ctx;
1970 	el3_state_t *state;
1971 
1972 	ctx = cm_get_context(security_state);
1973 	assert(ctx != NULL);
1974 
1975 	/* Populate EL3 state so that ERET jumps to the correct entry */
1976 	state = get_el3state_ctx(ctx);
1977 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1978 }
1979 
1980 /*******************************************************************************
1981  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1982  * pertaining to the given security state
1983  ******************************************************************************/
1984 void cm_set_elr_spsr_el3(uint32_t security_state,
1985 			uintptr_t entrypoint, uint32_t spsr)
1986 {
1987 	cpu_context_t *ctx;
1988 	el3_state_t *state;
1989 
1990 	ctx = cm_get_context(security_state);
1991 	assert(ctx != NULL);
1992 
1993 	/* Populate EL3 state so that ERET jumps to the correct entry */
1994 	state = get_el3state_ctx(ctx);
1995 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1996 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1997 }
1998 
1999 /*******************************************************************************
2000  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
2001  * pertaining to the given security state using the value and bit position
2002  * specified in the parameters. It preserves all other bits.
2003  ******************************************************************************/
2004 void cm_write_scr_el3_bit(uint32_t security_state,
2005 			  uint32_t bit_pos,
2006 			  uint32_t value)
2007 {
2008 	cpu_context_t *ctx;
2009 	el3_state_t *state;
2010 	u_register_t scr_el3;
2011 
2012 	ctx = cm_get_context(security_state);
2013 	assert(ctx != NULL);
2014 
2015 	/* Ensure that the bit position is a valid one */
2016 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
2017 
2018 	/* Ensure that the 'value' is only a bit wide */
2019 	assert(value <= 1U);
2020 
2021 	/*
2022 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
2023 	 * and set it to its new value.
2024 	 */
2025 	state = get_el3state_ctx(ctx);
2026 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
2027 	scr_el3 &= ~(1UL << bit_pos);
2028 	scr_el3 |= (u_register_t)value << bit_pos;
2029 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
2030 }
2031 
2032 /*******************************************************************************
2033  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
2034  * given security state.
2035  ******************************************************************************/
2036 u_register_t cm_get_scr_el3(uint32_t security_state)
2037 {
2038 	const cpu_context_t *ctx;
2039 	const el3_state_t *state;
2040 
2041 	ctx = cm_get_context(security_state);
2042 	assert(ctx != NULL);
2043 
2044 	/* Populate EL3 state so that ERET jumps to the correct entry */
2045 	state = get_el3state_ctx(ctx);
2046 	return read_ctx_reg(state, CTX_SCR_EL3);
2047 }
2048 
2049 /*******************************************************************************
2050  * This function is used to program the context that's used for exception
2051  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2052  * the required security state
2053  ******************************************************************************/
2054 void cm_set_next_eret_context(uint32_t security_state)
2055 {
2056 	cpu_context_t *ctx;
2057 
2058 	ctx = cm_get_context(security_state);
2059 	assert(ctx != NULL);
2060 
2061 	cm_set_next_context(ctx);
2062 }
2063